Complex Analysis: Practice problems for the midterm

Note. Please submit solutions to $2,3(a)$ and $(c), 4,6$ and 7 .

1. Let f be an entire function such that $\operatorname{Re}(f(z))>0$ for all $z \in \mathbb{C}$. Prove that f is a constant.
2. Let f be an entire function such that $|f(z)| \leq|z|^{n}$ for all $z \in \mathbb{C}$. Prove that $f(z)=c z^{n}$, for some constant c.
3. Let f be an entire function. The prove that $f(\mathbb{C})$ is dense in \mathbb{C}.
4. Let f and g be holomorphic functions in a neighbourhood fo zero such that both vanish to an order m at 0 . Then prove the following L'hospital's rule in this context:

$$
\lim _{z \rightarrow 0} \frac{f(z)}{g(z)}=\frac{f^{(m)}(0)}{g^{(m)}(0)}
$$

5. Compute $\int_{|z|=1} \tan z d z$.
6. Let $f(z)$ be an entire function with finite number of zeroes $\alpha_{1}, \cdots, \alpha_{k}$ with orders n_{1}, \cdots, n_{k} respectively. If $R>\max _{j}\left|\alpha_{j}\right|$, prove that

$$
\int_{|z|=R} z \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j} \alpha_{j} n_{j}
$$

7. (a) Find the branch points (including infinity) for

$$
f(z)=z^{\frac{1}{3}}(1-z)^{\frac{2}{3}}
$$

and show that $f(z)$ defines a single valued holomorphic function on $\mathbb{C} \backslash[0,1]$.
(b) Is there a contninuous function $g(z)$ on $\mathbb{C} \backslash[0,1]$ such that $f(z)=e^{g(z)}$?
8. Let

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

(a) For $n \geq 2$, if C_{r} is any circle that contains all the roots of $p(z)$ in the interior, then show that

$$
\int_{C_{r}} \frac{1}{p(z)} d z=0
$$

Is the result true if $n=1$?
(b) More generally, if $P(z)$ and $Q(z)$ are polynomials such that $\operatorname{deg}(Q(z)) \geq \operatorname{deg}(P(z))+2$, show that

$$
\int_{C_{r}} \frac{P(z)}{Q(z)} d z=0
$$

for any circle C_{r} such that all the roots of $Q(z)$ lie in the interior of C_{r}.
9. Let

$$
p(z)=\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \cdots\left(z-\alpha_{n}\right)
$$

(a) Show that

$$
\frac{p^{\prime}(z)}{p(z)}=\sum_{j=1}^{n} \frac{1}{z-\alpha_{j}}
$$

(b) Suppose all the roots lie in the upper half plane i.e $\operatorname{Im}\left(\alpha_{j}\right)>0$ for all j. Then show that if $\operatorname{Im}(z) \leq 0$, then for all j,

$$
\operatorname{Im}\left(\frac{1}{z-\alpha_{j}}\right)>0
$$

Use this to show that any root α of $p^{\prime}(z)$ also satisfies $\operatorname{Im}(\alpha)>0$.
(c) More generally, without any assumption on the roots $\alpha_{1}, \cdots \alpha_{n}$ show that a root α of $p^{\prime}(z)$ lies in the convex hull

$$
S\left(\alpha_{1}, \cdots, \alpha_{n}\right)=\left\{t_{1} \alpha_{1}+\cdots+t_{n} \alpha_{n} \mid t_{1}+\cdots+t_{n}=1\right\}
$$

10. Prove the following identities using Cauchy's theorem:
(a) $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=\frac{\pi}{6}$.
(b) $\int_{0}^{\infty} \frac{d x}{x^{3}+1}=\frac{2 \pi}{3 \sqrt{3}}$ Hint. Use a contour formed by a sector of the circle $|z|=R$ between $0 \leq \theta \leq 2 \pi / 3$.
