
MA333: Assignment-1
(due August 19, 2019)

Note. Submit solutions to 1(e), 2, 4(d), 5(e) and 6(e). Please submit solutions if you plan to credit the
course. If there is a possibility that you might credit the course, please do submit the solutions,
since there will no late submission allowed.

1. Let vector bundles E and F be vector bundles of rank r and s respectively on M , and let ∇(E) and ∇(F ) be linear
connections on them, thought of as maps from Γ(E) to Γ(T ∗M ⊗ E) and Γ(F ) to Γ(T ∗M ⊗ F ) respectively.

(a) Prove that E⊕F :=
∐
p∈M Ep⊕Fp can be given the structure of a vector bundle of rank r+s such that the

natural inclusion maps iE : E → E ⊕ F and iF : F → E ⊕ F are smooth, and with the following universal
property: For any vector bundle G, and vector bundle maps fE : E → G and fF : F → G, there exists a
unique map f : E ⊕ F → G such that f ◦ iE = fE and f ◦ iF = fF .

(b) Prove that E⊗F :=
∐
p∈M Ep⊗Fp can be give the structure of a vector bundle with an associated smooth

bilinear map ϕ : E ⊕ F → E ⊗ F (here bi-linearity is fibre-wise) such that the following universal property
holds: For every vector bundle G, and every smooth bi-linear map B → E ⊕ F → G, there exists a unique
smooth linear map B̃ : E ⊗ F → G such that B = B̃ ◦ ϕ.

(c) Show that ∇E⊗F := ∇(E) ⊗ 1F + 1E ⊗∇(F ) defines a linear connection on E ⊗ F .

(d) Show that E∗ :=
∐
p∈M E∗p and End(E) :=

∐
p∈M End(Ep) can be given structures of vector bundles such

that End(E) is isomorphic to E ⊗ E∗.
(e) Show that ∇(E) naturally induces a linear connections ∇(E∗) and ∇(End(E)) on E∗ and End(E) in a similar

way to how we defined connections on tensor bundles. Write down the formulae for the Christoffel symbols
in terms of the corresponding symbols for ∇(E).

2. Let ∇ be a linear connection on M with Christofell symbols Akij , and we continue to denote it’s extension to
tensor bundles by ∇. Prove that

∇iT i1,··· ,irj1,··· ,js = ∂iT
i1,··· ,ir
j1,··· ,js +

r∑
p=1

A
ip
ij T

i1···j···irj1···js −
s∑
q=1

AkijqT
i1···ir
j1···k···js .

Here the j in the second term and the k in the third term replace ip and jq respectively in the components of T .

3. (a) Let Ω ⊂ R2 be open and let f : Ω→ R be a smooth function. Let S be the surface defined by z = f(x, y).
Calculate the induced Riemannian metric g on S. Prove that the induced volume form is given by

dVg =

√
1 +

(∂f
∂x

)2

+
(∂f
∂y

)2

dxdy.

(b) More generally, let S be a smooth parametric surface with parametrization ~r : Ω → R3 for some Ω ⊂ R2.
Calculate the induced metric on S, and prove that the corresponding volume form (or the surface area
element) is given by

dS =
∣∣∣ ∂~r
∂u
× ∂~r

∂v

∣∣∣dudv.
4. (Killing fields.) Let (M, g) be a compact Riemannian manifold. A vector field X is said to be Killing if LXg = 0.

(a) Calculate LXg in local coordinates.

(b) Let ϕt be the flow of X. That is, ϕ0(x) = x for all x ∈M , and

dϕt(x)

dt
= X(ϕt(x)).

Prove that X is Killing if and only if ϕt is an isometry for all t.
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(c) If X and Y are Killing fields, prove that [X,Y ] is also a Killing field. These two exercises demonstrate that
the set of all Killing fields is isomorphic to the Lie-algebra of the isometry group.

(d) Show that on Sn ⊂ Rn+1, the vector fields

xi
∂

∂xj
− xj ∂

∂xi
, (1 ≤ i < j ≤ n+ 1),

are Killing fields. Can you recognize the isometries generated by them? Note. You first have to show that
the vector fields are indeed tangential to the sphere.

5. A Lie group is a finite dimensional manifold G such that the group operations (namely products and taking
inverses) is smooth. The Lie algebra g is defined to the tangent space of G at the identity e. A Riemannian
metric is said to be left (resp. right) invariant if for any x ∈ G, L∗xg = g (resp. R∗xg = g), where Lx(y) = x · y
(resp. Rx(y) = yx) denotes the multiplication on the left (resp. right). It is said to be bi-invariant if it is invariant
on the left and the right. Conjugation Cx(y) = xyx−1 by a group element defines an inner automorphism. The
derivatives Adx := dCx : g→ g of such automorphisms define a representation Ad : G× g → g called the adjoint
representation of G.

(a) Prove that GL(n,R), SL(n,R), O(n), SO(n), U(n), SU(n) are all Lie groups. Can you identify their Lie
algebras, and dimensions?

(b) Show that a metric g on G is left invariant if and only if for any left invariant frame {Xi}, the co-efficients
gij := g(Xi, Xj) are constant functions.

(c) Show that the restriction g → g|g gives a bijection between left invariant metrics g on G and left invariant
inner products on g. Moreover, an inner product on g induces a bi-invariant metric on G if and only if the
inner product is invariant under the adjoint representation (that is Adx is an isometry of g for all x ∈ G).

(d) If g is a left invariant metric on G, prove that the corresponding volume form dVg is bi-invariant.

(e) Use the above two parts to conclude that on any compact connected Lie group, there always exists a bi-
invariant Riemannian metric. Hint. If you can get a left invariant metric on G, then using an averaging
trick and the part above, one can construct a bi-invariant metric on g.

6. The aim of this question is to characterise all flat two dimensional tori upto isometries. Recall that a two
dimensional torus (as a smooth manifold) is defined to be T := S1 × S1.

(a) If {τ1, τ2} is any basis of R2, and Λ = {nτ1 + mτ2 | (n,m) ∈ Z2} is the corresponding lattice, then prove
that T is diffeomorphic to R2/Λ by producing an explicit diffeomorphism.

(b) For each Λ, the Euclidean metric (being translation invariant) descends to a Riemannian metric gΛ on T. If
(θ1, θ2) ∈ (−π, π)2 are canonical coordinates on T \ ({(−1, 0)} × S1 ∪ S1 × {(−1, 0)}), then prove that

gΛ =

2∑
i,j=1

〈τi, τj〉dθi ⊗ dθj ,

where 〈·〉 is the Euclidean inner product.

(c) Prove that (T, gΛ) is isometric to (T, gΛ′) if and only if there exists an isometry of R2 that sends Λ to Λ′.
We say T is a square (resp. rectangular or hexagonal) flat tori if it in equipped with the metric gΛ, where
τ1 = (1, 0) and τ2 = (0, 1) (resp. τ2 = (0, a), a > 1 or τ2 = (1/2,

√
3/2)).

(d) We say two metrics g1 and g2 on a manifold are homothetic if there exists a λ > 0 such that g2 = λg1. Show
that the equivalence classes of homothetic metrics of the form gΛ on T are in bijective correspondence to

M := {(x, y) ∈ R2 | x2 + y2 ≥ 1, 0 ≤ x ≤ 1/2, y > 0}.

Hint. By applying a rotation and dilation, one can assume that τ1 = (1, 0).

(e) Show that Φ : T → S3 defined by Φ(θ, ϕ) = (eiθ, eiϕ) defines an embedding of T in S3. The resulting sub-
manifold is called the Clifford torus. Show that the Riemannian metric on T induced from the usual round
metric on S3 makes T into a square torus. Note. This shows that there is an isometric embedding of the
square torus into R4. In a later exercise, we’ll show that there does not exist any C2 isometric embedding
of a flat torus in R3, though most remarkably, by a theorem of Nash-Kuiper, there does exist a C1 isometric
embedding. There are beautiful animations of this on youtube.
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