Complex Analysis: Assignment-4

(due March 10, 2020)

Note. Please submit solutions to 1, 4, 5, 8

1. In each of the cases below, classify the isolated singularities, and in case of poles, compute the order.
(a) $\frac{z^{2}-\pi^{2}}{\sin ^{2} z}$.
(b) $\frac{1-\cos z}{\sin z}$.
(c) $\frac{1}{e^{z}-1}-\frac{1}{z-2 \pi i}$.
(d) $\frac{1}{\cos (1 / z)}$.
2. If f and g are entire functions such that $|f(z)|<|g(z)|$ for $|z|>1$, then show that $f(z) / g(z)$ is a rational function.
3. Let $R(z)$ be a rational function such that $|R(z)|=1$ for $|z|=1$.
(a) Show that α is a zero or a pole of order m, if and only if $1 / \bar{\alpha}$ is a pole or zero of order m respectively. Hint. First show that

$$
M(z)=R(z) \overline{R\left(\frac{1}{\bar{z}}\right)}
$$

is a rational function such that $M(z)=1$ on $|z|=1$.
(b) Let $\left\{\alpha_{j}\right\}_{j=1}^{N}$ be zeroes and poles of $R(z)$ of order m_{j} in the unit disc $|z|<1$. Here $m_{j}>0$ is α_{j} is a zero and $m_{j}<0$ is it is a pole. Define

$$
B(z)=\left(\frac{z-\alpha_{1}}{1-z \bar{\alpha}_{1}}\right)^{m_{1}}\left(\frac{z-\alpha_{2}}{1-z \bar{\alpha}_{2}}\right)^{m_{2}} \cdots\left(\frac{z-\alpha_{N}}{1-z \bar{\alpha}_{N}}\right)^{m_{N}}
$$

Show that $R(z)=\lambda B(z)$ for some $\lambda \in \mathbb{C}$ with $|\lambda|=1$
4. Recall that a function is said to have a removable singularity (resp. pole or essential singularity) at infinity if the function $f(1 / z)$ has a removable singularity (resp. pole or essential singularity) at $z=0$.
(a) Show that an isolated singularity (including at infinity) of $f(z)$ cannot be a pole for $\exp (f(z))$.
(b) In particular, if f is a non-constant entire function, then $\exp (f(z))$ has an essential singularity at infinity.
5. Let f and g be entire functions such that $h(z)=f(g(z))$ is a non-constant polynomial. Prove that both $f(z)$ and $g(z)$ are polynomials.
6. Show that when $0<|z|<4$,

$$
\frac{1}{4 z-z^{2}}=\frac{1}{4 z}+\sum_{n=0}^{\infty} \frac{z^{n}}{4^{n+2}} .
$$

Using the Laurent series, evaluate

$$
\int_{|z|=2} \frac{1}{4 z-z^{2}} d z,
$$

where the circle is given positive orientation.
7. Show that the Laurent series for $\left(e^{z}-1\right)^{-1}$ at the origin takes the form

$$
\frac{1}{z}-\frac{1}{2}+\sum_{n=1}^{\infty}(-1)^{k-1} \frac{B_{k}}{(2 k)!} z^{2 k-1}
$$

where the numbers B_{k} are the called the Bernoulli numbers. Calculate B_{1}, B_{2}, B_{3}.
8. Find a Laurent series that converges in the annulus $1<|z|<2$ to a branch of the function

$$
f(z)=\log \left(\frac{z(2-z)}{1-z}\right) .
$$

