MA333: Assignment-4 Due 23/10/2019

Please submit solutions to problems 1, 3(d), 4, 6, 7 and 8.

1. Let (M,g) be a complete Riemannian manifold. Prove that for any $p \in M$, the cut-locus has the following characterisation:

$$Cut(p) = \{q \in M \mid \forall x \in M \setminus \{q\}, \ d(p,q) + d(x,q) > d(p,x)\}.$$

- 2. Let (M, g) be a complete Riemannian manifold.
 - (a) Prove that *cut-time* function $\tau_{cut} : SM \to M$ defined by

$$\tau_{cut}(\xi_p) = \begin{cases} t_0, & \text{if } \exp_p(t_0\xi_p) \in Cut(p) \\ +\infty, & \text{otherwise,} \end{cases}$$

is a continuous function.

- (b) Prove that Cut(p) is a closed subset of M.
- (c) Let $\tilde{U}_p := \{t\xi_p \mid 0 \le t < \tau_{cut}(\xi_p), \xi_p \in S_pM\}$ and $\mathcal{U}_p := \exp_p(\tilde{U}_p)$ Prove that $M = \mathcal{U}_p \cup Cut(p)$ and $\mathcal{U}_p \cap Cut(p) = \phi$. Note. This was implicitly assumed and used in class, but I never provided a rigorous proof.
- (d) The boundary $\partial \tilde{U}_p$ is by definition the cut-locus $\tilde{Cut}(p)$ of p in the tangent space. Let

 $\partial^1 \tilde{U}_p := \{ \xi \in \partial \tilde{U}_p \mid \exp_p(\xi) = \exp(\xi') \text{ for some } \xi' \in \partial \tilde{U}_p \setminus \{\xi\} \}.$

Prove that $\exp_p(\partial^1 \tilde{U}_p) \subset Cut(p)$ is dense, and that for any $q \in M \setminus \exp_p(\partial^1 \tilde{U}_p)$, there exists a unique geodesic connecting p and q.

- (e) Hence prove that if r_p is smooth in a neighbourhood of x, then $x \notin Cut(p)$. Hint. We have already shown in class that r_p is differentiable at x if and only if $x \in M \setminus \exp_n(\partial^1 \tilde{U}_p)$.
- 3. Let $E \to M$ be a smooth rank r vector bundle on M with a connection ∇ . The operator d_{∇} can be extended to an operator $d_{\nabla} : \Gamma(\Lambda^p T^*M \otimes E) \to \Gamma(\Lambda^{p+1}T^*M \otimes E)$ by setting

$$d_{\nabla}(\omega \otimes s) = d\omega \otimes s + (-1)^p \omega \wedge d_{\nabla}s.$$

Define the curvature F_{∇} of ∇ be setting $F_{\nabla}(s) = d^2_{\nabla}(s)$. We define the curvature endomorphism (also denoted by $F_{\nabla} : \mathcal{T}^1(M) \times \mathcal{T}^1(M) \times \Gamma(E) \to \Gamma(E)$ by

$$F_{\nabla}(X,Y)(s) := i_X i_Y d_{\nabla}^2 s,$$

where the contraction is applied to the form part. That is, if ω is a local 2-form and s a local section, then $i_X i_Y(\omega \otimes s) := \omega(X, Y)s$. We also say that ∇ is flat if $F_{\nabla} \equiv 0$.

(a) Prove that for any $f \in C^{\infty}(M)$ and any $s \in \Gamma(E)$, $F_{\nabla}(f \cdot s) = f \cdot F_{\nabla}(s)$. Hence show that F_{∇} can be thought of as an element of $\Gamma(\Lambda^2 T^*M \otimes End(E))$.

(b) For any $X, Y \in \mathcal{T}^1(M)$, prove that

$$F_{\nabla}(X,Y)(s) := \nabla_X \nabla_Y s - \nabla_Y \nabla_X s - \nabla_{[X,T]} s_{\mathbb{R}}$$

and hence prove that if E = TM with the Levi-Civita connection, then F_{∇} is simply the Riemann curvature endomorphism.

(c) Let $\{e_{\alpha}\}$ be a local frame for E, and let A_{α}^{β} be the local connection matrix of 1-forms. We define the local curvature matrix by $F_{\nabla}(e_{\alpha}) = \Omega_{\alpha}^{\beta}$. Prove Cartan's second structural equation

$$\Omega^{\beta}_{\alpha} = dA^{\beta}_{\alpha} - A^{\gamma}_{\alpha} \wedge A^{\beta}_{\gamma}$$

(d) Let $\Gamma : [0,1] \times [0,1] \to M$ be a smooth map such that $\Gamma(s,0) = \Gamma(s,1) = p$ and $\Gamma(1,t) = p$. Let $P_{(s,t)} : E_p \to E_{\Gamma(s,t)}$ be the parallel translation along the curve $\Gamma_t(s) = \Gamma(s,t)$, and let $\hat{P}_{(s,t)} : E_p \to E_{\Gamma(s,t)}$ be the parallel translation first along $\gamma(t) := \Gamma(0,t)$ to $\gamma(t)$ and then along $\Gamma_t(s)$ to $\Gamma(s,t)$. If P_γ denotes the parallel translation along $\gamma(t)$, prove that

$$P_{\gamma} - id = \int \int_{[0,1] \times [0,1]} P_{(s,t)}^{-1} F_{\nabla} \hat{P}_{(s,t)}.$$

- (e) Prove that ∇ is flat if and only if $\operatorname{Hol}_p^0(\nabla) = \{id\}$ for any $p \in M$.
- 4. Let $\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 + y^2$ be the standard paraboloid with the induced metric. Prove that the Gauss curvature is given by $K(x, y, z) = (z + 1)^{-2}$.
- 5. Let G be a Lie group with a bi-invariant metric g.
 - (a) Show that

$$R(X,Y)Z = \frac{1}{4}[Z,[X,Y]],$$

whenever X, Y and Z are left-invariant vector fields.

- (b) Show that all sectional curvatures are non-negative.
- (c) If H is a Lie subgroup of G with the induced metric, show that H is totally geodesic.
- (d) If H is connected, prove that it is flat in the induced metric if and only if it is Abelian.
- 6. Let (M, g) be a Riemannian manifold. We say that (\tilde{M}, \tilde{g}) is (locally) conformal to (M, g) if there exists a (local) diffeomorphism (called a conformal (local) diffeomorphism) $\varphi : \tilde{M} \to M$ such that $\tilde{g} = e^u \varphi^* g$ for some $u \in C^{\infty}(M)$. We say that (M, g) is locally conformally flat if for every $p \in M$, there exists a neighbourhood U, and a conformal diffeomorphism of (U, g) onto an open set $V \subset \mathbb{R}^n$ with the Euclidean flat metric.
 - (a) Prove that if φ is a local conformal diffeomorphism from (\tilde{M}, \tilde{g}) to (M, g), then the corresponding Weyl tensors satisfy $\varphi^*W = \tilde{W}$.
 - (b) If (M, g) is locally conformally flat, prove that $W \equiv 0$. Note. In a later assignment, we will show that the converse is also true. This is analogous to the characterisation of manifolds locally isometric to \mathbb{R}^n by vanishing of the full curvature tensor.
- 7. Show that the catenoid $M \subset \mathbb{R}^3$ obtained by revolving $x = \cosh z$ around the z-axis is a minimal surface.
- 8. (a) For a Riemannian metric on a surface given locally by $g = h(dx^2 + dy^2)$, for some smooth strictly positive function, prove that the Gauss curvature has the formula

$$K = -\frac{1}{2h} \Big(\frac{\partial^2 \log h}{\partial x^2} + \frac{\partial^2 \log h}{\partial y^2} \Big).$$

- (b) Use this to show that \mathbb{H}^2_R has constant Gauss curvature $-1/R^2$.
- (c) Let (M^n, g) be a Riemannian hypersurface in \mathbb{R}^{n+1} with a unit normal vector field \mathcal{V} . We can think of \mathcal{V} as a map $\mathcal{V} : M \to \mathbf{S}^n$, called the *Gauss map*. If $d\sigma$ is the standard round metric measure on \mathbf{S}^n , prove that

$$\mathcal{V}^* d\sigma = K dV_g$$

where K is the Gaussian curvature of (M, g).

Page 2