MA333: Assignment-2 (due 09/09/19)

Note. Please submit solutions to problems 3(b), (e), (f), 4(c), 5(e), 6(c), (d).

- 1. (Hyperbolic spaces comparison) Recall that in lecture, we defined the Riemannian metrics $g_{\mathbb{B}_R^n}$ and $g_{\mathbb{U}_R^n}$ on the open unit ball $\mathbb{B}_R^n \subset \mathbb{R}^n$ and the upper half space $\mathbb{U}_R^n \subset \mathbb{R}^{n+1}$ respectively.
 - (a) Let \mathbb{R}^{n+1} be equipped with the quadratic form $Q(x) = -(x^0)^2 + (x^1)^2 + \cdots + (x^n)^2$, and let $\mathbb{H}^n_R := \{x = (x^0, \cdots, x^n) \mid Q(x) = -R^2, x^0 > 0\}$. Show that the bi-linear form

$$-d(x^0)^2 + d(x^1)^2 + \dots + d(x^n)^2$$

induces a Riemannian metric on \mathbb{H}^n_R . We denote this metric by $g_{\mathbb{H}^n_R}$.

- (b) Prove that $(\mathbb{B}_R^n, g_{\mathbb{B}_R^n})$ and $(\mathbb{H}_R^n, g_{\mathbb{H}_R^n})$ are isometric. **Hint.** For n = 2, this is simply the Cayley transform from complex analysis. Writing down it's real and imaginary parts, should suggest a higher dimensional generalization. For simplicity, first you can assume R = 1, and then do the general case by a scaling argument.
- (c) Find an isometry from $(\mathbb{H}_{R}^{n}, g_{\mathbb{H}_{R}^{n}})$ to $(\mathbb{B}_{R}^{n}, g_{\mathbb{B}_{R}^{n}})$. **Hint.** Take the stereographic projection from \mathbb{H}_{R}^{n} to $(-R, 0, \dots, 0)$.
- 2. (a) Let C_{α} be the cone of angle 2α with vertex at the origin. More precisely, C_{α} is the cone $x^2 + y^2 = z^2 \tan^2 \alpha$, z > 0. Endow $C_{\alpha} \setminus \{0\}$ with the Riemannian metric g_{α} which is the restriction of the Euclidean metric. Then prove that (C_{α}, g_{α}) is isometric to a sector in \mathbb{R}^2 of angle $2\pi \sin \alpha$ by exhibiting an explicit map.
 - (b) Let $\gamma : [0,1] \to C_{\alpha}$ be any circle z = c on the cone, and let X(t) be any parallel unit vector field along γ . Calculate the angle between X(0) and X(1).
 - (c) Calculate the Christoffel symbols of the Levi-Civita connection of the round metric on \mathbb{S}^2 in spherical coordinates.
 - (d) Let $\gamma : [0,1] \to \mathbb{S}^2$ be the curve $\varphi = \varphi_0$ and $\theta = 2\pi t$ (in spherical coordinates), and let v be any tangent vector to \mathbb{S}^2 at $\gamma(0)$. Calculate the angle between v and $P_{\gamma,0,1}(v)$ in terms of φ_0 , where P_{γ} is the parallel transport with respect to the Levi-Civita connection of the round metric on \mathbb{S}^2 .
- 3. Let (\tilde{M}, \tilde{g}) be a Riemannian manifold, and let $M \subset \tilde{M}$ be a smooth hypersurface (i.e. a submanifold of codimension one) with the induced Riemannian metric g_M . Denote the respective Levi-Civita connections by $\tilde{\nabla}$ and ∇ . Set $N_p M := (T_p M)^{\perp}$, the orthogonal complement of $T_p M$ with respect to \tilde{g} .
 - (a) Show that $NM := \coprod_{p \in M} N_p M$ can be given the structure of a rank one vector bundle such that $T\tilde{M}|_M \cong TM \oplus NM$ as vector bundles. Moreover, prove that the orthogonal projections $\pi^{\top} : T\tilde{M}|_M \to TM$ and $\pi^{\perp} : T\tilde{M}|_M \to NM$ are smooth. We denote the set of smooth sections of NM by $\mathcal{N}(M)$.
 - (b) The second fundamental form $II(X,Y): \mathcal{T}^1(M) \times \mathcal{T}(M) \to \mathcal{N}(M)$ is defined by

$$II(X,Y) := (\tilde{\nabla}_{\tilde{X}} \tilde{Y})^{\perp},$$

where \tilde{X} and \tilde{Y} are smooth extensions of X and Y to $\mathcal{T}^1(\tilde{M})$. Prove that II(X,Y) is independent of the extensions and defines a smooth, symmetric, $C^{\infty}(M)$ bilinear map. Moreover,

$$\tilde{\nabla}_{\tilde{X}}\tilde{Y} = \nabla_X Y + II(X,Y).$$

(c) (Weingarten equation.) Suppose $X, Y \in \mathcal{T}^1(M)$ and $N \in \mathcal{N}(M)$, and let \tilde{X}, \tilde{Y} and \tilde{N} be arbitrary extensions to \tilde{M} , the prove that

$$\tilde{g}\left(\tilde{\nabla}_{\tilde{X}}\tilde{N},\tilde{Y}\right) = -g(N,II(X,Y)).$$

- (d) For the problems to follow, we specialise to the case when $\tilde{M} = \mathbb{R}^{n+1}$ with the Euclidean metric, and assume that M is orientable. We denote the inner product on \mathbb{R}^{n+1} by $\langle \cdot, \cdot \rangle$. Prove that there exists a nowhere vanishing smooth section $\vec{N} \in \mathcal{N}(M)$. In particular, NM is a trivial line bundle.
- (e) We normalize so that $\langle \vec{N}, \vec{N} \rangle = 1$. The scalar second fundamental form is defined by $h(X, Y) = \langle II(X, Y), \vec{N} \rangle$. If $\gamma : (-\varepsilon, \varepsilon) \to M$ is any smooth curve, show that

$$\ddot{\gamma}(t) = \mathcal{D}_t \dot{\gamma}(t) + h(\dot{\gamma}, \dot{\gamma})(t) \vec{N}(\gamma(t)),$$

and hence γ is a geodesic if and only if $\ddot{\gamma}$ is everywhere normal to M.

(f) Let $\Omega \to \mathbb{R}^{n+1}$ be an open set, $F : \Omega \to \mathbb{R}$ be a smooth submersion (ie. $\nabla F \neq 0$ on all of Ω), and $M = F^{-1}(0)$ be non-empty. Show that the scalar second fundamental form with respect to the unit normal $\vec{N} = \nabla F / |\nabla F|$ is given by

$$h(V,W) = -\frac{V^i W^j \partial_i \partial_j F}{|\nabla F|^2}.$$

4. Let $c : [0,1] \to \mathbb{R}^2$ be a plane curve parametrised by arc length such that c is injective, and set c(t) = (r(u), z(u)) with r > 0. The surface S obtained by rotating the image of c can be parametrized by

$$(r(u)\cos\theta, r(u)\sin\theta, z(u)),$$

where θ is the rotation angle.

- (a) Show that the metric induced on S from \mathbb{R}^3 is given by $g = du^2 + r^2(u)d\theta$.
- (b) Calculate the Chritoffel symbols with respect to the coordinates (u, θ) .
- (c) Show that the geodesics are
 - 1. Meridians obtained by intersecting the surface by planes containing the axis of revolution.
 - 2. Parallels (u = const) for which r'(u) = 0.
 - 3. The curves $(u(t), \theta(t))$ which when parametrized by arc-length satisfy

$$\Big(\frac{du}{dt}\Big)^2 + r^2(u(t))\Big(\frac{d\theta}{dt}\Big)^2 = 0, \text{ and, } r^2(u(t))\frac{d\theta}{dt} = C,$$

where C is some constant associated to the geodesic.

- 5. (Divergence of a vector field.) Let (M, g) be a Riemannian manifold. The *divergence* of a vector field X is defined to be $\operatorname{div}(X) := \operatorname{tr}(\nabla X) = \nabla_i X^i$. The *Hessian* is defined by $\operatorname{Hess}(f)(X,Y) := \nabla_X \nabla_Y f$. The *Laplacian* of a function f is defined to be $\Delta f = \operatorname{tr}(\operatorname{Hess} f) = \nabla_i \nabla^i f$.
 - (a) If dV_g is the volume form of g, prove that $L_X dV_g = (\text{div}X)dV_g$, and hence prove that in local coordinates,

$$\operatorname{div} X = \frac{1}{\det g} \partial_i (\sqrt{\det g} X^i).$$

(b) Calculate the divergence of the vector field

- (c) Show that the Hessian is a section of S^2T^*M , and that $\operatorname{Hess}(f)(X,Y) = g(\nabla_X \nabla f,Y)$.
- (d) Prove that for any function u, and any vector field X, we have,

$$\operatorname{div}(uX) = \langle \nabla u, X \rangle + u\operatorname{div}(X).$$

(e) Prove that on $\mathbb{R}^n \setminus \{0\}$,

$$\Delta_{\mathbb{R}^n} = \frac{\partial^2}{\partial r^2} + \frac{n-1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \Delta_{\mathbb{S}^{n-1}},$$

where $\Delta_{\mathbb{S}^{n-1}}$ is the Laplacian of the round metric on \mathbb{S}^{n-1} . Use this to prove that the restriction of the coordinate functions x, y and z to \mathbb{S}^2 define eigenfunctions of $\Delta_{\mathbb{S}^2}$. What are the corresponding eigenvalues?

- 6. (Analysis on manifolds with boundary.) Let M be a manifold with boundary ∂M . Note that ∂M is a submanifold of M, and for each $p \in \partial M$, there exists a coordinate chart (U, φ) such that $\varphi(U) = \mathbb{B}^n_+ := \{(x^1, \cdots, x^n) \mid \sum |x^i|^2 < 1, x^n \ge 0\}$ with $\varphi(p) = 0$. We have the tangent spaces $T_p \partial M = \operatorname{sp}(\partial_1, \cdots, \partial_{n-1}) \subset T_p M := \operatorname{sp}(\partial_1, \cdots, \partial_n)$. A metric g on M (defined in the same way as in the case of manifolds without boundary) restricts to a metric \tilde{g} on ∂M . We say that $\vec{N} \in \mathcal{N}(\partial M)$ is inward pointing at $p \in \partial M$ if there exists a curve $\gamma : [0, \varepsilon] \to M$ such that $\gamma(0) = p$ and $\gamma'(p) = \vec{N}$.
 - (a) Show that a normal field \vec{N} is inward pointing if and only if in every chart (U, φ) as above, \vec{N} has a strictly positive $\partial/\partial x^n$ component.
 - (b) Prove that there exists a unique *outward* pointing unit normal field \vec{N} along ∂M (ie. $-\vec{N}$ is inward pointing along ∂M). Moreover, if M is oriented with the corresponding nowhere vanishing form Ω , then $i_{\vec{N}}\Omega$ induces an orientation on ∂M . We call this the positive orientation for ∂M .
 - (c) Prove that

$$dV_{\tilde{g}} = i_{\vec{N}} dV_{g_{f}}$$

where we have used the positive orientation on ∂M to write down the volume form. Sanity check. If M is the unit disc in \mathbb{R}^2 and $\partial M = \mathbb{S}^1$ is the boundary circle, then $dV_g = rdr \wedge d\theta$. The outward unit normal if $\vec{N} = \partial/\partial r$, and $i_{\vec{N}}dV_g = d\theta$ is the standard length element on \mathbb{S}^1 , and integration along the circle will be anti-clockwise.

(d) Let (M, g) be a compact oriented manifold with boundary (∂M, ğ), and outward normal vector field N. If X is any vector field on M, prove that

$$\int_{M} \operatorname{div} X \, dV_g = \int_{\partial M} \langle X, \vec{N} \rangle \, dV_{\tilde{g}}.$$

(e) Prove the following *Green's identities:*

$$\int_{M} u\Delta v \, dV + \int_{M} \nabla u \cdot \nabla v \, dV = \int_{\partial M} u\nabla v \cdot \vec{N} \, d\tilde{V} \tag{1}$$

$$\int_{M} (u\Delta v - v\Delta u) \, dV_g = \int_{\partial M} (u\nabla v \cdot \vec{N} - v\nabla u \cdot \vec{N}) \, d\tilde{V}.$$
⁽²⁾

(f) Hence prove that if u is *harmonic*, that is if $\Delta u = 0$, and M is *closed* (that is, without boundary), then u is a constant.