MA333: Assignment-3 (due 30/09/2019)

Note. Submit solutions to 3(b), (c), (f), (g), 4(b), 7

- 1. Give a direct proof (without using the exponential map) of the existence of coordinates (x^1, \dots, x^n) centered at any point p on a Riemannian manifold (M, g) such that the metric components satisfy $g_{ij}(p) = \delta_{ij}$ and $g_{ij;k}(p) = 0$ for all i, j, k. **Hint.** First use a linear change of coordinates to make the metric Euclidean at p, and then introduce a further quadratic change of coordinates to kill the linear term in the Taylor expansion of the metric.
- 2. Consider the unit sphere \mathbb{S}^2 . The tangent space $T_N \mathbb{S}^2$ at the north pole can be identified with the plane z = 1 in \mathbb{R}^3 . Write down an explicit formula for $\exp_N(\vec{v})$, for a vector $\vec{v} \in T_N \mathbb{S}^2$. What is the largest open set $\mathcal{V} \subset T_N \mathbb{S}^2$ for which the exponential map is a diffeomorphism?
- 3. Let G be a Lie group with Lie algebra $\mathfrak{g} \cong T_e G$, where e is identity of the group.
 - (a) For every $\xi \in \mathfrak{g}$, prove that there exists a unique smooth homomorphism $\lambda_{\xi} : \mathbb{R} \to G$ such that $\lambda'_{\xi}(0) = \xi$. Moreover if X_{ξ} is the left invariant vector field on G induced by ξ , prove that $\lambda'_{\xi}(t) = X_{\xi}(\lambda(t))$ for all $t \in \mathbb{R}$.
 - (b) One can define a Lie group exponential map $\operatorname{Exp} : \mathfrak{g} \to G$ by $\operatorname{Exp}(\xi) := \lambda_{\xi}(1)$. If $G \subset GL(n, \mathbb{R})$, prove that $\mathfrak{g} \subset M(n, \mathbb{R})$, and that

$$\operatorname{Exp}(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Here $GL(n,\mathbb{R})$ is the multiplicative group of invertible $n \times n$ matrices and $M(n,\mathbb{R})$ is the algebra of all $n \times n$ matrices.

- (c) If G has a binvariant Riemannian metric (which is the case for instance if G is compact, by Assignment-1), then prove that Exp is equal to the Riemannian exponential map \exp_e at the identity. **Hint.** First show that if ∇ is the Levi-Civita connection and X and Y are two left invariant vector fields, then $2\nabla_X Y = [X, Y]$. Hence prove that the geodesics are precisely the one-parameter subgroups $\lambda(t)$.
- (d) If $G \subset GL(n,\mathbb{R})$ is a Lie group, and X, Y are left invariant vector fields induced by matrices $X_e, Y_e \in \mathfrak{g} \subset M(n,\mathbb{R})$, prove that

$$[X, Y]_e = X_0 Y_0 - Y_0 X_0.$$

That is, the Lie algebra (or matrix) commutator agrees with the usual Lie bracket. For $\xi, \eta \in \mathfrak{g}$ giving rise to left invariant vector fields X_{ξ}, X_{η} we then simply put $[\xi, \eta] := [X_{\xi}, X_{\eta}]_e$. Also prove that the adjoint representation is given by conjugation. that is, for any $(g, A) \in G \times \mathfrak{g}$ (thought of as matrices),

$$\operatorname{Ad}_g(A) = gAg^{-1}$$

(e) Prove that the Lie algebra $\mathfrak{sl}_2(\mathbb{R})$ of $SL(2,\mathbb{R})$ is spanned by basis

$$X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \ Y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Moreover, prove that [H, X] = 2X, [X, Y] = H and [H, Y] = -2Y.

- (f) Recall that a Lie group has a bi-invariant metric if and only if there is an inner product on \mathfrak{g} which is invariant under the adjoint representation. Using this, prove that $SL(2,\mathbb{R})$ can have no bi-invariant Riemannian metric. **Hint.** Construct an matrix $g \in SL(2,\mathbb{R})$ such that $\operatorname{Ad}_g(X) = 4X$, where X is as above. Does that help?!
- (g) Take the Frobenius inner product \langle , \rangle on \mathfrak{g} (so that $\langle A, B \rangle := \operatorname{tr}(A^T B)$) and extend this to a leftinvariant Riemannian metric on $SL(2,\mathbb{R})$. Prove that the Riemannian exponential map at the identity is given by

$$\exp_e(A) = e^{A^T} e^{A - A^T},$$

and is not equal to the Lie group Exp defined above.

4. Let N be a closed, embedded submanifold of a Riemannian manifold (M,g). For any point $p \in M \setminus p$, we define the distance of N from p by

$$d(p,N) := \inf\{d(p,x) : x \in N\}$$

- (a) If (M,g) is complete, prove that N is also complete with the induced Riemannian metric.
- (b) If $q \in N$ is a point such that d(p,q) = d(p,N), and γ is any minimising geodesic from p to q, prove that q intersects N orthogonally. **Hint.** Use the first variation formula.
- 5. A curve $\gamma : [0, b) \to M$ $(0 < b \le \infty)$ is said to converge to infinity if for every compact subset $K \subset M$, there is a time T such that $\gamma(t) \neq K$ for t > T. Prove that a Riemannian manifold (M, g) is complete if and only if every regular curve that converges to infinity has infinite length.
- 6. A Riemannian manifold (M, g) is said to be *homogenous* if there exists a Lie group G acting smoothly and transitively on M by isometries. It is called *isotropic at* $p \in M$ if there exists a Lie group G acting smoothly on M by isometries such that the stabiliser subgroup $G_p \subset G$ (that is, the subgroup of elements that fix p) acts transitively (by pushforwards) on the set of unit tangent vectors in T_pM . Note that a homogenous Riemannian manifold that is isotropic at one point, is isotropic at all points.
 - (a) Show that a homogenous Riemannian manifold is necessarily complete.
 - (b) If (M,g) is a complete Riemannian manifold that is isotropic at each point. Show that M is homogenous.
- 7. A Riemannian submanifold $(M,g) \subset (\tilde{M},\tilde{g})$ is called *totally geodesic* if for every $V \in TM$, the corresponding maximal \tilde{g} -geodesic $\tilde{\gamma}_V$ lies completely in M. Prove that the following are equivalent.
 - 1. M is totally geodesic.
 - 2. Every g-geodesic in M is also a \tilde{g} -geodesic in \tilde{M} .
 - 3. The second fundamental form of M in \tilde{M} (see Assignment-2 for the definition) vanishes identically.
- 8. A subset $\mathcal{U} \subset M$ is said to be *(geodesically) convex* if for every $p, q \in \mathcal{U}$, there is a unique (in M) minimising geodesic from p to q lying entirely in \mathcal{U} . The aim of this exercise is to show that for any $p \in M$, there exists an $\varepsilon > 0$ such that $B_{\varepsilon}(p)$ is convex.
 - (a) Fix $p \in M$, and let \mathcal{W} be a neighbourhood of p and $\varepsilon > 0$ such that any two points in $q_1, q_2 \in \mathcal{W}$ can be joined by a a minimal geodesic (given by $\gamma(t) = \exp_{q_1}(tv)$) of length smaller than ε . We proved the existence of such a neighbourhood in class. By shrinking ε further, we assume that $B(p, 2\varepsilon) \subset \mathcal{W}$, and define

$$\mathcal{W}_{\varepsilon} := \{ (q, V, t) \in TM \times \mathbb{R} \mid q \in B(p, \varepsilon), V \in T_qM, |V| = 1, |t| < 2\varepsilon \},\$$

and $f: \mathcal{W}_{\varepsilon} \to \mathbb{R}$ by $f(q, V, t) := d(\exp_q(tV), p)^2$. Prove that f is smooth. Hint. Use normal coordinates centred at p.

- (b) Show that if ε is chosen small enough, then $\partial^2 f / \partial t^2 > 0$ on $\mathcal{W}_{\varepsilon}$. Hint. Compute f(p, V, t) explicitly and then use continuity.
- (c) If $q_1, q_2 \in B(p, \varepsilon)$ and γ is a minimizing geodesic from q_1 to q_2 , prove that $d(\gamma(t), p)$ attains it's maximum at one of the end points.
- (d) Show that $B(p,\varepsilon)$ is convex.