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Introduction: Some history and the main theorem

Uniformization Theorem.

Theorem (Uniformization theorem)

Any compact Riemann surface admits a metric of constant Gauss curvature.

Given any oriented compact 2-d Riemannian manifold (M, g0), there exists a metric
g = e2'g0 with constant Gauss curvature.
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Introduction: Some history and the main theorem

For a surface with metric (in isothermal coordinates)

ds2 = h(dx2 + dy 2),

the Gauss curvature form is given by

KdA = �
p
�1

@2 log h
@z@z̄

dz ^ dz̄ ,

where z = x +
p
�1y . By Gauss-Bonnet,

Z

M

K dA = 2⇡�(M).

So depending on the sign of �(M), a compact Riemann surface admits a metric of
constant Gauss curvature K = ±1 or K = 0.

Remark

A purely PDE proof of the case K = 1 (ie. M = S2) is the hardest. This is a harbinger of
things to come!
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Introduction: Some history and the main theorem

Kähler manifolds

Let Mn be a compact complex manifold with dimCM = n.

A Riemannian metric g is called Kähler if there are local coordinates (x1, · · · , x2n) in
which

gjk = �jk + O(|x |2),

and such that for j = 1, · · · , n,

z j = x j +
p
�1xn+j

are local holomorphic coordinates.

One can associate a (1, 1) form in the following way - If J denotes the canonical
complex structure

J
⇣ @
@x j

⌘
=

@
@xn+j

, J2 = �id,

then we define the Kähler form ! by

!(·, ·) = g(J·, ·).

g Kähler () d! = 0.
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Introduction: Some history and the main theorem

Properties of the Kähler form

! is a closed, real form (ie. !̄ = !), and so represents a cohomology class in
H2(M,R).
Locally we can write

! =

p
�1
2

g↵�̄dz
↵ ^ dz̄� ,

where g↵�̄ = g
⇣

@
@z↵ , @

@z̄�

⌘
. Then the matrix {g↵�̄} is a positive definite Hermitian

matrix.

Conversely, given such a form !, g(·, ·) = !(·, J·) defines a Riemannian metric.

Any class in H2(M,R) which contains a Kähler metric, is called a Kähler class. The
set of Kähler classes K ⇢ H2(M,R) is an open convex cone.

(@@̄ Lemma) If [!1] = [!2], then there exists a ' 2 C1(M,R) such that

!2 = !1 +
p
�1@@'.

Note: Henceforth we will abuse notation and refer to ! as simply the Kähler metric.
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Introduction: Some history and the main theorem

Examples

Any compact Riemann surface with ! being a volume form. Then since n = 1,
d! = 0 is trivially true.

Complex projective space PN with the Fubini study metric given in homogenous
coordinates [⇠0, · · · ⇠N ] by

!FS =
p
�1@@ log

⇣
|⇠0|2 + · · · |⇠N |2

⌘
.

When n = 1, P1 = S2, and the Fubini-Study metric is the usual round metric.

Any non-singular sub-variety X ⇢ PN , with ! given by restricting !FS to X .

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 7 / 36



Introduction: Some history and the main theorem

Examples

Any compact Riemann surface with ! being a volume form. Then since n = 1,
d! = 0 is trivially true.

Complex projective space PN with the Fubini study metric given in homogenous
coordinates [⇠0, · · · ⇠N ] by

!FS =
p
�1@@ log

⇣
|⇠0|2 + · · · |⇠N |2

⌘
.

When n = 1, P1 = S2, and the Fubini-Study metric is the usual round metric.

Any non-singular sub-variety X ⇢ PN , with ! given by restricting !FS to X .

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 7 / 36



Introduction: Some history and the main theorem

Examples

Any compact Riemann surface with ! being a volume form. Then since n = 1,
d! = 0 is trivially true.

Complex projective space PN with the Fubini study metric given in homogenous
coordinates [⇠0, · · · ⇠N ] by

!FS =
p
�1@@ log

⇣
|⇠0|2 + · · · |⇠N |2

⌘
.

When n = 1, P1 = S2, and the Fubini-Study metric is the usual round metric.

Any non-singular sub-variety X ⇢ PN , with ! given by restricting !FS to X .

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 7 / 36



Introduction: Some history and the main theorem

Curvature

The Ricci form of the Kähler metric ! is defined by

⇢! = �
p
�1@@ log det(g↵�̄).

Note that d⇢! = 0.

The Riemannian Ricci curvature is then given by

Ric(·, ·) = ⇢!(·, J·).

Question (Calabi, 1950s)

Given a Kähler manifold M, when does it admit a metric of constant Ricci curvature.
More precisely, when is there a Kähler metric ! such that

⇢! = �!,

for some � 2 R. Such an ! is called a Kähler-Einstein (KE) metric.
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Introduction: Some history and the main theorem

Topological obstruction

Recall that the anti-canonical bundle K�1
M is the line bundle locally generated by

@
@z1

^ · · · ^ @
@zn

.

If h is a hermitian metric then the curvature Fh = �@@̄ log h is a global closed (1, 1)
form, and the first Chern class c1(M) 2 H2(M,R) is defined by

c1(M) := c1(K
�1
M ) :=

p
�1
2⇡

[Fh].

Given Kähler metric !, a natural hermitian metric on K�1
M given by

���
���
@
@z1

^ · · · ^ @
@zn

���
���
2

= det g↵�̄ ,

and hence ⇢! 2 2⇡c1(M).

So if ! is KE, then

c1(M) =
�
2⇡

[!].
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Introduction: Some history and the main theorem

Existence results

(Yau [8], ’78) If c1(M) = 0, then there exists a unique Ricci flat metric ! in every
Kähler class.

(Yau, Aubin [1], ’78) If c1(M) < 0, then there exists a unique KE metric in
�2⇡c1(M).

(Chen-Donaldson-Sun [2], 2012) If c1(M) > 0 (ie. M is Fano), there exists KE in
2⇡c1(M) if M is K -stable. Converse due to Tian, Berman etc.
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Introduction: Some history and the main theorem

Some remarks

Fano case an instance of Kobayashi-Hitchen correspondence

⇢
Existence of

Canonical metrics

�
()

⇢
Algebro-geometric

Stability

�

Examples - Narasimhan-Seshadri, Donaldson-Yau-Uhlenbeck, Kähler-Einstein
metrics on S2 with cone angles < 2⇡, · · · .
Unfortunately K -stability is notoriously di�cult to check. eg. Even in manifolds with
large symmetry groups (eg. Toric)
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Introduction: Some history and the main theorem

Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let G ⇢ Aut(M) be a compact group. Then M admits a KE if it is G -equivariantly
K -stable with respect to special degenerations.

Remarks

We actually prove a much more general theorem on existence of Kähler-Ricci
solitons.

The theorem can recover some older results (eg. KE metrics on toric manifolds),
and has also led to the discovery of new KE manifolds.

We need to use a completely di↵erent proof from that of CDS.
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K -stability

1 Introduction: Some history and the main theorem

2 K -stability

3 Outline of the proof

4 What next?
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K -stability

An analytic obstruction : Futaki invariant

Let M be a Fano manifold, that is c1(M) > 0, and let ! 2 2⇡c1(M) be a Kähler
metric.

Since [⇢!] = [!], there exists an h 2 C1(M,R), called the Ricci potential, such that

⇢! = ! +
p
�1@@h.

Let ⌘(M) = {hol. vector fields on M}, and define Fut : ⌘(M) ! C by

Fut(M, ⇠) = � 1
V

Z

M

⇠(h)
!n

n!
,

where V =
R
M

!n

n!
is the volume of the manifold.

(Futaki) Fut(M, ⇠) does not depend on the specific metric ! 2 2⇡c1(M), and hence
is an invariant of a Fano manifold.

It vanishes if the Fano manifold admits a KE.
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K -stability

Futaki invariant (cont.)

Example

BlpP2 does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian ’97) NO! Examples of Kähler three-folds (so called Mukai-Umemera manifolds)
with ⌘(M) = {0} and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety.
Key point.

(Ding-Tian) The Futaki invariant can be defined on “ su�ciently nice” singular
varieties.

(Donaldson) Algebro-geometric definition using Riemann-Roch.
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K -stability

Futaki invariant of a degeneration

Since c1(M) > 0, K�1
M is ample, so there is a Kodaira embedding M ,! PN for some

large N.

A special degeneration is a one-parameter subgroup � : C⇤ ! GL(N,C) generated
by the holomorphic vector field ⇠ 2 gl(N,C), such that the flat limit

W = lim
t!0

�(t) ·M

is a normal Q-Fano variety. Note that ⇠ is tangential to W .
We define the Futaki invariant for this degeneration by

Fut(M,�) = Fut(W , ⇠).
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K -stability

Definition

M is called K -semistable if for any Kodaira embedding, and any special degeneration �,
Fut(M,�) � 0. It is called K -stable if in addition, Fut(M,�) = 0 if and only if there
exists a A 2 GL(N,C) such that W = A ·M.

If G ⇢ Aut(M), then G acts naturally on K�1
M , and hence can be identified as a subgroup

G ⇢ GL(N,C) for any Kodaira embedding M ,! PN .

Definition

We say �(t) is a G -equivariant special degeneration, if �(t) : C⇤ ! GL(N,C)G , and we

then analogously define G -equivariant K -(semi)stability with A 2 GL(N,C)G .

Heuristically,

Figure: K -semistable. Figure: K -stable.
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K -stability

Example

Consider the embedding

P1 ,! P2

[⇠0, ⇠1] 7! [⇠20 , ⇠0⇠1, ⇠
2
1 ].

The image M is the conic y 2 � xz = 0 in P2.

If we let

�(t) =

0

@
t 0 0
0 t�1 0
0 0 1

1

A ,

then Mt = �(t) ·M, is given by the conic t2y 2 � t�1xz = 0, and so the flat limit
W = (xz = 0).

One can then compute that

Fut(M,�) =
3
2
.

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 17 / 36



K -stability

Example

Consider the embedding

P1 ,! P2

[⇠0, ⇠1] 7! [⇠20 , ⇠0⇠1, ⇠
2
1 ].

The image M is the conic y 2 � xz = 0 in P2.

If we let

�(t) =

0

@
t 0 0
0 t�1 0
0 0 1

1

A ,

then Mt = �(t) ·M, is given by the conic t2y 2 � t�1xz = 0, and so the flat limit
W = (xz = 0).

One can then compute that

Fut(M,�) =
3
2
.

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 17 / 36



K -stability

Example

Consider the embedding

P1 ,! P2

[⇠0, ⇠1] 7! [⇠20 , ⇠0⇠1, ⇠
2
1 ].

The image M is the conic y 2 � xz = 0 in P2.

If we let

�(t) =

0

@
t 0 0
0 t�1 0
0 0 1

1

A ,

then Mt = �(t) ·M, is given by the conic t2y 2 � t�1xz = 0, and so the flat limit
W = (xz = 0).

One can then compute that

Fut(M,�) =
3
2
.

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 17 / 36



K -stability

Example

Consider the embedding

P1 ,! P2

[⇠0, ⇠1] 7! [⇠20 , ⇠0⇠1, ⇠
2
1 ].

The image M is the conic y 2 � xz = 0 in P2.

If we let

�(t) =

0

@
t 0 0
0 t�1 0
0 0 1

1

A ,

then Mt = �(t) ·M, is given by the conic t2y 2 � t�1xz = 0, and so the flat limit
W = (xz = 0).

One can then compute that

Fut(M,�) =
3
2
.

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 17 / 36



K -stability

Example

Consider the embedding

P1 ,! P2

[⇠0, ⇠1] 7! [⇠20 , ⇠0⇠1, ⇠
2
1 ].

The image M is the conic y 2 � xz = 0 in P2.

If we let

�(t) =

0

@
t 0 0
0 t�1 0
0 0 1

1

A ,

then Mt = �(t) ·M, is given by the conic t2y 2 � t�1xz = 0, and so the flat limit
W = (xz = 0).

One can then compute that

Fut(M,�) =
3
2
.

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 17 / 36



K -stability

Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let G ⇢ Aut(M) be a compact group. Then M admits a KE if it is G -equivariantly
K -stable with respect to special degenerations.

Example

Toric manifolds. Recall that M is toric if there is an e↵ective holomorphic action of
(C⇤)n with a free, open, dense orbit.

Theorem (Wang-Zhu, 2003)

M admits KE () the classical Futaki invariant vanishes.

Proof.

=) is true in general. For converse, let G = (S1)n. One can show that all equivariant
degenerations are trivial, and since the classical Futaki is zero by hypothesis, M is
equivariantly K -stable. By main theorem, it admits KE.
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K -stability

Example

T -varieties with complexity one. (Ilten-Suss [6]) eg.- threefolds with an e↵ective action
of (C⇤)2. Then with G = (S1)2, all equivariant degenerations are either trivial or have a
toric variety as central fiber. Ilten-Suss computed the Futaki invariants, and classified the
equivariant K -stable ones.
Concretely, Q ⇢ P4 be a quadric, and let M be the blow-up along a conic. This admits a
KE, and the only known proof is via the main theorem.
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Outline of the proof

Continuity method

Let ↵ 2 2⇡c1(M) be a Kähler metric invariant under G , and consider the equation

Ric(!t) = t!t + (1� t)↵. (3.1)

Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

I = {t 2 [0, 1] | (3.1) has a solution}.

To show 1 2 I , it is enough to show

0 2 I ,

I is open in [0, 1],

I is closed.
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To show 1 2 I , it is enough to show

0 2 I ,

I is open in [0, 1],

I is closed.
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Outline of the proof

An interjection: The Donaldson continuity method

Chen-Donaldson-Sun consider the following continuity method instead

Ric(!�) = �!� +
1� �
m

[D].

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in |�mKM |
The metrics !� have conical singularities along the divisor D.
Disadvantages -

(Song-Wang) NO smooth G invariant divisors unless G is finite.
(Song-Wang, D.-Guo-Song-Wang) If we relax D to be only simple-normal-crossing,
then the above equation in most cases does not have a solution.

Advantage - exploiting K -stability, but more about this later.....
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Outline of the proof

PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation :
(
(↵+

p
�1@@'t)n = e�t't+h↵n

!t := ↵+
p
�1@@'t > 0,

(3.2)

where h is the Ricci potential of the form ↵.

At t = 0, we need to solve Ric(!0) = ↵, where ↵ is a given positive form. This is
precisely the Calabi conjecture solved by Yau [8].

(Openness) The linearization of the equation is given by

�!t + t.

If t < 1, then Ric(!t) > t!t , and a Bochner-type argument shows that �1(�!t ) > t.
Hence the operator above is invertible, and implicit function theorem =) openness.
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Outline of the proof

(Closedness) From a priori estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every A and k 2 N, there exists constants Ck such that

||'t ||C0  A =) ||'t ||Ck  Ck .

So to complete the proof we “only” need uniform C 0 estimates. This is where
K -stability comes in.

From now on, let tk ! T where tk 2 I . We need to show that T 2 I . For ease of
notation, let !k = !tk = ↵+

p
�1@@'k , and gk the corresponding Riemannian metric.

We can assume that tk � t0 for some fixed t0. We also assume that T < 1, since if
T = 1, the exact same proof of Chen-Donaldson-Sun also works in our case.
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Outline of the proof

Gromov-Hausdor↵ convergence

The metrics satisfy

1
Vol(M, gk ) = V := (2⇡)n

n!
c1(M)n.

2 Ric(gk ) � t0gk .

3 (Meyers’) diam(M, gk )  ⇡
q

2n�1
t0

4 (Volume non-collapse) There exists  > 0 such that for any ball of radius
r < diam(M, gk ),

|Br | � r2n.

(Gromov) The sequence of Riemannian manifolds (M, gk)
G�H���! (Z , d), where

(Z , d) is a compact metric length space.

Z is a candidate for the central fiber of a destabilizing special degeneration.

But Z needs to be a “su�ciently nice” algebraic variety, and there should be C⇤-
special degeneration of M to Z .
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Outline of the proof

Metric geometry to algebraic geometry : Partial C 0-estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian
when n = 2.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m, and embeddings Fk : M ,! PN by sections of H0(M,K�m
M )

with the following properties

1 Fk are uniformly Lipschitz.

2 Fk(M) converge to a Q-Fano normal flat limit W , and the maps Fk converge to a
homeomorphism F : Z ! W .

3 (partial C 0 estimate) There exists a uniform constant C such that

!k =
1
m
F ⇤
k !FS +

p
�1@@ k ,

with | k |C0 , |r k | < C .

4 Fk(↵) converge weakly to a closed current � supported on W .
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Outline of the proof

From now on, we denote F1(M) by M and F1(↵) by ↵. For simplicity, we assume

that ↵ = m�1!FS

���
M
.

Let ⇢k = Fk � F�1
1 2 GLG , and Mk = ⇢k(M) ! W . Also ⇢k(↵) ! �.

The partial C 0 then says that there exists C such that | k |C0 < C and

!k =
1
m
⇢⇤k!FS +

p
�1@@ k .

Proposition

After passing to a subsequence, ⇢k ! g 2 GLG .

Proof of main theorem.

Proposition =)
1
m
⇢⇤k!FS � 1

m
!FS =

p
�1@@⌫k

with |⌫k |C0 < C . Since !k = m�1!FS +
p
�1@@'k , 'k =  k + ⌫k , and so combined with

partial C 0, |'k |C0 < C .
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Outline of the proof

Twisted KE on W

The currents ⇢k(!k) converge weakly to a weak current !T supported on W solving
the twisted KE equation on W in the weak sense -

Ric(!T ) = T!T + (1� T )�.

Consequences -
1 “Aut(W ,�)” is reductive.
2 The “twisted Futaki invariant”

Fut(1�T )�(W ,w) = 0

for all w 2 aut(W ,�).
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Outline of the proof

Key di�culty

W is in the GLG orbit closure but might not be accessible by C⇤.

If one could embed all such pairs (W ,�) into a large finite dimensional projective,
then since the stabilizer is reductive, one could use Luna slice theorem.

Unfortunately the space of pairs (W ,�) is infinite dimensional. Here the CDS
continuity method has an advantage.

Key idea. Approximate � by divisors.

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 28 / 36



Outline of the proof

Key di�culty

W is in the GLG orbit closure but might not be accessible by C⇤.

If one could embed all such pairs (W ,�) into a large finite dimensional projective,
then since the stabilizer is reductive, one could use Luna slice theorem.

Unfortunately the space of pairs (W ,�) is infinite dimensional. Here the CDS
continuity method has an advantage.

Key idea. Approximate � by divisors.

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 28 / 36



Outline of the proof

Key di�culty

W is in the GLG orbit closure but might not be accessible by C⇤.

If one could embed all such pairs (W ,�) into a large finite dimensional projective,
then since the stabilizer is reductive, one could use Luna slice theorem.

Unfortunately the space of pairs (W ,�) is infinite dimensional. Here the CDS
continuity method has an advantage.

Key idea. Approximate � by divisors.

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 28 / 36



Outline of the proof

Key di�culty

W is in the GLG orbit closure but might not be accessible by C⇤.

If one could embed all such pairs (W ,�) into a large finite dimensional projective,
then since the stabilizer is reductive, one could use Luna slice theorem.

Unfortunately the space of pairs (W ,�) is infinite dimensional. Here the CDS
continuity method has an advantage.

Key idea. Approximate � by divisors.

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 28 / 36



Outline of the proof

Key di�culty

W is in the GLG orbit closure but might not be accessible by C⇤.

If one could embed all such pairs (W ,�) into a large finite dimensional projective,
then since the stabilizer is reductive, one could use Luna slice theorem.

Unfortunately the space of pairs (W ,�) is infinite dimensional. Here the CDS
continuity method has an advantage.

Key idea. Approximate � by divisors.

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 28 / 36



Outline of the proof

Main argument

Choose generic hyperplanes {Vi}di=1 such that
1 Passing to a subsequence ⇢k (Vi ) converges to hyperplane Hi for each i .
2 � ⇡ 1

d

Pd
i=1[W \ Hi ].

3 aut(W ,�) = aut(W ,W \ H1, · · · ,W \ Hd )

Then aut(W ,W \ H1, · · · ,W \ Hd) is reductive and

(W ,W \ H1, · · · ,W \ Hd) 2 GLG · (M,M \ V1, · · · ,Vd).

Luna slicing =) 9 �(t) : C⇤ ! GLG generated by a vector field w , and a fixed
g 2 GLG such that

(W ,W \ H1, · · · ,W \ Hd) = lim
t!0

�(t)g · (M,M \ V1, · · · ,M \ Vd).

In particular W = limt!0 �(t)g ·M, and w is tangential to W .
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Outline of the proof

.

If ✓w is the Hamiltonian of w , then

Fut(1�T )�(W ,w) = Fut(W ,w)� (1� T )
n
V

Z

W

✓w (� � !FS)!
n�1
FS .

Using the fact that Fut(1�T )�(W ,w) = 0, a calculation shows that

Fut(W ,w) ⇡ (1� T )
h 1
V

Z

W

✓w!
n
FS �max

W
✓w

i
 0.

K -stability =) it should be equality, and hence w = 0.

Since w = 0, the degeneration is trivial, and so

(W ,W \ H1, · · · ,W \ Hd) = g · (M,M \ V1, · · · ,M \ Vd).

Recall that Hi = limk!1 ⇢k(Vi ).

Since Vi are generic, a simple argument now shows that ⇢k ! g .

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 30 / 36



Outline of the proof

.

If ✓w is the Hamiltonian of w , then

Fut(1�T )�(W ,w) = Fut(W ,w)� (1� T )
n
V

Z

W

✓w (� � !FS)!
n�1
FS .

Using the fact that Fut(1�T )�(W ,w) = 0, a calculation shows that

Fut(W ,w) ⇡ (1� T )
h 1
V

Z

W

✓w!
n
FS �max

W
✓w

i
 0.

K -stability =) it should be equality, and hence w = 0.

Since w = 0, the degeneration is trivial, and so

(W ,W \ H1, · · · ,W \ Hd) = g · (M,M \ V1, · · · ,M \ Vd).

Recall that Hi = limk!1 ⇢k(Vi ).

Since Vi are generic, a simple argument now shows that ⇢k ! g .

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 30 / 36



Outline of the proof

.

If ✓w is the Hamiltonian of w , then

Fut(1�T )�(W ,w) = Fut(W ,w)� (1� T )
n
V

Z

W

✓w (� � !FS)!
n�1
FS .

Using the fact that Fut(1�T )�(W ,w) = 0, a calculation shows that

Fut(W ,w) ⇡ (1� T )
h 1
V

Z

W

✓w!
n
FS �max

W
✓w

i
 0.

K -stability =) it should be equality, and hence w = 0.

Since w = 0, the degeneration is trivial, and so

(W ,W \ H1, · · · ,W \ Hd) = g · (M,M \ V1, · · · ,M \ Vd).

Recall that Hi = limk!1 ⇢k(Vi ).

Since Vi are generic, a simple argument now shows that ⇢k ! g .

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 30 / 36



Outline of the proof

.

If ✓w is the Hamiltonian of w , then

Fut(1�T )�(W ,w) = Fut(W ,w)� (1� T )
n
V

Z

W

✓w (� � !FS)!
n�1
FS .

Using the fact that Fut(1�T )�(W ,w) = 0, a calculation shows that

Fut(W ,w) ⇡ (1� T )
h 1
V

Z

W

✓w!
n
FS �max

W
✓w

i
 0.

K -stability =) it should be equality, and hence w = 0.

Since w = 0, the degeneration is trivial, and so

(W ,W \ H1, · · · ,W \ Hd) = g · (M,M \ V1, · · · ,M \ Vd).

Recall that Hi = limk!1 ⇢k(Vi ).

Since Vi are generic, a simple argument now shows that ⇢k ! g .

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 30 / 36



Outline of the proof

.

If ✓w is the Hamiltonian of w , then

Fut(1�T )�(W ,w) = Fut(W ,w)� (1� T )
n
V

Z

W

✓w (� � !FS)!
n�1
FS .

Using the fact that Fut(1�T )�(W ,w) = 0, a calculation shows that

Fut(W ,w) ⇡ (1� T )
h 1
V

Z

W

✓w!
n
FS �max

W
✓w

i
 0.

K -stability =) it should be equality, and hence w = 0.

Since w = 0, the degeneration is trivial, and so

(W ,W \ H1, · · · ,W \ Hd) = g · (M,M \ V1, · · · ,M \ Vd).

Recall that Hi = limk!1 ⇢k(Vi ).

Since Vi are generic, a simple argument now shows that ⇢k ! g .

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 30 / 36



Outline of the proof

.

If ✓w is the Hamiltonian of w , then

Fut(1�T )�(W ,w) = Fut(W ,w)� (1� T )
n
V

Z

W

✓w (� � !FS)!
n�1
FS .

Using the fact that Fut(1�T )�(W ,w) = 0, a calculation shows that

Fut(W ,w) ⇡ (1� T )
h 1
V

Z

W

✓w!
n
FS �max

W
✓w

i
 0.

K -stability =) it should be equality, and hence w = 0.

Since w = 0, the degeneration is trivial, and so

(W ,W \ H1, · · · ,W \ Hd) = g · (M,M \ V1, · · · ,M \ Vd).

Recall that Hi = limk!1 ⇢k(Vi ).

Since Vi are generic, a simple argument now shows that ⇢k ! g .

Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 30 / 36



What next?

1 Introduction: Some history and the main theorem

2 K -stability

3 Outline of the proof

4 What next?
Ved Datar (UC Berkeley) Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 31 / 36



What next?

Extremal metrics

Let L ! M be an ample line bundle.

(Calabi, 1980s) The critical points of the functional

Ca(!) =

Z

M

||Rm(!)||2,

as ! varies over Kähler metrics in the fixed co-homology class 2⇡c1(L) are called
extremal metrics.

The Euler-Lagrange equation says that

@̄r1,0
s! = 0,

where s! is the scalar curvature.

In particular constant scalar curvature Kähler metrics (cscK), and hence
Kähler-Einstein metrics, are automatically extremal.

It is expected that existence is again related to certain stability, called relative
K -stability (or some refinement).
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The Euler-Lagrange equation says that

@̄r1,0
s! = 0,

where s! is the scalar curvature.

In particular constant scalar curvature Kähler metrics (cscK), and hence
Kähler-Einstein metrics, are automatically extremal.

It is expected that existence is again related to certain stability, called relative
K -stability (or some refinement).
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What next?

Perturbation problems

Suppose M admits an extremal metric !. If p 2 M, and ⇡ : Blp(M) ! M is the blow-up
with exceptional divisor E , then it is known that L" = ⇡⇤[!]� "2[E ] is Kähler for " << 1.

Question

If (Blp(M), L") is relatively K -stable, does it admit an extremal metric?

(Szekelyhidi) If n > 2, the answer is a�rmative for cscK metrics.

When n = 2, I have recently made some progress [3], but an optimal result is still
missing.

The problem for extremal metrics is completely open in all dimensions.

The key di�culty is in relating relative K -stability of blow-ups Blp(M) to the relative
GIT stability of the point p.
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What next?

Convergence of cscK manifolds and partial C 0 estimate

Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C 0 estimate along a sequence of non-collapsed, cscK metrics on
Kähler manifolds with uniform bounds on the total volume, and Calabi energy?

For n = 2, there is an optimal convergence result due to Anderson and
Tian-Viaclovsky.

For n > 2, the convergence result assumes Ln/2 bound on ||Rm||, which is not
useful, since Ca(!) involves an L2 bound.

What if there is collapsing? Is there a Cheeger-Tian type "-regularity result for
n = 2 (small ||Rm||L2 =) control on ||Rm||L1)?
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What next?

Thank You for your attention!
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