
MA333: Assignment-2
(due 09/09/19)

Note. Please submit solutions to problems 3(b), (e), (f), 4(c), 5(e), 6(c), (d).

1. (Hyperbolic spaces comparison) Recall that in lecture, we defined the Riemannian metrics gBn
R

and gUn
R

on the open unit ball BnR ⊂ Rn and the upper half space UnR ⊂ Rn+1 respectively.

(a) Let Rn+1 be equipped with the quadratic form Q(x) = −(x0)2 + (x1)2 + · · · + (xn)2, and let
HnR := {x = (x0, · · · , xn) | Q(x) = −R2, x0 > 0}. Show that the bi-linear form

−d(x0)2 + d(x1)2 + · · ·+ d(xn)2

induces a Riemannian metric on HnR. We denote this metric by gHn
R

.

(b) Prove that (BnR, gBn
R

) and (HnR, gHn
R

) are isometric. Hint. For n = 2, this is simply the Cayley
transform from complex analysis. Writing down it’s real and imaginary parts, should suggest a
higher dimensional generalization. For simplicity, first you can assume R = 1, and then do the
general case by a scaling argument.

(c) Find an isometry from (HnR, gHn
R

) to (BnR, gBn
R

). Hint. Take the stereographic projection from HnR
to (−R, 0, · · · , 0).

2. (a) Let Cα be the cone of angle 2α with vertex at the origin. More precisely, Cα is the cone x2 + y2 =
z2 tan2 α, z > 0. Endow Cα \ {0} with the Riemannian metric gα which is the restriction of the
Euclidean metric. Then prove that (Cα, gα) is isometric to a sector in R2 of angle 2π sinα by
exhibiting an explicit map.

(b) Let γ : [0, 1] → Cα be any circle z = c on the cone, and let X(t) be any parallel unit vector field
along γ. Calculate the angle between X(0) and X(1).

(c) Calculate the Christoffel symbols of the Levi-Civita connection of the round metric on S2 in spherical
coordinates.

(d) Let γ : [0, 1] → S2 be the curve ϕ = ϕ0 and θ = 2πt (in spherical coordinates), and let v be any
tangent vector to S2 at γ(0). Calculate the angle between v and Pγ,0,1(v) in terms of ϕ0, where Pγ
is the parallel transport with respect to the Levi-Civita connection of the round metric on S2.

3. Let (M̃, g̃) be a Riemannian manifold, and let M ⊂ M̃ be a smooth hypersurface (ie. a submanifold
of codimension one) with the induced Riemannian metric gM . Denote the respective Levi-Civita
connections by ∇̃ and ∇. Set NpM := (TpM)⊥, the orthogonal complement of TpM with respect
to g̃.

(a) Show that NM :=
∐
p∈M NpM can be given the structure of a rank one vector bundle such

that TM̃ |M ∼= TM ⊕ NM as vector bundles. Moreover, prove that the orthogonal projections

π> : TM̃
∣∣∣
M
→ TM and π⊥ : TM̃

∣∣∣
M
→ NM are smooth. We denote the set of smooth sections of

NM by N (M).

(b) The second fundamental form II(X,Y ) : T 1(M)× T (M)→ N (M) is defined by

II(X,Y ) := (∇̃X̃ Ỹ )⊥,
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where X̃ and Ỹ are smooth extensions of X and Y to T 1(M̃). Prove that II(X,Y ) is independent
of the extensions and defines a smooth, symmetric, C∞(M) bilinear map. Moreover,

∇̃X̃ Ỹ = ∇XY + II(X,Y ).

(c) (Weingarten equation.) Suppose X,Y ∈ T 1(M) and N ∈ N (M), and let X̃, Ỹ and Ñ be
arbitrary extensions to M̃ , the prove that

g̃
(
∇̃X̃Ñ , Ỹ

)
= −g(N, II(X,Y )).

(d) For the problems to follow, we specialise to the case when M̃ = Rn+1 with the Euclidean metric,
and assume that M is orientable.We denote the inner product on Rn+1 by 〈·, ·〉. Prove that there

exists a nowhere vanishing smooth section ~N ∈ N (M). In particular, NM is a trivial line bundle.

(e) We normalize so that 〈 ~N, ~N〉 = 1. The scalar second fundamental form is defined by h(X,Y ) =

〈II(X,Y ), ~N〉. If γ : (−ε, ε)→M is any smooth curve, show that

γ̈(t) = Dtγ̇(t) + h(γ̇, γ̇)(t) ~N(γ(t)),

and hence γ is a geodesic if and only if γ̈ is everywhere normal to M .

(f) Let Ω → Rn+1 be an open set, F : Ω → R be a smooth submersion (ie. ∇F 6= 0 on all of Ω), and
M = F−1(0) be non-empty. Show that the scalar second fundamental form with respect to the

unit normal ~N = ∇F/|∇F | is given by

h(V,W ) = −V
iW j∂i∂jF

|∇F |2
.

4. Let c : [0, 1] → R2 be a plane curve parametrised by arc length such that c is injective, and set
c(t) = (r(u), z(u)) with r > 0. The surface S obtained by rotating the image of c can be parametrized
by

(r(u) cos θ, r(u) sin θ, z(u)),

where θ is the rotation angle.

(a) Show that the metric induced on S from R3 is given by g = du2 + r2(u)dθ.

(b) Calculate the Chritoffel symbols with respect to the coordinates (u, θ).

(c) Show that the geodesics are

1. Meridians obtained by intersecting the surface by planes containing the axis of revolution.

2. Parallels (u = const) for which r′(u) = 0.

3. The curves (u(t), θ(t)) which when parametrized by arc-length satisfy(du
dt

)2
+ r2(u(t))

(dθ
dt

)2
= 0, and, r2(u(t))

dθ

dt
= C,

where C is some constant associated to the geodesic.

5. (Divergence of a vector field.) Let (M, g) be a Riemannian manifold. The divergence of a vector field
X is defined to be div(X) := tr(∇X) = ∇iXi. The Hessian is defined by Hess(f)(X,Y ) := ∇X∇Y f .
The Laplacian of a function f is defined to be ∆f = tr(Hessf) = ∇i∇if.
(a) If dVg is the volume form of g, prove that LXdVg = (divX)dVg, and hence prove that in local

coordinates,

divX =
1

det g
∂i(
√

det gXi).

(b) Calculate the divergence of the vector field
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(c) Show that the Hessian is a section of S2T ∗M , and that Hess(f)(X,Y ) = g(∇X∇f, Y ).

(d) Prove that for any function u, and any vector field X, we have,

div(uX) = 〈∇u,X〉+ udiv(X).

(e) Prove that on Rn \ {0},

∆Rn =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆Sn−1 ,

where ∆Sn−1 is the Laplacian of the round metric on Sn−1. Use this to prove that the restriction of
the coordinate functions x, y and z to S2 define eigenfunctions of ∆S2 . What are the corresponding
eigenvalues?

6. (Analysis on manifolds with boundary.) Let M be a manifold with boundary ∂M . Note that
∂M is a submanifold of M ., and for each p ∈ ∂M , there exists a coordinate chart (U,ϕ) such that
ϕ(U) = Bn+ := {(x1, · · · , xn) |

∑
|xi|2 < 1, xn ≥ 0} with ϕ(p) = 0. We have the tangent spaces

Tp∂M = sp(∂1, · · · , ∂n−1) ⊂ TpM := sp(∂1, · · · , ∂n). A metric g on M (defined in the same way as in

the case of manifolds without boundary) restricts to a metric g̃ on ∂M . We say that ~N ∈ N (∂M) is

inward pointing at p ∈ ∂M if there exists a curve γ : [0, ε]→M such that γ(0) = p and γ′(p) = ~N .

(a) Show that a normal field ~N is inward pointing if and only if in every chart (U,ϕ) as above, ~N has
a strictly positive ∂/∂xn component.

(b) Prove that there exists a unique outward pointing unit normal field ~N along ∂M (ie. − ~N is inward
pointing along ∂M). Moreover, if M is oriented with the corresponding nowhere vanishing form Ω,
then i ~NΩ induces an orientation on ∂M . We call this the positive orientation for ∂M .

(c) Prove that
dVg̃ = i ~NdVg,

where we have used the positive orientation on ∂M to write down the volume form. Sanity check.
If M is the unit disc in R2 and ∂M = S1 is the boundary circle, then dVg = rdr ∧ dθ. The outward

unit normal if ~N = ∂/∂r, and i ~NdVg = dθ is the standard length element on S1, and integration
along the circle will be anti-clockwise.

(d) Let (M, g) be a compact oriented manifold with boundary (∂M, g̃), and outward normal vector field
~N . If X is any vector field on M , prove that∫

M

divX dVg =

∫
∂M

〈X, ~N〉 dVg̃.

(e) Prove the following Green’s identities:∫
M

u∆v dV +

∫
M

∇u · ∇v dV =

∫
∂M

u∇v · ~N dṼ (1)∫
M

(u∆v − v∆u) dVg =

∫
∂M

(u∇v · ~N − v∇u · ~N) dṼ . (2)

(f) Hence prove that if u is harmonic, that is if ∆u = 0, and M is closed (that is, without boundary),
then u is a constant.
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