MA333: Assignment-1
 (due August 19, 2019)

Note. Submit solutions to $1(e), 2,4(d), 5(e)$ and $6(e)$. Please submit solutions if you plan to credit the course. If there is a possibility that you might credit the course, please do submit the solutions, since there will no late submission allowed.

1. Let vector bundles E and F be vector bundles of rank r and s respectively on M, and let $\nabla^{(E)}$ and $\nabla^{(F)}$ be linear connections on them, thought of as maps from $\Gamma(E)$ to $\Gamma\left(T^{*} M \otimes E\right)$ and $\Gamma(F)$ to $\Gamma\left(T^{*} M \otimes F\right)$ respectively.
(a) Prove that $E \oplus F:=\coprod_{p \in M} E_{p} \oplus F_{p}$ can be given the structure of a vector bundle of rank $r+s$ such that the natural inclusion maps $i_{E}: E \rightarrow E \oplus F$ and $i_{F}: F \rightarrow E \oplus F$ are smooth, and with the following universal property: For any vector bundle G, and vector bundle maps $f_{E}: E \rightarrow G$ and $f_{F}: F \rightarrow G$, there exists a unique map $f: E \oplus F \rightarrow G$ such that $f \circ i_{E}=f_{E}$ and $f \circ i_{F}=f_{F}$.
(b) Prove that $E \otimes F:=\coprod_{p \in M} E_{p} \otimes F_{p}$ can be give the structure of a vector bundle with an associated smooth bilinear map $\varphi: E \oplus F \rightarrow E \otimes F$ (here bi-linearity is fibre-wise) such that the following universal property holds: For every vector bundle G, and every smooth bi-linear map $B \rightarrow E \oplus F \rightarrow G$, there exists a unique smooth linear map $\tilde{B}: E \otimes F \rightarrow G$ such that $B=\tilde{B} \circ \varphi$.
(c) Show that $\nabla^{E \otimes F}:=\nabla^{(E)} \otimes \mathbf{1}_{F}+\mathbf{1}_{E} \otimes \nabla^{(F)}$ defines a linear connection on $E \otimes F$.
(d) Show that $E^{*}:=\coprod_{p \in M} E_{p}^{*}$ and $\operatorname{End}(E):=\coprod_{p \in M} \operatorname{End}\left(E_{p}\right)$ can be given structures of vector bundles such that $\operatorname{End}(E)$ is isomorphic to $E \otimes E^{*}$.
(e) Show that $\nabla^{(E)}$ naturally induces a linear connections $\nabla^{\left(E^{*}\right)}$ and $\nabla^{(E n d(E))}$ on E^{*} and $E n d(E)$ in a similar way to how we defined connections on tensor bundles. Write down the formulae for the Christoffel symbols in terms of the corresponding symbols for $\nabla^{(E)}$.
2. Let ∇ be a linear connection on M with Christofell symbols $A_{i j}^{k}$, and we continue to denote it's extension to tensor bundles by ∇. Prove that

$$
\nabla_{i} T_{j_{1}, \cdots, j_{s}}^{i_{1}, \cdots, i_{r}}=\partial_{i} T_{j_{1}, \cdots, j_{s}}^{i_{1}, \cdots, i_{r}}+\sum_{p=1}^{r} A_{i j}^{i_{p}} T^{i_{1} \cdots j \cdots i_{j_{1}} \cdots j_{s}}-\sum_{q=1}^{s} A_{i j_{q}}^{k} T_{j_{1} \cdots k \cdots j_{s}}^{i_{1} \cdots i_{r}} .
$$

Here the j in the second term and the k in the third term replace i_{p} and j_{q} respectively in the components of T.
3. (a) Let $\Omega \subset \mathbb{R}^{2}$ be open and let $f: \Omega \rightarrow \mathbb{R}$ be a smooth function. Let S be the surface defined by $z=f(x, y)$. Calculate the induced Riemannian metric g on S. Prove that the induced volume form is given by

$$
d V_{g}=\sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}} d x d y
$$

(b) More generally, let S be a smooth parametric surface with parametrization $\vec{r}: \Omega \rightarrow \mathbb{R}^{3}$ for some $\Omega \subset \mathbb{R}^{2}$. Calculate the induced metric on S, and prove that the corresponding volume form (or the surface area element) is given by

$$
d S=\left|\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right| d u d v
$$

4. (Killing fields.) Let (M, g) be a compact Riemannian manifold. A vector field X is said to be Killing if $\mathcal{L}_{X} g=0$.
(a) Calculate $\mathcal{L}_{X} g$ in local coordinates.
(b) Let φ_{t} be the flow of X. That is, $\varphi_{0}(x)=x$ for all $x \in M$, and

$$
\frac{d \varphi_{t}(x)}{d t}=X\left(\varphi_{t}(x)\right) .
$$

Prove that X is Killing if and only if φ_{t} is an isometry for all t.
(c) If X and Y are Killing fields, prove that $[X, Y]$ is also a Killing field. These two exercises demonstrate that the set of all Killing fields is isomorphic to the Lie-algebra of the isometry group.
(d) Show that on $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$, the vector fields

$$
x^{i} \frac{\partial}{\partial x^{j}}-x^{j} \frac{\partial}{\partial x^{i}}, \quad(1 \leq i<j \leq n+1)
$$

are Killing fields. Can you recognize the isometries generated by them? Note. You first have to show that the vector fields are indeed tangential to the sphere.
5. A Lie group is a finite dimensional manifold G such that the group operations (namely products and taking inverses) is smooth. The Lie algebra \mathfrak{g} is defined to the tangent space of G at the identity e. A Riemannian metric is said to be left (resp. right) invariant if for any $x \in G, L_{x}^{*} g=g\left(\right.$ resp. $R_{x}^{*} g=g$), where $L_{x}(y)=x \cdot y$ (resp. $\left.R_{x}(y)=y x\right)$ denotes the multiplication on the left (resp. right). It is said to be bi-invariant if it is invariant on the left and the right. Conjugation $C_{x}(y)=x y x^{-1}$ by a group element defines an inner automorphism. The derivatives $\mathrm{Ad}_{x}:=d C_{x}: \mathfrak{g} \rightarrow \mathfrak{g}$ of such automorphisms define a representation Ad : $G \times g \rightarrow \mathfrak{g}$ called the adjoint representation of G.
(a) Prove that $G L(n, \mathbb{R}), S L(n, \mathbb{R}), O(n), S O(n), U(n), S U(n)$ are all Lie groups. Can you identify their Lie algebras, and dimensions?
(b) Show that a metric g on G is left invariant if and only if for any left invariant frame $\left\{X_{i}\right\}$, the co-efficients $g_{i j}:=g\left(X_{i}, X_{j}\right)$ are constant functions.
(c) Show that the restriction $\left.g \rightarrow g\right|_{\mathfrak{g}}$ gives a bijection between left invariant metrics g on G and left invariant inner products on \mathfrak{g}. Moreover, an inner product on \mathfrak{g} induces a bi-invariant metric on G if and only if the inner product is invariant under the adjoint representation (that is Ad_{x} is an isometry of \mathfrak{g} for all $x \in G$).
(d) If g is a left invariant metric on G, prove that the corresponding volume form $d V_{g}$ is bi-invariant.
(e) Use the above two parts to conclude that on any compact connected Lie group, there always exists a biinvariant Riemannian metric. Hint. If you can get a left invariant metric on G, then using an averaging trick and the part above, one can construct a bi-invariant metric on \mathfrak{g}.
6. The aim of this question is to characterise all flat two dimensional tori upto isometries. Recall that a two dimensional torus (as a smooth manifold) is defined to be $\mathbb{T}:=\mathbb{S}^{1} \times \mathbb{S}^{1}$.
(a) If $\left\{\tau_{1}, \tau_{2}\right\}$ is any basis of \mathbb{R}^{2}, and $\Lambda=\left\{n \tau_{1}+m \tau_{2} \mid(n, m) \in \mathbb{Z}^{2}\right\}$ is the corresponding lattice, then prove that \mathbb{T} is diffeomorphic to \mathbb{R}^{2} / Λ by producing an explicit diffeomorphism.
(b) For each Λ, the Euclidean metric (being translation invariant) descends to a Riemannian metric g_{Λ} on \mathbb{T}. If $\left(\theta_{1}, \theta_{2}\right) \in(-\pi, \pi)^{2}$ are canonical coordinates on $\mathbb{T} \backslash\left(\{(-1,0)\} \times \mathbb{S}^{1} \cup \mathbb{S}^{1} \times\{(-1,0)\}\right)$, then prove that

$$
g_{\Lambda}=\sum_{i, j=1}^{2}\left\langle\tau_{i}, \tau_{j}\right\rangle d \theta^{i} \otimes d \theta^{j}
$$

where $\langle\cdot\rangle$ is the Euclidean inner product.
(c) Prove that $\left(\mathbb{T}, g_{\Lambda}\right)$ is isometric to $\left(\mathbb{T}, g_{\Lambda^{\prime}}\right)$ if and only if there exists an isometry of \mathbb{R}^{2} that sends Λ to Λ^{\prime}. We say \mathbb{T} is a square (resp. rectangular or hexagonal) flat tori if it in equipped with the metric g_{Λ}, where $\tau_{1}=(1,0)$ and $\tau_{2}=(0,1)$ (resp. $\tau_{2}=(0, a), a>1$ or $\tau_{2}=(1 / 2, \sqrt{3} / 2)$).
(d) We say two metrics g_{1} and g_{2} on a manifold are homothetic if there exists a $\lambda>0$ such that $g_{2}=\lambda g_{1}$. Show that the equivalence classes of homothetic metrics of the form g_{Λ} on \mathbb{T} are in bijective correspondence to

$$
\mathcal{M}:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \geq 1,0 \leq x \leq 1 / 2, y>0\right\}
$$

Hint. By applying a rotation and dilation, one can assume that $\tau_{1}=(1,0)$.
(e) Show that $\Phi: \mathbb{T} \rightarrow \mathbb{S}^{3}$ defined by $\Phi(\theta, \varphi)=\left(e^{i \theta}, e^{i \varphi}\right)$ defines an embedding of \mathbb{T} in \mathbb{S}^{3}. The resulting submanifold is called the Clifford torus. Show that the Riemannian metric on \mathbb{T} induced from the usual round metric on \mathbb{S}^{3} makes \mathbb{T} into a square torus. Note. This shows that there is an isometric embedding of the square torus into \mathbb{R}^{4}. In a later exercise, we'll show that there does not exist any C^{2} isometric embedding of a flat torus in \mathbb{R}^{3}, though most remarkably, by a theorem of Nash-Kuiper, there does exist a C^{1} isometric embedding. There are beautiful animations of this on youtube.

