Complex Analysis: Assignment-2
 (due Februaury 04, 2020)

Note. Please submit solutions to $2,3(a)$ and $(c), 4,6$ and 7 .

1. Prove that the function $f(x+i y)=\sqrt{|x||y|}$ satisfies the Cauchy-Riemann equations at the origin, and yet, using only the definition, prove that the function is not complex differentiable at 0 .
2. Suppose f is holomorphic on a region Ω. If any one of the following holds:
3. $\operatorname{Re}(f)$ is a constant,
4. $\operatorname{Im}(z)$ is a constant,
5. $|f|$ is a constant,
prove that f is a constant function.
6. Let $\Omega \subset \mathbb{C}$ be open and $f=u+i v: \Omega \rightarrow \mathbb{C}$ be a smooth map.
(a) If h is a smooth map in a neighborhood of $f(p)$, then prove that

$$
\begin{aligned}
\frac{\partial h \circ f}{\partial z}(p) & =\frac{\partial h}{\partial w}(f(p)) \cdot \frac{\partial f}{\partial z}(p)+\frac{\partial h}{\partial \bar{w}} f(p) \cdot \frac{\partial \bar{f}}{\partial z}(p) \\
\frac{\partial h \circ f}{\partial \bar{z}}(p) & =\frac{\partial h}{\partial w}(f(p)) \cdot \frac{\partial f}{\partial \bar{z}}(p)+\frac{\partial h}{\partial \bar{w}} f(p) \cdot \frac{\partial \bar{f}}{\partial \bar{z}}(p)
\end{aligned}
$$

(b) If f is holomorphic, prove that $\operatorname{det} J_{f}(z)=\left|f^{\prime}(z)\right|^{2}$ for all $z \in \Omega$.
(c) Using the usual inverse function theorem from multivariable calculus, prove the following holomorphic inverse function theorem: If f is holomorphic at p with $f^{\prime}(p) \neq 0$, then there there exists open sets U and V around p and $f(p)$ respectively, such that $f: U \rightarrow V$ has a holomorphic inverse $f^{-1}: V \rightarrow U$.
4. Let $\Omega \subset \mathbb{C}$ be a region and $f: \Omega \rightarrow \mathbb{C}$ a holomorphic function satisfying $|f(z)-1|<1$ in Ω. Prove that for any closed regular curve γ in Ω,

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

5. If $P(z)$ is a polynomial and $R>0$ prove that

$$
\int_{|z-a|=R} P(z) d \bar{z}=-2 \pi i R^{2} P^{\prime}(a) .
$$

6. Let f be an entire function, and $\alpha, C>0$ be constants. Suppose

$$
|f(z)| \leq C\left(1+|z|^{\alpha}\right)
$$

for all $z \in \mathbb{C}$. Prove that $f(z)$ is a polynomial of degree at most $[\alpha]$, where $[\alpha]$ denotes the greatest integer less than or equal to α.
7. Compute the following integrals. The circles are traversed once in the anti-clockwise direction.
(a) $\int_{|z|=1} e^{z} z^{-n} d z$.
(b) $\int_{|z|=2} \frac{d z}{1+z^{2}}$.
(c) $\int_{|z|=r} \frac{|d z|}{|z-a|^{2}}$, where $|a| \neq r$. Hint. First prove that $|d z|=-i r d z / z$ on the circle $|z|=r$.
8. Is there a holomorphic function f on a domain Ω such that there exists and integer $N \in \mathbb{N}$ and a complex number $z \in \Omega$ such that $\left|f^{(n)}(z)\right|>n!n^{n}$ for all $n>N$? Can you formulate a sharper theorem of the same kind?
9. Let $\Omega \subset \mathbb{C}$ be open, and let $f: \Omega \rightarrow \Omega$ be a holomorphic function. Suppose there exists a point $z_{0} \in \Omega$ such that

$$
f\left(z_{0}\right)=z_{0}, f^{\prime}\left(z_{0}\right)=1
$$

Prove that f is linear, that is, there exists $a, b \in \Omega$ such that $f(z)=a z+b$. Hint. First prove that one can assume without loss of generality that $z_{0}=0$. If f is not linear, then $f(z)=z+a_{n} z^{n}+O\left(z^{n+1}\right)$ for some $a_{n} \neq 0$ and $n>1$. If f_{k} denote f composed with itself k-times, prove that $f_{k}(z)=z+k a_{n} z^{n}+O\left(z^{n+1}\right)$. Now, apply Cauchy inequalities and let $k \rightarrow \infty$ to conclude the desired result.
10. Suppose $f: \mathbb{D}:=D_{1}(0) \rightarrow \mathbb{C}$ is holomorphic. Prove that the diameter of the image $d:=$ $\sup _{z, w \in \mathbb{D}}|f(z)-f(w)|$ satisfies the estimate

$$
d \geq 2\left|f^{\prime}(0)\right|
$$

and that equality holds if and only if the function is linear.

