
MA333: Assignment-5
(due 13 November, 2019)

October 31, 2019

Note. Please submit solutions to problems 2(b), 4, 5 and 6(c).

1. Suppose γ : [a, b] → M is a geodesic, and let V ∈ Tγ(a)M and W ∈ Tγ(b)M . Prove that there exists a
Jacobi field J along γ with J(a) = V and J(b) = W if and only if γ(a) and γ(b) are not conjugate along
γ. Moreover, if such a Jacobi field exists, then it is unique.

2. (a) Let (M1, g1) and (M2, g2) be two Riemannian manifolds. Endow the product M := M1 ×M2 with
the product metric g := g1 ⊕ g2. Prove that

Rmg = π∗1Rmg1 ⊕ π∗2Rmg2 ,

where πi : M →Mi are the projection maps.

(b) Prove that the sectional curvatures of S2 × S2 lie between [0, 1].

3. Let (M, g) have non positive sectional sectional curvature. Let J(t) be a Jacobi field along a unit speed
geodesic. Prove that f(t) = |J(t)|2 is convex as long as J(t) 6= 0. Hence prove that M cannot have any
conjugate points.

4. Suppose (Mn, g) is a Riemannian manifold and U is a normal neighbourhood centred at p ∈M .

(a) Let γ(t) = expp(tv) with |v| = 1, and J(t) be a Jacobi field along γ with J(0) = 0 and DtJ(0) = w,
where |w| = 1. Show that

|J(t)|2 = t2 − 1

3
Rm(v, w,w, v)t4 +R(t),

where limt→0 t
−4R(t) = 0.

(b) Prove that with respect to the normal coordinates {xi} in U , the following expansion holds

gij(x) = δij −
1

3
Rikljx

kxl +O(|x|3).

Hint. Compute the first four derivatives of |J(t)|2 in a different way, and use the first part.

(c) Letting S(p, r) and B(p, r) denote the geodesic sphere and ball respectively of radius r, prove the
asymptotic formulae as r → 0+

|B(p, r)|
ωnrn

= 1− S(p)

6(n+ 2)
r2 +O(r3)

|S(p, r)|
nωnrn−1

= 1− S(p)

6
r2 +O(r3),

where |S(p, r)| and |B(p, r)| denote the volumes with respect to the induced metrics on S(p, r) and
B(p, r) respectively, ωn is the volume of the unit ball in Rn and S is the scalar curvature of (M, g).
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(d) Now let n = 2 and denote by A(p, r) and C(p, r) the area and circumference respectively of geodesic
r circles around p. Then prove that the Gauss curvature has the following geometric formulae

K(p) = 12 lim
r→0+

πr2 −A(p, r)

πr4
= 3 lim

r→0+

2πr − C(p, r)

πr3
.

5. (Hessian of the distance function).

(a) Prove that if γ : [0, b] → M is a unit speed geodesic, and Γ is an admissible (possibly non-proper)
one-parameter variation with ∂sΓ(0, ·) = W (·) and S := ∂sΓ, then

d

ds2

∣∣∣
s=0
L(γs) = 〈DsS(0, b), γ̇(b)〉−〈DsS(0, 0), γ̇(0)〉+

∫ b

a

(
|DtW |2−〈DtW, γ̇〉2−Rm(W, γ̇, γ̇,W )

)
.

Note. As mentioned in class, unlike the first variation formula for length, the above formula does
not follow directly from the analogous formula for the energy. Also, unlike in the lectures, here we
are not assuming that the variation is proper. You need to redo the complete calculation.

(b) Consider f(x) := 1
2d(p, x)2. For any q ∈ M \ Cut(p) and Xq ∈ TqM , let γq : [0, f(q)] → M be the

unique unit speed minimal geodesic connecting p to q and J a Jacobi field along γq with J(0) = 0
and J(f(q)) = Xq (This exists by Problem 1). Then prove that

Hessf (Xq, Xq) = f(q)〈J ′(f(q)), Xq〉.

Note that J ′(t) := ∇γ̇(t)J. Note. There might be a negative sign in front of the RHS. If so, let me
know.

Hint. Take a variation of γ induced by J , and apply the second variation formula above. Note
that you will have to integrate by parts and worry about the boundary term at the right end-point.

(c) If (M, g) has non-positive sectional curvature, prove that the function f(x) defined above is convex
in the sense that for any geodesic γ, the function f ◦ γ is convex as a real valued function.

6. The Chern-Gauss-Bonnet theorem says that for any even dimensional closed manifold (Mn, g),

χ(M) =
1

(2π)m

∫
M

Pf(Ω),

where n = 2m, χ(M) is the Euler characteristic, Ωi
j := R j

kli dx
k ∧dxl is the curvature form matrix, and

Pf(Ω) :=
1

2mm!

∑
σ∈S2m

(−1)sgnσΩ
σ(2)
σ(1) ∧ Ω

σ(4)
σ(3) ∧ · · · ∧ Ω

σ(2m)
σ(2m−1),

is the Pfaffian of the curvature.

(a) When n = 2, derive the Gauss-Bonnet theorem∫
M

K dA = 2πχ(M),

where A is the area element induced by the metric g.

(b) When n = 4, prove that

1

32π2

∫
M

(
|Rm|2 − 4|Rc|2 + S2

)
dV = χ(M).

(c) Hence prove that if (M, g) is a four dimensional Einstein manifold, then χ(M) ≥ 0. Moreover,
χ(M) = 0 if and only if (M, g) is flat ie. locally isometric to R4.
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