Complex Analysis: Assignment-3
 (due February 25, 2020)

Note. Please submit solutions to $2,4,5(a), 6$ and 8 .

1. Let γ be a simple closed curve, and $a \notin \operatorname{Supp}(\gamma)$. The prove that

$$
n(\gamma, a)=\left\{\begin{array}{l}
\pm 1, a \in \operatorname{int}(\gamma) \\
0, a \in \operatorname{ext}(\gamma)
\end{array}\right.
$$

2. Are there holomorphic functions $f(z)$ and $g(z)$ in a neighbourhood of 0 such that for $n=1,2 \ldots$ we have
(a) $f(1 / n)=f(-1 / n)=1 / n^{2}$,
(b) $g(1 / n)=g(-1 / n)=1 / n^{3}$?
3. Determine all holomorphic functions on the unit disc $\mathbb{D}:=D_{1}(0)$ such that

$$
f^{\prime \prime}\left(\frac{1}{n}\right)+f\left(\frac{1}{n}\right)=0
$$

for all $n=2,3, \cdots$.
4. For any open set $\Omega \subset \mathbb{C}$ and any complex valued function, the L^{2}-norm on U is defined to be

$$
\|f\|_{L^{2}(\Omega)}:=\left(\int_{\Omega}|f(x, y)|^{2} d x d y\right)^{1 / 2}
$$

if it is finite. We then define the space $H(\Omega)$ by

$$
H(\Omega):=\left\{f \in \mathcal{O}(\Omega) \mid\|f\|_{L^{2}(\Omega)}<\infty\right\}
$$

We equip it with the norm $\|\cdot\|_{L^{2}(\Omega)}$ defined above.
(a) Let $z_{0} \in \Omega$ and $\overline{D_{r}\left(z_{0}\right)} \subset \Omega$. For any $0<s<r$, prove that

$$
\sup _{z \in D_{s}\left(z_{0}\right)}|f(z)| \leq \frac{1}{\sqrt{\pi}(r-s)}\|f\|_{L^{2}\left(D_{r}\left(z_{0}\right)\right)}
$$

Hint. Write $f(z)$ in terms of an integral on $\partial D_{r}\left(z_{0}\right)$ by the Cauchy integral formula and use polar coordinates.
(b) Prove that if $\left\{f_{n}\right\}$ is a sequence in $H(\Omega)$ that is Cauchy with respect to the $L^{2}(\Omega)$ norm, then $f_{n} \rightarrow f$ compactly on Ω.
(c) Hence prove that $H(\Omega)$ with the metric

$$
d(f, g):=\|f-g\|_{L^{2}(\Omega)}
$$

is a complete metric space.
5. Suppose that f and g are holomorphic in a region containing $\overline{D_{1}(0)}$. Suppose f has a simple zero at 0 (ie. the order is one), and has no other zero in $\overline{D_{1}(0)}$. Let

$$
f_{\varepsilon}(z)=f(z)+\varepsilon g(z) .
$$

Show that if ε is sufficiently small, then
(a) f_{ε} has a unique zero (counted with multiplicity) in $\overline{D_{1}(0)}$.
(b) Moreover, if that unique zero is p_{ε}, then $\varepsilon \rightarrow p_{\varepsilon}$ is a continuous function.
6. Find the branch points (including infinity) for the following functions. Also give a branch cut that will make the function a single valued holomorphic function on the complement of the cut.
(a) $\sqrt{z-1}$
(b) $\log \left(z^{2}+z+1\right)$
7. (a) Let $f: \mathbb{D} \rightarrow \mathbb{C}$ such that the functions $g=f^{2}$ and $h=f^{3}$ are holomorphic on \mathbb{D}. Prove that f is holomorphic. Is the statement true if either g is not holomorphic or h is not holomorphic? If so, give a proof. Else give counterexamples.
(b) Either prove or provide a counter-example to the following statement: If f is a continuous function on a connected open subset Ω such that f^{2} is holomorphic. Then so is f.
8. (a) Let Q_{R} be the rectangle with vertices $(-R, 0),(R, 0),(R, R)$ and $(-R, R)$. Compute the integral

$$
\int_{\partial Q_{R}} \frac{d z}{\left(1+z^{2}\right)^{n+1}},
$$

where Q_{R} has the anti-clockwise orientation.
(b) Use this to prove that

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{n+1}}=\frac{(2 n)!}{4^{n}(n!)^{2}} \pi .
$$

