Kähler-Einstein metrics on Fano manifolds

Ved Datar

UC Berkeley

Jan 02, 2018
Outline

1. Introduction: Some history and the main theorem
2. K-stability
3. Outline of the proof
4. What next?
Outline

1. Introduction: Some history and the main theorem
2. K-stability
3. Outline of the proof
4. What next?
Outline

1. Introduction: Some history and the main theorem
2. K-stability
3. Outline of the proof
4. What next?
Outline

1. Introduction: Some history and the main theorem

2. K-stability

3. Outline of the proof

4. What next?
Uniformization Theorem.

Theorem (Uniformization theorem)

- Any compact Riemann surface admits a metric of constant Gauss curvature.
- Given any oriented compact 2-d Riemannian manifold \((M, g_0)\), there exists a metric \(g = e^{2\varphi}g_0\) with constant Gauss curvature.
Introduction: Some history and the main theorem

Uniformization Theorem.

Theorem (Uniformization theorem)

- Any compact Riemann surface admits a metric of constant Gauss curvature.
- Given any oriented compact 2-d Riemannian manifold \((M, g_0)\), there exists a metric \(g = e^{2\varphi} g_0\) with constant Gauss curvature.
For a surface with metric (in isothermal coordinates)

\[ds^2 = h(dx^2 + dy^2), \]

the Gauss curvature form is given by

\[KdA = -\sqrt{-1}\frac{\partial^2 \log h}{\partial z \partial \bar{z}}dz \wedge d\bar{z}, \]

where \(z = x + \sqrt{-1}y \). By Gauss-Bonnet,

\[\int_M K dA = 2\pi \chi(M). \]

So depending on the sign of \(\chi(M) \), a compact Riemann surface admits a metric of constant Gauss curvature \(K = \pm 1 \) or \(K = 0 \).

Remark

A purely PDE proof of the case \(K = 1 \) (ie. \(M = S^2 \)) is the hardest. This is a harbinger of things to come!
For a surface with metric (in isothermal coordinates)

$$ds^2 = h(dx^2 + dy^2),$$

the Gauss curvature form is given by

$$KdA = -\sqrt{-1} \frac{\partial^2 \log h}{\partial z \partial \bar{z}} dz \wedge d\bar{z},$$

where $z = x + \sqrt{-1}y$. By Gauss-Bonnet,

$$\int_M K \, dA = 2\pi \chi(M).$$

So depending on the sign of $\chi(M)$, a compact Riemann surface admits a metric of constant Gauss curvature $K = \pm 1$ or $K = 0$.

Remark

A purely PDE proof of the case $K = 1$ (ie. $M = S^2$) is the hardest. This is a harbinger of things to come!
For a surface with metric (in isothermal coordinates)

$$ds^2 = h(dx^2 + dy^2),$$

the Gauss curvature form is given by

$$KdA = -\sqrt{-1} \frac{\partial^2 \log h}{\partial z \partial \bar{z}} dz \wedge d\bar{z},$$

where $z = x + \sqrt{-1}y$. By Gauss-Bonnet,

$$\int_M KdA = 2\pi \chi(M).$$

So depending on the sign of $\chi(M)$, a compact Riemann surface admits a metric of constant Gauss curvature $K = \pm 1$ or $K = 0$.

Remark

A purely PDE proof of the case $K = 1$ (ie. $M = S^2$) is the hardest. This is a harbinger of things to come!
For a surface with metric (in isothermal coordinates)
\[ds^2 = h(dx^2 + dy^2), \]
the Gauss curvature form is given by
\[KdA = -\sqrt{-1} \frac{\partial^2 \log h}{\partial z \partial \bar{z}} dz \wedge d\bar{z}, \]
where \(z = x + \sqrt{-1}y \). By Gauss-Bonnet,
\[\int_M K dA = 2\pi \chi(M). \]
So depending on the sign of \(\chi(M) \), a compact Riemann surface admits a metric of constant Gauss curvature \(K = \pm 1 \) or \(K = 0 \).

Remark

A purely PDE proof of the case \(K = 1 \) (ie. \(M = S^2 \)) is the hardest. This is a harbinger of things to come!
For a surface with metric (in isothermal coordinates)
\[ds^2 = h(dx^2 + dy^2), \]
the Gauss curvature form is given by
\[KdA = -\sqrt{-1} \frac{\partial^2}{\partial z \partial \bar{z}} \log h \, dz \wedge d\bar{z}, \]
where \(z = x + \sqrt{-1}y \). By Gauss-Bonnet,
\[\int_M K \, dA = 2\pi \chi(M). \]
So depending on the sign of \(\chi(M) \), a compact Riemann surface admits a metric of constant Gauss curvature \(K = \pm 1 \) or \(K = 0 \).

Remark

A purely PDE proof of the case \(K = 1 \) (ie. \(M = S^2 \)) is the hardest. This is a harbinger of things to come!
Let M^n be a compact complex manifold with $\dim_{\mathbb{C}} M = n$.

A Riemannian metric g is called Kähler if there are local coordinates (x^1, \cdots, x^{2n}) in which

$$g_{jk} = \delta_{jk} + O(|x|^2),$$

and such that for $j = 1, \cdots, n$,

$$z^j = x^j + \sqrt{-1}x^{n+j}$$

are local holomorphic coordinates.

One can associate a $(1, 1)$ form in the following way - If J denotes the canonical complex structure

$$J\left(\frac{\partial}{\partial x^j}\right) = \frac{\partial}{\partial x^{n+j}}, \quad J^2 = -\text{id},$$

then we define the Kähler form ω by

$$\omega(\cdot, \cdot) = g(J\cdot, \cdot).$$

g Kähler $\iff d\omega = 0$.

Kähler manifolds
Kähler manifolds

- Let M^n be a compact complex manifold with $\dim_{\mathbb{C}} M = n$.
- A Riemannian metric g is called Kähler if there are local coordinates (x^1, \cdots, x^{2n}) in which
 \[g_{jk} = \delta_{jk} + O(|x|^2), \]
 and such that for $j = 1, \cdots, n$,
 \[z^j = x^j + \sqrt{-1}x^{n+j} \]
 are local holomorphic coordinates.
- One can associate a $(1, 1)$ form in the following way - If J denotes the canonical complex structure
 \[J \left(\frac{\partial}{\partial x^j} \right) = \frac{\partial}{\partial x^{n+j}}, \quad J^2 = -\text{id}, \]
 then we define the Kähler form ω by
 \[\omega(\cdot, \cdot) = g(J\cdot, \cdot). \]
- g Kähler $\iff d\omega = 0$.

\[\text{Ved Datar (UC Berkeley)} \]

Kähler-Einstein metrics on Fano manifolds Jan 02, 2018 5 / 36
Kähler manifolds

- Let M^n be a compact complex manifold with $\text{dim}_\mathbb{C} M = n$.
- A Riemannian metric g is called Kähler if there are local coordinates (x^1, \cdots, x^{2n}) in which
 \[g_{jk} = \delta_{jk} + O(|x|^2), \]
 and such that for $j = 1, \cdots, n$,
 \[z^j = x^j + \sqrt{-1}x^{n+j} \]
 are local holomorphic coordinates.
- One can associate a $(1, 1)$ form in the following way - If J denotes the canonical complex structure
 \[J \left(\frac{\partial}{\partial x^j} \right) = \frac{\partial}{\partial x^{n+j}}, \quad J^2 = -\text{id}, \]
 then we define the Kähler form ω by
 \[\omega(\cdot, \cdot) = g(J\cdot, \cdot). \]

- g Kähler \iff $d\omega = 0$.
Kähler manifolds

- Let M^n be a compact complex manifold with $\dim \mathbb{C} M = n$.
- A Riemannian metric g is called Kähler if there are local coordinates (x^1, \cdots, x^{2n}) in which
 \[g_{jk} = \delta_{jk} + O(|x|^2), \]
 and such that for $j = 1, \cdots, n$,
 \[z^j = x^j + \sqrt{-1}x^{n+j} \]
 are local holomorphic coordinates.
- One can associate a $(1, 1)$ form in the following way - If J denotes the canonical complex structure
 \[J\left(\frac{\partial}{\partial x^j}\right) = \frac{\partial}{\partial x^{n+j}}, \quad J^2 = -\text{id}, \]
 then we define the Kähler form ω by
 \[\omega(\cdot, \cdot) = g(J\cdot, \cdot). \]
- g Kähler \iff $d\omega = 0$.

Ved Datar (UC Berkeley)
Properties of the Kähler form

- ω is a closed, real form (i.e. $\bar{\omega} = \omega$), and so represents a cohomology class in $H^2(M, \mathbb{R})$.

- Locally we can write

 $$\omega = \frac{\sqrt{-1}}{2} g_{\alpha\bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,$$

 where $g_{\alpha\bar{\beta}} = g \left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta} \right)$. Then the matrix $\{g_{\alpha\bar{\beta}}\}$ is a positive definite Hermitian matrix.

- Conversely, given such a form ω, $g(\cdot, \cdot) = \omega(\cdot, J\cdot)$ defines a Riemannian metric.

- Any class in $H^2(M, \mathbb{R})$ which contains a Kähler metric, is called a Kähler class. The set of Kähler classes $\mathcal{K} \subset H^2(M, \mathbb{R})$ is an open convex cone.

- ((\partial \bar{\partial}) Lemma) If $[\omega_1] = [\omega_2]$, then there exists a $\varphi \in C^\infty(M, \mathbb{R})$ such that

 $$\omega_2 = \omega_1 + \sqrt{-1} \partial \bar{\partial} \varphi.$$

Note: Henceforth we will abuse notation and refer to ω as simply the Kähler metric.
Properties of the Kähler form

- \(\omega \) is a closed, real form (ie. \(\bar{\omega} = \omega \)), and so represents a cohomology class in \(H^2(M, \mathbb{R}) \).

- Locally we can write
 \[
 \omega = \frac{\sqrt{-1}}{2} g_{\alpha \bar{\beta}} d z^\alpha \wedge d \bar{z}^\beta,
 \]
 where \(g_{\alpha \bar{\beta}} = g\left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta}\right) \). Then the matrix \(\{g_{\alpha \bar{\beta}}\} \) is a positive definite Hermitian matrix.

- Conversely, given such a form \(\omega \), \(g(\cdot, \cdot) = \omega(\cdot, J \cdot) \) defines a Riemannian metric.

- Any class in \(H^2(M, \mathbb{R}) \) which contains a Kähler metric, is called a Kähler class. The set of Kähler classes \(\mathcal{K} \subset H^2(M, \mathbb{R}) \) is an open convex cone.

- (\(\partial \bar{\partial} \) Lemma) If \([\omega_1] = [\omega_2]\), then there exists a \(\varphi \in C^\infty(M, \mathbb{R}) \) such that
 \[
 \omega_2 = \omega_1 + \sqrt{-1} \partial \bar{\partial} \varphi.
 \]

Note: Henceforth we will abuse notation and refer to \(\omega \) as simply the Kähler metric.
Properties of the Kähler form

- \(\omega \) is a closed, real form (ie. \(\bar{\omega} = \omega \)), and so represents a cohomology class in \(H^2(M, \mathbb{R}) \).

- Locally we can write
 \[
 \omega = \frac{\sqrt{-1}}{2} g_{\alpha \bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,
 \]
where \(g_{\alpha \bar{\beta}} = g \left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta} \right) \). Then the matrix \(\{g_{\alpha \bar{\beta}}\} \) is a positive definite Hermitian matrix.

- Conversely, given such a form \(\omega \), \(g(\cdot, \cdot) = \omega(\cdot, J \cdot) \) defines a Riemannian metric.

- Any class in \(H^2(M, \mathbb{R}) \) which contains a Kähler metric, is called a Kähler class. The set of Kähler classes \(\mathcal{K} \subset H^2(M, \mathbb{R}) \) is an open convex cone.

- (\(\partial \bar{\partial} \) Lemma) If \([\omega_1] = [\omega_2]\), then there exists a \(\varphi \in C^\infty(M, \mathbb{R}) \) such that
 \[
 \omega_2 = \omega_1 + \sqrt{-1} \partial \bar{\partial} \varphi.
 \]

Note: Henceforth we will abuse notation and refer to \(\omega \) as simply the Kähler metric.
Properties of the Kähler form

- \(\omega \) is a closed, real form (ie. \(\bar{\omega} = \omega \)), and so represents a cohomology class in \(H^2(M, \mathbb{R}) \).
- Locally we can write
 \[
 \omega = \frac{-1}{2} g_{\alpha \bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,
 \]
 where \(g_{\alpha \bar{\beta}} = g \left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta} \right) \). Then the matrix \(\{ g_{\alpha \bar{\beta}} \} \) is a positive definite Hermitian matrix.
- Conversely, given such a form \(\omega \), \(g(\cdot, \cdot) = \omega(\cdot, J\cdot) \) defines a Riemannian metric.
- Any class in \(H^2(M, \mathbb{R}) \) which contains a Kähler metric, is called a Kähler class. The set of Kähler classes \(\mathcal{K} \subset H^2(M, \mathbb{R}) \) is an open convex cone.
- (\(\partial \bar{\partial} \) Lemma) If \([\omega_1] = [\omega_2] \), then there exists a \(\varphi \in C^\infty(M, \mathbb{R}) \) such that
 \[
 \omega_2 = \omega_1 + \sqrt{-1} \partial \bar{\partial} \varphi.
 \]

Note: Henceforth we will abuse notation and refer to \(\omega \) as simply the Kähler metric.
Properties of the Kähler form

- ω is a closed, real form (ie. $\bar{\omega} = \omega$), and so represents a cohomology class in $H^2(M, \mathbb{R})$.

- Locally we can write
 $$\omega = \frac{-1}{2} g_{\alpha\bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,$$
 where $g_{\alpha\bar{\beta}} = g\left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta}\right)$. Then the matrix $\{g_{\alpha\bar{\beta}}\}$ is a positive definite Hermitian matrix.

- Conversely, given such a form ω, $g(\cdot, \cdot) = \omega(\cdot, J\cdot)$ defines a Riemannian metric.

- Any class in $H^2(M, \mathbb{R})$ which contains a Kähler metric, is called a Kähler class. The set of Kähler classes $\mathcal{K} \subset H^2(M, \mathbb{R})$ is an open convex cone.

- ($\partial\bar{\partial}$ Lemma) If $[\omega_1] = [\omega_2]$, then there exists a $\varphi \in C^\infty(M, \mathbb{R})$ such that
 $$\omega_2 = \omega_1 + \sqrt{-1} \partial\bar{\partial}\varphi.$$

Note: Henceforth we will abuse notation and refer to ω as simply the Kähler metric.
Properties of the Kähler form

- ω is a closed, real form (ie. $\bar{\omega} = \omega$), and so represents a cohomology class in $H^2(M, \mathbb{R})$.
- Locally we can write
 \[\omega = \frac{\sqrt{-1}}{2} g_{\alpha\bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,\]
 where $g_{\alpha\bar{\beta}} = g \left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta} \right)$. Then the matrix $\{g_{\alpha\bar{\beta}}\}$ is a positive definite Hermitian matrix.
- Conversely, given such a form ω, $g(\cdot, \cdot) = \omega(\cdot, J \cdot)$ defines a Riemannian metric.
- Any class in $H^2(M, \mathbb{R})$ which contains a Kähler metric, is called a Kähler class. The set of Kähler classes $\mathcal{K} \subset H^2(M, \mathbb{R})$ is an open convex cone.
- ($\partial\bar{\partial}$ Lemma) If $[\omega_1] = [\omega_2]$, then there exists a $\varphi \in C^\infty(M, \mathbb{R})$ such that
 \[\omega_2 = \omega_1 + \sqrt{-1} \partial\bar{\partial}\varphi.\]

Note: Henceforth we will abuse notation and refer to ω as simply the Kähler metric.
Examples

- Any compact Riemann surface with ω being a volume form. Then since $n = 1$, $d\omega = 0$ is trivially true.
- Complex projective space \mathbb{P}^N with the Fubini study metric given in homogenous coordinates $[\xi_0, \cdots, \xi_N]$ by

$$\omega_{FS} = \sqrt{-1} \partial \bar{\partial} \log \left(|\xi_0|^2 + \cdots |\xi_N|^2\right).$$

When $n = 1$, $\mathbb{P}^1 = S^2$, and the Fubini-Study metric is the usual round metric.
- Any non-singular sub-variety $X \subset \mathbb{P}^N$, with ω given by restricting ω_{FS} to X.
Examples

- Any compact Riemann surface with ω being a volume form. Then since $n = 1$, $d\omega = 0$ is trivially true.
- Complex projective space \mathbb{P}^N with the Fubini study metric given in homogenous coordinates $[\xi_0, \cdots, \xi_N]$ by

$$\omega_{FS} = \sqrt{-1} \partial \bar{\partial} \log \left(|\xi_0|^2 + \cdots |\xi_N|^2 \right).$$

When $n = 1$, $\mathbb{P}^1 = S^2$, and the Fubini-Study metric is the usual round metric.
- Any non-singular sub-variety $X \subset \mathbb{P}^N$, with ω given by restricting ω_{FS} to X.
Examples

- Any compact Riemann surface with ω being a volume form. Then since $n = 1$, $d\omega = 0$ is trivially true.
- Complex projective space \mathbb{P}^N with the Fubini study metric given in homogenous coordinates $[\xi_0, \cdots \xi_N]$ by

$$\omega_{FS} = \sqrt{-1} \partial \bar{\partial} \log \left(|\xi_0|^2 + \cdots |\xi_N|^2 \right).$$

When $n = 1$, $\mathbb{P}^1 = S^2$, and the Fubini-Study metric is the usual round metric.
- Any non-singular sub-variety $X \subset \mathbb{P}^N$, with ω given by restricting ω_{FS} to X.

Curvature

- The **Ricci form** of the Kähler metric ω is defined by

$$\rho_\omega = -\sqrt{-1} \partial \bar{\partial} \log \det(g_{\alpha \bar{\beta}}).$$

Note that $d \rho_\omega = 0$.

- The Riemannian Ricci curvature is then given by

$$\text{Ric}(\cdot, \cdot) = \rho_\omega (\cdot, J\cdot).$$

Question (Calabi, 1950s)

*Given a Kähler manifold M, when does it admit a metric of constant Ricci curvature. More precisely, when is there a Kähler metric ω such that

$$\rho_\omega = \lambda \omega,$$

for some $\lambda \in \mathbb{R}$. Such an ω is called a **Kähler-Einstein (KE)** metric.*
Curvature

- The Ricci form of the Kähler metric ω is defined by

$$\rho_\omega = -\sqrt{-1} \partial \bar{\partial} \log \det(g_{\alpha \bar{\beta}}).$$

Note that $d\rho_\omega = 0$.

- The Riemannian Ricci curvature is then given by

$$\text{Ric}(\cdot, \cdot) = \rho_\omega(\cdot, J\cdot).$$

Question (Calabi, 1950s)

Given a Kähler manifold M, when does it admit a metric of constant Ricci curvature. More precisely, when is there a Kähler metric ω such that

$$\rho_\omega = \lambda \omega,$$

for some $\lambda \in \mathbb{R}$. Such an ω is called a Kähler-Einstein (KE) metric.
Curvature

- The **Ricci form** of the Kähler metric ω is defined by

$$\rho_\omega = -\sqrt{-1}\partial\bar{\partial} \log \det(g_{\alpha\bar{\beta}}).$$

Note that $d\rho_\omega = 0$.

- The Riemannian Ricci curvature is then given by

$$\text{Ric}(\cdot, \cdot) = \rho_\omega(\cdot, J\cdot).$$

Question (Calabi, 1950s)

Given a Kähler manifold M, when does it admit a metric of constant Ricci curvature.

More precisely, when is there a Kähler metric ω such that

$$\rho_\omega = \lambda \omega,$$

for some $\lambda \in \mathbb{R}$. **Such an ω is called a Kähler-Einstein (KE) metric.**
Recall that the anti-canonical bundle K_M^{-1} is the line bundle locally generated by
\[
\frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n}.
\]

If h is a hermitian metric then the curvature $F_h = -\partial \bar{\partial} \log h$ is a global closed $(1, 1)$ form, and the first Chern class $c_1(M) \in H^2(M, \mathbb{R})$ is defined by
\[
c_1(M) := c_1(K_M^{-1}) := \frac{\sqrt{-1}}{2\pi} [F_h].
\]

Given Kähler metric ω, a natural hermitian metric on K_M^{-1} given by
\[
\left\| \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n} \right\|^2 = \det g_{\alpha \bar{\beta}},
\]
and hence $\rho_\omega \in 2\pi c_1(M)$.

So if ω is KE, then
\[
c_1(M) = \frac{\lambda}{2\pi} [\omega].
\]
Topological obstruction

- Recall that the anti-canonical bundle K^{-1}_M is the line bundle locally generated by
 \[\frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n}. \]

- If h is a hermitian metric then the curvature $F_h = -\partial \bar{\partial} \log h$ is a global closed $(1, 1)$ form, and the first Chern class $c_1(M) \in H^2(M, \mathbb{R})$ is defined by
 \[c_1(M) := c_1(K^{-1}_M) := \frac{\sqrt{-1}}{2\pi} [F_h]. \]

- Given Kähler metric ω, a natural hermitian metric on K^{-1}_M given by
 \[\left| \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n} \right|^2 = \det g_{\alpha \bar{\beta}}, \]
 and hence $\rho_\omega \in 2\pi c_1(M)$.

- So if ω is KE, then
 \[c_1(M) = \frac{\lambda}{2\pi} [\omega]. \]
Topological obstruction

- Recall that the anti-canonical bundle K_M^{-1} is the line bundle locally generated by
 \[\frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n}. \]

- If h is a hermitian metric then the curvature $F_h = -\partial\bar{\partial} \log h$ is a global closed $(1, 1)$ form, and the first Chern class $c_1(M) \in H^2(M, \mathbb{R})$ is defined by
 \[c_1(M) := c_1(K_M^{-1}) := \frac{\sqrt{-1}}{2\pi} [F_h]. \]

- Given Kähler metric ω, a natural hermitian metric on K_M^{-1} given by
 \[\left| \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n} \right|^2 = \det g_{\alpha\beta}, \]
 and hence $\rho_\omega \in 2\pi c_1(M)$.

- So if ω is KE, then
 \[c_1(M) = \frac{\lambda}{2\pi} [\omega]. \]
Topological obstruction

- Recall that the anti-canonical bundle K^{-1}_M is the line bundle locally generated by
 $$\frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n}.$$

- If h is a hermitian metric then the curvature $F_h = -\partial \bar{\partial} \log h$ is a global closed $(1, 1)$ form, and the first Chern class $c_1(M) \in H^2(M, \mathbb{R})$ is defined by
 $$c_1(M) := c_1(K^{-1}_M) := \frac{\sqrt{-1}}{2\pi} [F_h].$$

- Given Kähler metric ω, a natural hermitian metric on K^{-1}_M given by
 $$\left| \left| \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n} \right| \right|^2 = \det g_{\alpha \bar{\beta}},$$
 and hence $\rho_\omega \in 2\pi c_1(M)$.

- So if ω is KE, then
 $$c_1(M) = \frac{\lambda}{2\pi} [\omega].$$
(Yau [8], '78) If $c_1(M) = 0$, then there exists a unique Ricci flat metric ω in every Kähler class.

(Yau, Aubin [1], '78) If $c_1(M) < 0$, then there exists a unique KE metric in $-2\pi c_1(M)$.

(Chen-Donaldson-Sun [2], 2012) If $c_1(M) > 0$ (ie. M is Fano), there exists KE in $2\pi c_1(M)$ if M is K-stable. Converse due to Tian, Berman etc.
Existence results

- (Yau [8], ’78) If $c_1(M) = 0$, then there exists a unique Ricci flat metric ω in every Kähler class.
- (Yau, Aubin [1], ’78) If $c_1(M) < 0$, then there exists a unique KE metric in $-2\pi c_1(M)$.
- (Chen-Donaldson-Sun [2], 2012) If $c_1(M) > 0$ (ie. M is Fano), there exists KE in $2\pi c_1(M)$ if M is K-stable. Converse due to Tian, Berman etc.
Existence results

- (Yau [8], '78) If $c_1(M) = 0$, then there exists a **unique** Ricci flat metric ω in every Kähler class.
- (Yau, Aubin [1], '78) If $c_1(M) < 0$, then there exists a **unique** KE metric in $-2\pi c_1(M)$.
- (Chen-Donaldson-Sun [2], 2012) If $c_1(M) > 0$ (i.e. M is Fano), there exists KE in $2\pi c_1(M)$ if M is K-stable. Converse due to Tian, Berman etc.
Introduction: Some history and the main theorem

Some remarks

- Fano case an instance of **Kobayashi-Hitchin correspondence**

$$\begin{align*}
\{ \text{Existence of Canonical metrics} \} & \iff \{ \text{Algebro-geometric Stability} \} \\
\end{align*}$$

- Examples - Narasimhan-Seshadri, Donaldson-Yau-Uhlenbeck, Kähler-Einstein metrics on S^2 with cone angles $< 2\pi, \cdots$.
- Unfortunately K-stability is notoriously difficult to check. eg. Even in manifolds with large symmetry groups (eg. Toric)
Some remarks

- Fano case an instance of **Kobayashi-Hitchin correspondence**

\[
\begin{align*}
\{ & \text{Existence of Canonical metrics} \} \iff \{ & \text{Algebro-geometric Stability} \} \\
\end{align*}
\]

- Examples - Narasimhan-Seshadri, Donaldson-Yau-Uhlenbeck, Kähler-Einstein metrics on \(S^2 \) with cone angles \(< 2\pi, \cdots \).

- Unfortunately \(K \)-stability is notoriously difficult to check. eg. Even in manifolds with large symmetry groups (eg. Toric)
Some remarks

- Fano case an instance of **Kobayashi-Hitchin correspondence**

 \[\begin{align*}
 \{ \text{Existence of Canonical metrics} \} & \iff \{ \text{Algebro-geometric Stability} \} \\
 \end{align*} \]

- Examples - Narasimhan-Seshadri, Donaldson-Yau-Uhlenbeck, Kähler-Einstein metrics on \(S^2 \) with cone angles \(< 2\pi, \cdots \).

- Unfortunately \(K \)-stability is notoriously difficult to check. eg. Even in manifolds with large symmetry groups (eg. Toric)
Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G-equivariantly K-stable with respect to special degenerations.

Remarks

- We actually prove a much more general theorem on existence of Kähler-Ricci solitons.
- The theorem can recover some older results (e.g., KE metrics on toric manifolds), and has also led to the discovery of new KE manifolds.
- We need to use a completely different proof from that of CDS.
Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset Aut(M)$ be a compact group. Then M admits a KE if it is G-equivariantly K-stable with respect to special degenerations.

Remarks

- We actually prove a much more general theorem on existence of Kähler-Ricci solitons.
- The theorem can recover some older results (eg. KE metrics on toric manifolds), and has also led to the discovery of new KE manifolds.
- We need to use a completely different proof from that of CDS.
Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G-equivariantly K-stable with respect to special degenerations.

Remarks

- We actually prove a much more general theorem on existence of Kähler-Ricci solitons.
- The theorem can recover some older results (eg. KE metrics on toric manifolds), and has also led to the discovery of new KE manifolds.
- We need to use a completely different proof from that of CDS.
Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let \(G \subset \text{Aut}(M) \) be a compact group. Then \(M \) admits a KE if it is \(G \)-equivariantly \(K \)-stable with respect to special degenerations.

Remarks

- We actually prove a much more general theorem on existence of Kähler-Ricci solitons.
- The theorem can recover some older results (eg. KE metrics on toric manifolds), and has also led to the discovery of new KE manifolds.
- We need to use a completely different proof from that of CDS.
1 Introduction: Some history and the main theorem

2 K-stability

3 Outline of the proof

4 What next?
An analytic obstruction: Futaki invariant

- Let M be a Fano manifold, that is $c_1(M) > 0$, and let $\omega \in 2\pi c_1(M)$ be a Kähler metric.
- Since $[\rho_\omega] = [\omega]$, there exists an $h \in C^\infty(M, \mathbb{R})$, called the Ricci potential, such that
 $$\rho_\omega = \omega + \sqrt{-1}\partial\bar{\partial}h.$$
- Let $\eta(M) = \{\text{holomorphic vector fields on } M\}$, and define $\text{Fut} : \eta(M) \to \mathbb{C}$ by
 $$\text{Fut}(M, \xi) = -\frac{1}{V} \int_M \xi(h) \frac{\omega^n}{n!},$$
 where $V = \int_M \frac{\omega^n}{n!}$ is the volume of the manifold.
- (Futaki) $\text{Fut}(M, \xi)$ does not depend on the specific metric $\omega \in 2\pi c_1(M)$, and hence is an invariant of a Fano manifold.
- It vanishes if the Fano manifold admits a KE.
Let M be a Fano manifold, that is $c_1(M) > 0$, and let $\omega \in 2\pi c_1(M)$ be a Kähler metric.

Since $[\rho_\omega] = [\omega]$, there exists an $h \in C^\infty(M, \mathbb{R})$, called the Ricci potential, such that

$$\rho_\omega = \omega + \sqrt{-1} \partial \bar{\partial} h.$$

Let $\eta(M) = \{\text{hol. vector fields on } M\}$, and define $\text{Fut} : \eta(M) \to \mathbb{C}$ by

$$\text{Fut}(M, \xi) = -\frac{1}{V} \int_M \xi(h) \frac{\omega^n}{n!},$$

where $V = \int_M \frac{\omega^n}{n!}$ is the volume of the manifold.

(Futaki) $\text{Fut}(M, \xi)$ does not depend on the specific metric $\omega \in 2\pi c_1(M)$, and hence is an invariant of a Fano manifold.

It vanishes if the Fano manifold admits a KE.
An analytic obstruction: Futaki invariant

- Let M be a Fano manifold, that is $c_1(M) > 0$, and let $\omega \in 2\pi c_1(M)$ be a Kähler metric.
- Since $[\rho_\omega] = [\omega]$, there exists an $h \in C^\infty(M, \mathbb{R})$, called the Ricci potential, such that
 \[\rho_\omega = \omega + \sqrt{-1} \partial \bar{\partial} h. \]
- Let $\eta(M) = \{ \text{hol. vector fields on } M \}$, and define $\text{Fut} : \eta(M) \to \mathbb{C}$ by
 \[\text{Fut}(M, \xi) = -\frac{1}{V} \int_M \xi(h) \frac{\omega^n}{n!}, \]
 where $V = \int_M \frac{\omega^n}{n!}$ is the volume of the manifold.
- (Futaki) $\text{Fut}(M, \xi)$ does not depend on the specific metric $\omega \in 2\pi c_1(M)$, and hence is an invariant of a Fano manifold.
- It vanishes if the Fano manifold admits a KE.
An analytic obstruction: Futaki invariant

- Let M be a Fano manifold, that is $c_1(M) > 0$, and let $\omega \in 2\pi c_1(M)$ be a Kähler metric.
- Since $[\rho \omega] = [\omega]$, there exists an $h \in C^\infty(M, \mathbb{R})$, called the Ricci potential, such that
 \[\rho_\omega = \omega + \sqrt{-1} \partial \bar{\partial} h. \]
- Let $\eta(M) = \{\text{hol. vector fields on } M\}$, and define $\text{Fut}: \eta(M) \to \mathbb{C}$ by
 \[\text{Fut}(M, \xi) = -\frac{1}{V} \int_M \xi(h) \frac{\omega^n}{n!}, \]
 where $V = \int_M \frac{\omega^n}{n!}$ is the volume of the manifold.
- (Futaki) $\text{Fut}(M, \xi)$ does not depend on the specific metric $\omega \in 2\pi c_1(M)$, and hence is an invariant of a Fano manifold.
- It vanishes if the Fano manifold admits a KE.
An analytic obstruction: Futaki invariant

Let M be a Fano manifold, that is $c_1(M) > 0$, and let $\omega \in 2\pi c_1(M)$ be a Kähler metric.

Since $[\rho_\omega] = [\omega]$, there exists an $h \in C^\infty(M, \mathbb{R})$, called the Ricci potential, such that

$$\rho_\omega = \omega + \sqrt{-1} \partial \bar{\partial} h.$$

Let $\eta(M) = \{\text{hol. vector fields on } M\}$, and define $\text{Fut} : \eta(M) \to \mathbb{C}$ by

$$\text{Fut}(M, \xi) = -\frac{1}{V} \int_M \xi(h) \frac{\omega^n}{n!},$$

where $V = \int_M \frac{\omega^n}{n!}$ is the volume of the manifold.

(Futaki) $\text{Fut}(M, \xi)$ does not depend on the specific metric $\omega \in 2\pi c_1(M)$, and hence is an invariant of a Fano manifold.

It vanishes if the Fano manifold admits a KE.
Example

\(Bl_p \mathbb{P}^2 \) does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian '97) NO! Examples of Kähler three-folds (so called Mukai-Umemera manifolds) with \(\eta(M) = \{0\} \) and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety. Key point.

- (Ding-Tian) The Futaki invariant can be defined on “sufficiently nice” singular varieties.
- (Donaldson) Algebro-geometric definition using Riemann-Roch.
Futaki invariant (cont.)

Example

$Bl_p \mathbb{P}^2$ does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian ’97) NO! Examples of Kähler three-folds (so called Mukai-Umemera manifolds) with $\eta(M) = \{0\}$ and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety.

Key point.

- (Ding-Tian) The Futaki invariant can be defined on “sufficiently nice” singular varieties.
- (Donaldson) Algebro-geometric definition using Riemann-Roch.
Futaki invariant (cont.)

Example

$Bl_p\mathbb{P}^2$ does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian ’97) NO! Examples of Kähler three-folds (so called Mukai-Umemera manifolds) with $\eta(M) = \{0\}$ and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety.

Key point.

- (Ding-Tian) The Futaki invariant can be defined on “sufficiently nice” singular varieties.
- (Donaldson) Algebro-geometric definition using Riemann-Roch.
Futaki invariant (cont.)

Example

$Bl_p \mathbb{P}^2$ does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian ‘97) NO! Examples of Kähler three-folds (so called Mukai-Umemera manifolds) with $\eta(M) = \{0\}$ and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety.

Key point.

- (Ding-Tian) The Futaki invariant can be defined on “sufficiently nice” singular varieties.
- (Donaldson) Algebro-geometric definition using Riemann-Roch.
Example

$Bl_P \mathbb{P}^2$ does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian ’97) NO! Examples of Kähler three-folds (so called Mukai-Umemera manifolds) with $\eta(M) = \{0\}$ and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety.

Key point.

- (Ding-Tian) The Futaki invariant can be defined on “sufficiently nice” singular varieties.
- (Donaldson) Algebro-geometric definition using Riemann-Roch.
Futaki invariant of a degeneration

- Since \(c_1(M) > 0 \), \(K_M^{-1} \) is ample, so there is a Kodaira embedding \(M \hookrightarrow \mathbb{P}^N \) for some large \(N \).

- A special degeneration is a one-parameter subgroup \(\lambda : \mathbb{C}^* \to GL(N, \mathbb{C}) \) generated by the holomorphic vector field \(\xi \in \mathfrak{gl}(N, \mathbb{C}) \), such that the flat limit
 \[
 W = \lim_{t \to 0} \lambda(t) \cdot M
 \]
 is a normal \(\mathbb{Q} \)-Fano variety. Note that \(\xi \) is tangential to \(W \).

- We define the Futaki invariant for this degeneration by
 \[
 \text{Fut}(M, \lambda) = \text{Fut}(W, \xi).
 \]
Futaki invariant of a degeneration

- Since $c_1(M) > 0$, K_M^{-1} is ample, so there is a Kodaira embedding $M \hookrightarrow \mathbb{P}^N$ for some large N.

- A special degeneration is a one-parameter subgroup $\lambda : \mathbb{C}^* \to GL(N, \mathbb{C})$ generated by the holomorphic vector field $\xi \in \mathfrak{gl}(N, \mathbb{C})$, such that the flat limit

 $$ W = \lim_{t \to 0} \lambda(t) \cdot M $$

 is a normal \mathbb{Q}-Fano variety. Note that ξ is tangential to W.

- We define the Futaki invariant for this degeneration by

 $$ \text{Fut}(M, \lambda) = \text{Fut}(W, \xi). $$
Since \(c_1(M) > 0 \), \(K_M^{-1} \) is ample, so there is a Kodaira embedding \(M \hookrightarrow \mathbb{P}^N \) for some large \(N \).

A special degeneration is a one-parameter subgroup \(\lambda : \mathbb{C}^* \to GL(N, \mathbb{C}) \) generated by the holomorphic vector field \(\xi \in \mathfrak{gl}(N, \mathbb{C}) \), such that the flat limit

\[
W = \lim_{t \to 0} \lambda(t) \cdot M
\]

is a normal \(\mathbb{Q} \)-Fano variety. Note that \(\xi \) is tangential to \(W \).

We define the Futaki invariant for this degeneration by

\[
Fut(M, \lambda) = Fut(W, \xi).
\]
Futaki invariant of a degeneration

- Since $c_1(M) > 0$, K_M^{-1} is ample, so there is a Kodaira embedding $M \hookrightarrow \mathbb{P}^N$ for some large N.

- A special degeneration is a one-parameter subgroup $\lambda: \mathbb{C}^* \to GL(N, \mathbb{C})$ generated by the holomorphic vector field $\xi \in \mathfrak{gl}(N, \mathbb{C})$, such that the flat limit
 \[
 W = \lim_{t \to 0} \lambda(t) \cdot M
 \]
 is a normal \mathbb{Q}-Fano variety. Note that ξ is tangential to W.

- We define the Futaki invariant for this degeneration by
 \[
 \text{Fut}(M, \lambda) = \text{Fut}(W, \xi).
 \]
Definition

M is called K-semistable if for any Kodaira embedding, and any special degeneration λ, $\text{Fut}(M, \lambda) \geq 0$. It is called K-stable if in addition, $\text{Fut}(M, \lambda) = 0$ if and only if there exists a $A \in \text{GL}(N, \mathbb{C})$ such that $W = A \cdot M$.

If $G \subset \text{Aut}(M)$, then G acts naturally on K_M^{-1}, and hence can be identified as a subgroup $G \subset \text{GL}(N, \mathbb{C})$ for any Kodaira embedding $M \hookrightarrow \mathbb{P}^N$.

Definition

We say $\lambda(t)$ is a G-equivariant special degeneration, if $\lambda(t) : \mathbb{C}^* \rightarrow \text{GL}(N, \mathbb{C})^G$, and we then analogously define G-equivariant K-(semi)stability with $A \in \text{GL}(N, \mathbb{C})^G$.

Heuristically,
Definition

*M is called K-semistable if for any Kodaira embedding, and any special degeneration λ, $\text{Fut}(M, \lambda) \geq 0$. It is called K-stable if in addition, $\text{Fut}(M, \lambda) = 0$ if and only if there exists a $A \in \text{GL}(N, \mathbb{C})$ such that $W = A \cdot M$."

If $G \subset \text{Aut}(M)$, then G acts naturally on K^{-1}_M, and hence can be identified as a subgroup $G \subset \text{GL}(N, \mathbb{C})$ for any Kodaira embedding $M \hookrightarrow \mathbb{P}^N$.

Definition

We say $\lambda(t)$ is a G-equivariant special degeneration, if $\lambda(t) : \mathbb{C}^* \rightarrow \text{GL}(N, \mathbb{C})^G$, and we then analogously define G-equivariant K-(semi)stability with $A \in \text{GL}(N, \mathbb{C})^G$.

Heuristically,
Definition

M is called *K*-semistable if for any Kodaira embedding, and any special degeneration \(\lambda \), \(\text{Fut}(M, \lambda) \geq 0 \). It is called *K*-stable if in addition, \(\text{Fut}(M, \lambda) = 0 \) if and only if there exists a \(A \in GL(N, \mathbb{C}) \) such that \(W = A \cdot M \).

If \(G \subset \text{Aut}(M) \), then \(G \) acts naturally on \(K_M^{-1} \), and hence can be identified as a subgroup \(G \subset GL(N, \mathbb{C}) \) for any Kodaira embedding \(M \hookrightarrow \mathbb{P}^N \).

Definition

We say \(\lambda(t) \) is a *G*-equivariant special degeneration, if \(\lambda(t): \mathbb{C}^* \rightarrow GL(N, \mathbb{C})^G \), and we then analogously define *G*-equivariant *K*-(semi)stability with \(A \in GL(N, \mathbb{C})^G \).

Heuristically,
Definition

*M is called **K-semistable** if for any Kodaira embedding, and any special degeneration \(\lambda \), \(\text{Fut}(M, \lambda) \geq 0 \). It is called **K-stable** if in addition, \(\text{Fut}(M, \lambda) = 0 \) if and only if there exists a \(A \in \text{GL}(N, \mathbb{C}) \) such that \(W = A \cdot M \).

If \(G \subset \text{Aut}(M) \), then \(G \) acts naturally on \(K_M^{-1} \), and hence can be identified as a subgroup \(G \subset \text{GL}(N, \mathbb{C}) \) for any Kodaira embedding \(M \hookrightarrow \mathbb{P}^N \).

Definition

*We say \(\lambda(t) \) is a **G-equivariant** special degeneration, if \(\lambda(t) : \mathbb{C}^* \rightarrow \text{GL}(N, \mathbb{C})^G \), and we then analogously define **G-equivariant K-(semi)stability** with \(A \in \text{GL}(N, \mathbb{C})^G \).

Heuristically,
Definition

M is called **K-semistable** if for any Kodaira embedding, and any special degeneration *λ*,\[\text{Fut}(M, \lambda) \geq 0. \]

It is called **K-stable** if in addition, \[\text{Fut}(M, \lambda) = 0 \] if and only if there exists a \(A \in GL(N, \mathbb{C}) \) such that \(W = A \cdot M. \)

If \(G \subset Aut(M) \), then \(G \) acts naturally on \(K_M^{-1} \), and hence can be identified as a subgroup \(G \subset GL(N, \mathbb{C}) \) for any Kodaira embedding \(M \hookrightarrow \mathbb{P}^N. \)

Definition

We say \(\lambda(t) \) is a **G-equivariant** special degeneration, if \(\lambda(t): \mathbb{C}^* \to GL(N, \mathbb{C})^G \), and we then analogously define **G-equivariant K-(semi)stability** with \(A \in GL(N, \mathbb{C})^G. \)

Heuristically,

Figure: *K*-semistable.
Figure: *K*-stable.
Example

- Consider the embedding

\[\mathbb{P}^1 \hookrightarrow \mathbb{P}^2 \]

\[[\xi_0, \xi_1] \mapsto [\xi_0^2, \xi_0 \xi_1, \xi_1^2]. \]

The image \(M \) is the conic \(y^2 - xz = 0 \) in \(\mathbb{P}^2 \).

- If we let

\[\lambda(t) = \begin{pmatrix} t & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \]

then \(M_t = \lambda(t) \cdot M \), is given by the conic \(t^2 y^2 - t^{-1} xz = 0 \), and so the flat limit \(W = (xz = 0) \).

- One can then compute that

\[\text{Fut}(M, \lambda) = \frac{3}{2}. \]
Example

- Consider the embedding

\[
P^1 \hookrightarrow \mathbb{P}^2
\]

\[
[\xi_0, \xi_1] \mapsto [\xi_0^2, \xi_0\xi_1, \xi_1^2].
\]

The image \(M \) is the conic \(y^2 - xz = 0 \) in \(\mathbb{P}^2 \).

- If we let

\[
\lambda(t) = \begin{pmatrix}
t & 0 & 0 \\
0 & t^{-1} & 0 \\
0 & 0 & 1
\end{pmatrix},
\]

then \(M_t = \lambda(t) \cdot M \), is given by the conic \(t^2 y^2 - t^{-1} xz = 0 \), and so the flat limit \(W = (xz = 0) \).

- One can then compute that

\[
\text{Fut}(M, \lambda) = \frac{3}{2}.
\]
Example

- Consider the embedding

\[\mathbb{P}^1 \hookrightarrow \mathbb{P}^2 \]

\[[\xi_0, \xi_1] \mapsto [\xi_0^2, \xi_0 \xi_1, \xi_1^2] . \]

The image \(M \) is the conic \(y^2 - xz = 0 \) in \(\mathbb{P}^2 \).

- If we let

\[\lambda(t) = \begin{pmatrix} t & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \]

then \(M_t = \lambda(t) \cdot M \), is given by the conic \(t^2 y^2 - t^{-1} xz = 0 \), and so the flat limit \(W = (xz = 0) \).

- One can then compute that

\[\text{Fut}(M, \lambda) = \frac{3}{2}. \]
Example

- Consider the embedding

\[
P^1 \hookrightarrow P^2
\]

\[
[\xi_0, \xi_1] \mapsto [\xi_0^2, \xi_0 \xi_1, \xi_1^2].
\]

The image \(M\) is the conic \(y^2 - xz = 0\) in \(P^2\).

- If we let

\[
\lambda(t) = \begin{pmatrix}
t & 0 & 0 \\
0 & t^{-1} & 0 \\
0 & 0 & 1
\end{pmatrix},
\]

then \(M_t = \lambda(t) \cdot M\), is given by the conic \(t^2 y^2 - t^{-1} xz = 0\), and so the flat limit \(W = (xz = 0)\).

- One can then compute that

\[
\text{Fut}(M, \lambda) = \frac{3}{2}.
\]
Consider the embedding

\[\mathbb{P}^1 \hookrightarrow \mathbb{P}^2 \]

\[[\xi_0, \xi_1] \mapsto [\xi_0^2, \xi_0 \xi_1, \xi_1^2]. \]

The image \(M \) is the conic \(y^2 - xz = 0 \) in \(\mathbb{P}^2 \).

If we let

\[\lambda(t) = \begin{pmatrix} t & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \]

then \(M_t = \lambda(t) \cdot M \), is given by the conic \(t^2y^2 - t^{-1}xz = 0 \), and so the flat limit \(W = (xz = 0) \).

One can then compute that

\[\text{Fut}(M, \lambda) = \frac{3}{2}. \]
Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let \(G \subseteq \text{Aut}(M) \) be a compact group. Then \(M \) admits a KE if it is \(G \)-equivariantly \(K \)-stable with respect to special degenerations.

Example

Toric manifolds. Recall that \(M \) is toric if there is an effective holomorphic action of \((\mathbb{C}^*)^n\) with a free, open, dense orbit.

Theorem (Wang-Zhu, 2003)

\(M \) admits KE \iff the classical Futaki invariant vanishes.

Proof.

\(\Rightarrow \) is true in general. For converse, let \(G = (S^1)^n \). One can show that all equivariant degenerations are trivial, and since the classical Futaki is zero by hypothesis, \(M \) is equivariantly \(K \)-stable. By main theorem, it admits KE.
Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G-equivariantly K-stable with respect to special degenerations.

Example

Toric manifolds. Recall that M is toric if there is an effective holomorphic action of $(\mathbb{C}^*)^n$ with a free, open, dense orbit.

Theorem (Wang-Zhu, 2003)

M admits KE \iff the classical Futaki invariant vanishes.

Proof.

\implies is true in general. For converse, let $G = (S^1)^n$. One can show that all equivariant degenerations are trivial, and since the classical Futaki is zero by hypothesis, M is equivariantly K-stable. By main theorem, it admits KE.
Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G-equivariantly K-stable with respect to special degenerations.

Example

Toric manifolds. Recall that M is toric if there is an effective holomorphic action of $(\mathbb{C}^*)^n$ with a free, open, dense orbit.

Theorem (Wang-Zhu, 2003)

M admits KE \iff the classical Futaki invariant vanishes.

Proof.

\implies is true in general. For converse, let $G = (S^1)^n$. One can show that all equivariant degenerations are trivial, and since the classical Futaki is zero by hypothesis, M is equivariantly K-stable. By main theorem, it admits KE.
Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G-equivariantly K-stable with respect to special degenerations.

Example

Toric manifolds. Recall that M is toric if there is an effective holomorphic action of $(\mathbb{C}^*)^n$ with a free, open, dense orbit.

Theorem (Wang-Zhu, 2003)

M admits KE \iff the classical Futaki invariant vanishes.

Proof.

\implies is true in general. For converse, let $G = (S^1)^n$. One can show that all equivariant degenerations are trivial, and since the classical Futaki is zero by hypothesis, M is equivariantly K-stable. By main theorem, it admits KE.
Example

T-varieties with complexity one. (Ilten-Suss [6]) eg.- threefolds with an effective action of \((\mathbb{C}^*)^2 \). Then with \(G = (S^1)^2 \), all equivariant degenerations are either trivial or have a toric variety as central fiber. Ilten-Suss computed the Futaki invariants, and classified the equivariant \(K \)-stable ones.

Concretely, \(Q \subset \mathbb{P}^4 \) be a quadric, and let \(M \) be the blow-up along a conic. This admits a KE, and the only known proof is via the main theorem.
Example

T-varieties with complexity one. (Ilten-Suss [6]) eg.- threefolds with an effective action of \((\mathbb{C}^*)^2\). Then with \(G = (S^1)^2\), all equivariant degenerations are either trivial or have a toric variety as central fiber. Ilten-Suss computed the Futaki invariants, and classified the equivariant \(K\)-stable ones.

Concretely, \(Q \subset \mathbb{P}^4\) be a quadric, and let \(M\) be the blow-up along a conic. This admits a KE, and the only known proof is via the main theorem.
Example

T-varieties with complexity one. (Ilten-Suss [6]) eg.- threefolds with an effective action of \((\mathbb{C}^*)^2\). Then with \(G = (S^1)^2\), all equivariant degenerations are either trivial or have a toric variety as central fiber. Ilten-Suss computed the Futaki invariants, and classified the equivariant K-stable ones.

Concretely, \(Q \subset \mathbb{P}^4\) be a quadric, and let \(M\) be the blow-up along a conic. This admits a KE, and the only known proof is via the main theorem.
1 Introduction: Some history and the main theorem

2 K-stability

3 Outline of the proof

4 What next?
Continuity method

Let $\alpha \in 2\pi c_1(M)$ be a Kähler metric invariant under G, and consider the equation

$$Ric(\omega_t) = t\omega_t + (1 - t)\alpha. \quad (3.1)$$

Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

$$I = \{ t \in [0, 1] \mid (3.1) \text{ has a solution} \}.$$

To show $1 \in I$, it is enough to show

- $0 \in I$,
- I is open in $[0, 1]$,
- I is closed.
Continuity method

Let $\alpha \in 2\pi c_1(M)$ be a Kähler metric invariant under G, and consider the equation

$$Ric(\omega_t) = t\omega_t + (1 - t)\alpha.$$ \hspace{1cm} (3.1)

Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

$$I = \{t \in [0, 1] \mid (3.1) \text{ has a solution}\}.$$

To show $1 \in I$, it is enough to show

- $0 \in I$,
- I is open in $[0, 1]$,
- I is closed.
Outline of the proof

Continuity method

Let $\alpha \in 2\pi c_1(M)$ be a Kähler metric invariant under G, and consider the equation

$$\text{Ric}(\omega_t) = t\omega_t + (1 - t)\alpha.$$ \hfill (3.1)

Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

$$I = \{ t \in [0, 1] \mid (3.1) \text{ has a solution}\}.$$

To show $1 \in I$, it is enough to show

- $0 \in I$,
- I is open in $[0, 1]$,
- I is closed.
Outline of the proof

Continuity method

Let $\alpha \in 2\pi c_1(M)$ be a Kähler metric invariant under G, and consider the equation

$$Ric(\omega_t) = t\omega_t + (1 - t)\alpha. \quad (3.1)$$

Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

$$I = \{ t \in [0, 1] \mid (3.1) \text{ has a solution} \}.$$

To show $1 \in I$, it is enough to show

- $0 \in I$,
- I is open in $[0, 1]$,
- I is closed.
An interjection: The Donaldson continuity method

- Chen-Donaldson-Sun consider the following continuity method instead

\[\text{Ric}(\omega_\beta) = \beta \omega_\beta + \frac{1 - \beta}{m} [D]. \]

Here \(D \) is some smooth co-dimension 1 sub-variety (smooth divisor) in \(|-mK_M| \).

- The metrics \(\omega_\beta \) have conical singularities along the divisor \(D \).
- Disadvantages -
 - (Song-Wang) NO smooth \(G \) invariant divisors unless \(G \) is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax \(D \) to be only simple-normal-crossing, then the above equation in most cases does not have a solution.

- Advantage - exploiting \(K \)-stability, but more about this later.....
An interjection: The Donaldson continuity method

Chen-Donaldson-Sun consider the following continuity method instead

\[\text{Ric}(\omega_\beta) = \beta \omega_\beta + \frac{1-\beta}{m}[D]. \]

Here \(D \) is some smooth co-dimension 1 sub-variety (smooth divisor) in \(| - mK_M | \).

- The metrics \(\omega_\beta \) have conical singularities along the divisor \(D \).
- Disadvantages -
 - (Song-Wang) NO smooth \(G \) invariant divisors unless \(G \) is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax \(D \) to be only simple-normal-crossing, then the above equation in most cases does not have a solution.
- Advantage - exploiting \(K \)-stability, but more about this later....
Chen-Donaldson-Sun consider the following continuity method instead

\[\text{Ric}(\omega_\beta) = \beta \omega_\beta + \frac{1 - \beta}{m} [D]. \]

Here \(D \) is some smooth co-dimension 1 sub-variety (smooth divisor) in \(|-mK_M| \).

- The metrics \(\omega_\beta \) have conical singularities along the divisor \(D \).
- Disadvantages -
 - (Song-Wang) NO smooth \(G \) invariant divisors unless \(G \) is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax \(D \) to be only simple-normal-crossing, then the above equation in most cases does not have a solution.

- Advantage - exploiting \(K \)-stability, but more about this later....
An interjection: The Donaldson continuity method

Chen-Donaldson-Sun consider the following continuity method instead

\[\text{Ric}(\omega_\beta) = \beta \omega_\beta + \frac{1-\beta}{m}[D]. \]

Here \(D \) is some smooth co-dimension 1 sub-variety (smooth divisor) in \(| - mK_M| \).

- The metrics \(\omega_\beta \) have conical singularities along the divisor \(D \).
- Disadvantages -
 - (Song-Wang) NO smooth \(G \) invariant divisors unless \(G \) is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax \(D \) to be only simple-normal-crossing, then the above equation in most cases does not have a solution.

- Advantage - exploiting \(K \)-stability, but more about this later.....
An interjection: The Donaldson continuity method

- Chen-Donaldson-Sun consider the following continuity method instead

\[\text{Ric}(\omega_\beta) = \beta \omega_\beta + \frac{1-\beta}{m} [D]. \]

Here \(D \) is some smooth co-dimension 1 sub-variety (smooth divisor) in \(|-mK_M| \)
- The metrics \(\omega_\beta \) have conical singularities along the divisor \(D \).
- Disadvantages -
 - (Song-Wang) NO smooth \(G \) invariant divisors unless \(G \) is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax \(D \) to be only simple-normal-crossing, then the above equation in most cases does not have a solution.
- Advantage - exploiting \(K \)-stability, but more about this later.....
Chen-Donaldson-Sun consider the following continuity method instead

\[\text{Ric}(\omega_\beta) = \beta \omega_\beta + \frac{1 - \beta}{m} [D]. \]

Here \(D \) is some smooth co-dimension 1 sub-variety (smooth divisor) in \(| - mK_M | \).

- The metrics \(\omega_\beta \) have conical singularities along the divisor \(D \).
- Disadvantages -
 - (Song-Wang) NO smooth \(G \) invariant divisors unless \(G \) is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax \(D \) to be only simple-normal-crossing, then the above equation in most cases does not have a solution.

- Advantage - exploiting \(K \)-stability, but more about this later.....
An interjection: The Donaldson continuity method

- Chen-Donaldson-Sun consider the following continuity method instead

\[\text{Ric}(\omega_\beta) = \beta \omega_\beta + \frac{1-\beta}{m} [D]. \]

Here \(D \) is some smooth co-dimension 1 sub-variety (smooth divisor) in \(|-mK_M| \).

- The metrics \(\omega_\beta \) have conical singularities along the divisor \(D \).

- Disadvantages -
 - (Song-Wang) NO smooth \(G \) invariant divisors unless \(G \) is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax \(D \) to be only simple-normal-crossing, then the above equation in most cases does not have a solution.

- Advantage - exploiting \(K \)-stability, but more about this later.....
PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation:

\[
\begin{cases}
(\alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t)^n = e^{-t\varphi_t + h}\alpha^n \\
\omega_t := \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t > 0,
\end{cases}
\]

(3.2)

where \(h \) is the Ricci potential of the form \(\alpha \).

- At \(t = 0 \), we need to solve \(\text{Ric}(\omega_0) = \alpha \), where \(\alpha \) is a given positive form. This is precisely the Calabi conjecture solved by Yau [8].
- (Openness) The linearization of the equation is given by

\[
\Delta\omega_t + t.
\]

If \(t < 1 \), then \(\text{Ric}(\omega_t) > t\omega_t \), and a Bochner-type argument shows that \(\lambda_1(\Delta\omega_t) > t \). Hence the operator above is invertible, and implicit function theorem \(\implies \) openness.
We can recast the equation (3.1) into the following complex Monge-Ampere equation:

\[
\begin{align*}
(\alpha + \sqrt{-1} \partial \overline{\partial} \varphi_t)^n &= e^{-t \varphi_t + h} \alpha^n \\
\omega_t := \alpha + \sqrt{-1} \partial \overline{\partial} \varphi_t &> 0,
\end{align*}
\]

(3.2)

where \(h \) is the Ricci potential of the form \(\alpha \).

- At \(t = 0 \), we need to solve \(\text{Ric}(\omega_0) = \alpha \), where \(\alpha \) is a given positive form. This is precisely the Calabi conjecture solved by Yau [8].

- (Openness) The linearization of the equation is given by

\[
\Delta_{\omega_t} + t.
\]

If \(t < 1 \), then \(\text{Ric}(\omega_t) > t \omega_t \), and a Bochner-type argument shows that \(\lambda_1(\Delta_{\omega_t}) > t \). Hence the operator above is invertible, and implicit function theorem \(\Rightarrow \) openness.
We can recast the equation (3.1) into the following complex Monge-Ampere equation:

\[
\begin{align*}
(\alpha + \sqrt{-1} \partial \overline{\partial} \varphi_t)^n &= e^{-t\varphi_t + h} \alpha^n \\
\omega_t := \alpha + \sqrt{-1} \partial \overline{\partial} \varphi_t &> 0,
\end{align*}
\]

(3.2)

where \(h \) is the Ricci potential of the form \(\alpha \).

- At \(t = 0 \), we need to solve \(Ric(\omega_0) = \alpha \), where \(\alpha \) is a given positive form. This is precisely the Calabi conjecture solved by Yau [8].
- (Openness) The linearization of the equation is given by

\[
\Delta \omega_t + t.
\]

If \(t < 1 \), then \(Ric(\omega_t) > t\omega_t \), and a Bochner-type argument shows that \(\lambda_1(\Delta \omega_t) > t \). Hence the operator above is invertible, and implicit function theorem \(\Rightarrow \) openness.
We can recast the equation (3.1) into the following complex Monge-Ampere equation:

\[
\begin{align*}
(\alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t)^n &= e^{-t\varphi_t + h}\alpha^n \\
\omega_t := \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t &> 0,
\end{align*}
\]

where \(h\) is the Ricci potential of the form \(\alpha\).

- At \(t = 0\), we need to solve \(Ric(\omega_0) = \alpha\), where \(\alpha\) is a given positive form. This is precisely the Calabi conjecture solved by Yau [8].
- \(\text{(Openness)}\) The linearization of the equation is given by

\[\Delta \omega_t + t.\]

If \(t < 1\), then \(Ric(\omega_t) > t\omega_t\), and a Bochner-type argument shows that \(\lambda_1(\Delta \omega_t) > t\). Hence the operator above is invertible, and implicit function theorem \(\Rightarrow\) openness.
We can recast the equation (3.1) into the following complex Monge-Ampere equation:

\[
\begin{aligned}
&\left(\alpha + \sqrt{-1} \partial \overline{\partial} \varphi_t\right)^n = e^{-t\varphi_t + h}\alpha^n \\
&\omega_t := \alpha + \sqrt{-1} \partial \overline{\partial} \varphi_t > 0,
\end{aligned}
\]

(3.2)

where \(h \) is the Ricci potential of the form \(\alpha \).

- At \(t = 0 \), we need to solve \(\text{Ric}(\omega_0) = \alpha \), where \(\alpha \) is a given positive form. This is precisely the Calabi conjecture solved by Yau [8].

- (Openness) The linearization of the equation is given by

\[
\Delta \omega_t + t.
\]

If \(t < 1 \), then \(\text{Ric}(\omega_t) > t\omega_t \), and a Bochner-type argument shows that \(\lambda_1(\Delta \omega_t) > t \). Hence the operator above is invertible, and implicit function theorem \(\implies \) openness.
(Closedness) From a priori estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every \(A \) and \(k \in \mathbb{N} \), there exists constants \(C_k \) such that

\[
\| \varphi_t \|_{C^0} \leq A \implies \| \varphi_t \|_{C^k} \leq C_k.
\]

So to complete the proof we “only” need uniform \(C^0 \) estimates. This is where K-stability comes in.

From now on, let \(t_k \to T \) where \(t_k \in I \). We need to show that \(T \in I \). For ease of notation, let \(\omega_k = \omega_{t_k} = \alpha + \sqrt{-1} \partial \overline{\partial} \varphi_k \), and \(g_k \) the corresponding Riemannian metric. We can assume that \(t_k \geq t_0 \) for some fixed \(t_0 \). We also assume that \(T < 1 \), since if \(T = 1 \), the exact same proof of Chen-Donaldson-Sun also works in our case.
(Closedness) From \emph{a priori} estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

\textit{For every A and $k \in \mathbb{N}$, there exists constants C_k such that}

$$||\varphi_t||_{C^0} \leq A \implies ||\varphi_t||_{C^k} \leq C_k.$$

- So to complete the proof we “only” need uniform C^0 estimates. This is where K-stability comes in.

From now on, let $t_k \to T$ where $t_k \in I$. We need to show that $T \in I$. For ease of notation, let $\omega_k = \omega_{t_k} = \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_k$, and g_k the corresponding Riemannian metric. We can assume that $t_k \geq t_0$ for some fixed t_0. We also assume that $T < 1$, since if $T = 1$, the exact same proof of Chen-Donaldson-Sun also works in our case.
(Closedness) From \textit{a priori} estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

\textit{For every A and $k \in \mathbb{N}$, there exists constants C_k such that}

$$||\varphi_t||_{C^0} \leq A \implies ||\varphi_t||_{C^k} \leq C_k.$$

So to complete the proof we “only” need uniform C^0 estimates. This is where K-stability comes in.

From now on, let $t_k \to T$ where $t_k \in I$. We need to show that $T \in I$. For ease of notation, let $\omega_k = \omega_{t_k} = \alpha + \sqrt{-1} \partial \overline{\partial} \varphi_k$, and g_k the corresponding Riemannian metric. We can assume that $t_k \geq t_0$ for some fixed t_0. We also assume that $T < 1$, since if $T = 1$, the exact same proof of Chen-Donaldson-Sun also works in our case.
Outline of the proof

- (Closedness) From *a priori* estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every A and $k \in \mathbb{N}$, there exists constants C_k such that

$$||\varphi_t||_{C^0} \leq A \implies ||\varphi_t||_{C^k} \leq C_k.$$

- So to complete the proof we “only” need uniform C^0 estimates. This is where K-stability comes in.

From now on, let $t_k \to T$ where $t_k \in I$. We need to show that $T \in I$. For ease of notation, let $\omega_k = \omega_{t_k} = \alpha + \sqrt{-1} \partial \overline{\partial} \varphi_k$, and g_k the corresponding Riemannian metric. We can assume that $t_k \geq t_0$ for some fixed t_0. We also assume that $T < 1$, since if $T = 1$, the exact same proof of Chen-Donaldson-Sun also works in our case.
(Closedness) From \textit{a priori} estimates and Arzela-Ascoli.

\textbf{Proposition (Aubin and Yau, 1970s)}

\textit{For every} A \textit{and} $k \in \mathbb{N}$, \textit{there exists constants} C_k \textit{such that}

\[\|\varphi_t\|_{C^0} \leq A \implies \|\varphi_t\|_{C^k} \leq C_k. \]

So to complete the proof we “only” need uniform C^0 estimates. This is where K-stability comes in.

From now on, let $t_k \to T$ where $t_k \in I$. We need to show that $T \in I$. For ease of notation, let $\omega_k = \omega_{t_k} = \alpha + \sqrt{-1} \partial \bar{\partial} \varphi_k$, and g_k the corresponding Riemannian metric. We can assume that $t_k \geq t_0$ for some fixed t_0. We also assume that $T < 1$, since if $T = 1$, the exact same proof of Chen-Donaldson-Sun also works in our case.
(Closedness) From *a priori* estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every A and $k \in \mathbb{N}$, there exists constants C_k such that

$$||\varphi_t||_{C^0} \leq A \implies ||\varphi_t||_{C^k} \leq C_k.$$

So to complete the proof we “only” need uniform C^0 estimates. This is where K-stability comes in.

From now on, let $t_k \to T$ where $t_k \in I$. We need to show that $T \in I$. For ease of notation, let $\omega_k = \omega_{t_k} = \alpha + \sqrt{-1} \partial \bar{\partial} \varphi_k$, and g_k the corresponding Riemannian metric. We can assume that $t_k \geq t_0$ for some fixed t_0. We also assume that $T < 1$, since if $T = 1$, the exact same proof of Chen-Donaldson-Sun also works in our case.
Gromov-Hausdorff convergence

- **The metrics satisfy**
 1. $\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n$.
 2. $\text{Ric}(g_k) \geq t_0 g_k$.
 3. (Meyers') $\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$.
 4. (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,

 $$|B_r| \geq \kappa r^{2n}.$$

- (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.

- Z is a candidate for the central fiber of a destabilizing special degeneration.

- But Z needs to be a “sufficiently nice” algebraic variety, and there should be C^∞-special degeneration of M to Z.

Gromov-Hausdorff convergence
Gromov-Hausdorff convergence

- The metrics satisfy
 1. $\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n$.
 2. $\text{Ric}(g_k) \geq t_0 g_k$.
 3. (Meyers') $\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$.
 4. (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,
 \[|B_r| \geq \kappa r^{2n}. \]

- (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.
- Z is a candidate for the central fiber of a destabilizing special degeneration.
- But Z needs to be a “sufficiently nice” algebraic variety, and there should be C^∞-special degeneration of M to Z.
Gromov-Hausdorff convergence

The metrics satisfy

1. $\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n$.
2. $\text{Ric}(g_k) \geq t_0 g_k$.
3. (Meyers') $\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$.
4. (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,
 $$|B_r| \geq \kappa r^{2n}.$$

5. (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.
6. Z is a candidate for the central fiber of a destabilizing special degeneration.
7. But Z needs to be a “sufficiently nice” algebraic variety, and there should be C^∞-special degeneration of M to Z.
Gromov-Hausdorff convergence

The metrics satisfy
1. \(\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n. \)
2. \(\text{Ric}(g_k) \geq t_0 g_k. \)
3. (Meyers') \(\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}} \)
4. (Volume non-collapse) There exists \(\kappa > 0 \) such that for any ball of radius \(r < \text{diam}(M, g_k) \),
 \[|B_r| \geq \kappa r^{2n}. \]

(Gromov) The sequence of Riemannian manifolds \((M, g_k) \xrightarrow{G-H} (Z, d)\), where \((Z, d)\) is a compact metric length space.

- \(Z \) is a candidate for the central fiber of a destabilizing special degeneration.
- But \(Z \) needs to be a "sufficiently nice" algebraic variety, and there should be \(C^\infty \)-special degeneration of \(M \) to \(Z \).
Gromov-Hausdorff convergence

- The metrics satisfy
 1. $\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n$.
 2. $\text{Ric}(g_k) \geq t_0 g_k$.
 3. (Meyers') $\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$
 4. (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,
 $$|B_r| \geq \kappa r^{2n}.$$

- (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.
- Z is a candidate for the central fiber of a destabilizing special degeneration.
- But Z needs to be a “sufficiently nice” algebraic variety, and there should be C^*-special degeneration of M to Z.
Gromov-Hausdorff convergence

- The metrics satisfy
 1. \(\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n. \)
 2. \(\text{Ric}(g_k) \geq t_0 g_k. \)
 3. \((\text{Meyers'}) \ \text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}} \)
 4. (Volume non-collapse) There exists \(\kappa > 0 \) such that for any ball of radius \(r < \text{diam}(M, g_k) \),
 \(|B_r| \geq \kappa r^{2n}. \)

- (Gromov) The sequence of Riemannian manifolds \((M, g_k) \xrightarrow{G-H} (Z, d)\), where \((Z, d)\) is a compact metric length space.
 - \(Z \) is a candidate for the central fiber of a destabilizing special degeneration.
 - But \(Z \) needs to be a “sufficiently nice” algebraic variety, and there should be \(C^* \)-special degeneration of \(M \) to \(Z \).
Gromov-Hausdorff convergence

- The metrics satisfy
 1. \(\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n. \)
 2. \(\text{Ric}(g_k) \geq t_0 g_k. \)
 3. (Meyers’) \(\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}} \)
 4. (Volume non-collapse) There exists \(\kappa > 0 \) such that for any ball of radius \(r < \text{diam}(M, g_k), \)
 \(|B_r| \geq \kappa r^{2n}. \)

- (Gromov) The sequence of Riemannian manifolds \((M, g_k) \xrightarrow{G-H} (Z, d), \) where \((Z, d) \) is a compact metric length space.
- \(Z \) is a candidate for the central fiber of a destabilizing special degeneration.
- But \(Z \) needs to be a “sufficiently nice” algebraic variety, and there should be \(C^* \)-special degeneration of \(M \) to \(Z. \)
Gromov-Hausdorff convergence

- The metrics satisfy
 1. \(\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n. \)
 2. \(\text{Ric}(g_k) \geq t_0 g_k. \)
 3. (Meyers') \(\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}} \)
 4. (Volume non-collapse) There exists \(\kappa > 0 \) such that for any ball of radius \(r < \text{diam}(M, g_k) \),
 \(|B_r| \geq \kappa r^{2n}. \)

- (Gromov) The sequence of Riemannian manifolds \((M, g_k) \xrightarrow[G-H]{} (Z, d) \), where
 \((Z, d) \) is a compact metric length space.

- \(Z \) is a candidate for the central fiber of a destabilizing special degeneration.

- But \(Z \) needs to be a "sufficiently nice" algebraic variety, and there should be \(\mathbb{C}^* \)-special degeneration of \(M \) to \(Z \).
The following theorem was conjectured by Yau, and made precise, and proved by Tian when $n = 2$.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m, and embeddings $F_k : M \hookrightarrow \mathbb{P}^N$ by sections of $H^0(M, K_M^{-m})$ with the following properties

1. F_k are uniformly Lipschitz.
2. $F_k(M)$ converge to a \mathbb{Q}-Fano normal flat limit W, and the maps F_k converge to a homeomorphism $F : Z \to W$.
3. (partial C^0 estimate) There exists a uniform constant C such that

$$
\omega_k = \frac{1}{m} F_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k,
$$

with $|\psi_k|_{C^0}, |
\nabla \psi_k| < C$.

4. $F_k(\alpha)$ converge weakly to a closed current β supported on W.
The following theorem was conjectured by Yau, and made precise, and proved by Tian when \(n = 2 \).

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform \(m \), and embeddings \(F_k : M \hookrightarrow \mathbb{P}^N \) by sections of \(H^0(M, K_M^{-m}) \) with the following properties

- \(F_k \) are uniformly Lipschitz.
- \(F_k(M) \) converge to a \(\mathbb{Q} \)-Fano normal flat limit \(W \), and the maps \(F_k \) converge to a homeomorphism \(F : Z \to W \).
- *(partial \(C^0 \) estimate)* There exists a uniform constant \(C \) such that
 \[
 \omega_k = \frac{1}{m} F_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k,
 \]
 with \(|\psi_k|_{C^0}, |\nabla \psi_k| < C \).
- \(F_k(\alpha) \) converge weakly to a closed current \(\beta \) supported on \(W \).
Metric geometry to algebraic geometry: Partial C^0-estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian when $n = 2$.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m, and embeddings $F_k : M \hookrightarrow \mathbb{P}^N$ by sections of $H^0(M, K_M^{-m})$ with the following properties

1. F_k are uniformly Lipschitz.
2. $F_k(M)$ converge to a \mathbb{Q}-Fano normal flat limit W, and the maps F_k converge to a homeomorphism $F : Z \to W$.
3. (partial C^0 estimate) There exists a uniform constant C such that

 $$\omega_k = \frac{1}{m} F_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k,$$

 with $|\psi_k|_{C^0}, |\nabla \psi_k| < C$.
4. $F_k(\alpha)$ converge weakly to a closed current β supported on W.
The following theorem was conjectured by Yau, and made precise, and proved by Tian when $n = 2$.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m, and embeddings $F_k : M \hookrightarrow \mathbb{P}^N$ by sections of $H^0(M, K_{M}^{-m})$ with the following properties

1. **F_k are uniformly Lipschitz.**
2. $F_k(M)$ converge to a \mathbb{Q}-Fano normal flat limit W, and the maps F_k converge to a **homeomorphism** $F : Z \rightarrow W$.
3. (Partial C^0 estimate) There exists a uniform constant C such that

 $$
 \omega_k = \frac{1}{m} F_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k,
 $$

 with $|\psi_k|_{C^0}, |\nabla \psi_k| < C$.
4. $F_k(\alpha)$ converge weakly to a closed current β supported on W.
The following theorem was conjectured by Yau, and made precise, and proved by Tian when \(n = 2 \).

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform \(m \), and embeddings \(F_k : M \hookrightarrow \mathbb{P}^N \) by sections of \(H^0(M, K_M^{-m}) \) with the following properties

1. \(F_k \) are uniformly Lipschitz.
2. \(F_k(M) \) converge to a \(\mathbb{Q} \)-Fano normal flat limit \(W \), and the maps \(F_k \) converge to a **homeomorphism** \(F : Z \to W \).
3. (partial \(C^0 \) estimate) There exists a uniform constant \(C \) such that

\[
\omega_k = \frac{1}{m} F_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k,
\]

with \(|\psi_k|_{C^0}, |\nabla \psi_k| < C \).
4. \(F_k(\alpha) \) converge weakly to a closed current \(\beta \) supported on \(W \).
The following theorem was conjectured by Yau, and made precise, and proved by Tian when \(n = 2 \).

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform \(m \), and embeddings \(F_k : M \hookrightarrow \mathbb{P}^N \) by sections of \(H^0(M, K_M^{-m}) \) with the following properties

1. \(F_k \) are uniformly Lipschitz.
2. \(F_k(M) \) converge to a \(\mathbb{Q} \)-Fano normal flat limit \(W \), and the maps \(F_k \) converge to a \underline{homeomorphism} \(F : Z \to W \).
3. (partial \(C^0 \) estimate) There exists a uniform constant \(C \) such that

\[
\omega_k = \frac{1}{m} F_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k,
\]

with \(|\psi_k|_{C^0}, |\nabla \psi_k| < C \).
4. \(F_k(\alpha) \) converge weakly to a closed current \(\beta \) supported on \(W \).
From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α. For simplicity, we assume that $\alpha = m^{-1}\omega_{FS}\big|_{M}$.

Let $\rho_k = F_k \circ F_1^{-1} \in GL^G$, and $M_k = \rho_k(M) \to W$. Also $\rho_k(\alpha) \to \beta$.

The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and

$$\omega_k = \frac{1}{m} \rho_k^* \omega_{FS} + \sqrt{-1} \partial \overline{\partial} \psi_k.$$

Proposition

After passing to a subsequence, $\rho_k \to g \in GL^G$.

Proof of main theorem.

Proposition \implies

$$\frac{1}{m} \rho_k^* \omega_{FS} - \frac{1}{m} \omega_{FS} = \sqrt{-1} \partial \overline{\partial} \nu_k$$

with $|\nu_k|_{C^0} < C$. Since $\omega_k = m^{-1}\omega_{FS} + \sqrt{-1}\partial \overline{\partial} \varphi_k$, $\varphi_k = \psi_k + \nu_k$, and so combined with partial C^0, $|\varphi_k|_{C^0} < C$.

Ved Datar (UC Berkeley)

Kähler-Einstein metrics on Fano manifolds

Jan 02, 2018 26 / 36
Outline of the proof

- From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α. For simplicity, we assume that $\alpha = m^{-1}\omega_{FS}|_M$.

- Let $\rho_k = F_k \circ F_1^{-1} \in GL^G$, and $M_k = \rho_k(M) \rightarrow W$. Also $\rho_k(\alpha) \rightarrow \beta$.

- The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and

$$\omega_k = \frac{1}{m} \rho_k^*\omega_{FS} + \sqrt{-1} \bar{\partial}\bar{\partial}\psi_k.$$

Proposition

After passing to a subsequence, $\rho_k \rightarrow g \in GL^G$.

Proof of main theorem.

Proposition \Rightarrow

$$\frac{1}{m} \rho_k^*\omega_{FS} - \frac{1}{m}\omega_{FS} = \sqrt{-1}\bar{\partial}\bar{\partial}\nu_k$$

with $|\nu_k|_{C^0} < C$. Since $\omega_k = m^{-1}\omega_{FS} + \sqrt{-1}\bar{\partial}\bar{\partial}\varphi_k$, $\varphi_k = \psi_k + \nu_k$, and so combined with partial C^0, $|\varphi_k|_{C^0} < C$.
• From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α. For simplicity, we assume that $\alpha = m^{-1} \omega_{FS} \big|_M$.

• Let $\rho_k = F_k \circ F_1^{-1} \in GL^G$, and $M_k = \rho_k(M) \to W$. Also $\rho_k(\alpha) \to \beta$.

• The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and

$$\omega_k = \frac{1}{m} \rho_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k.$$

Proposition

After passing to a subsequence, $\rho_k \to g \in GL^G$.

Proof of main theorem.

Proposition \implies

$$\frac{1}{m} \rho_k^* \omega_{FS} - \frac{1}{m} \omega_{FS} = \sqrt{-1} \partial \bar{\partial} \nu_k$$

with $|\nu_k|_{C^0} < C$. Since $\omega_k = m^{-1} \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \varphi_k$, $\varphi_k = \psi_k + \nu_k$, and so combined with partial C^0, $|\varphi_k|_{C^0} < C$.
Outline of the proof

- From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α. For simplicity, we assume that $\alpha = m^{-1}\omega_{FS}\big|_M$.
- Let $\rho_k = F_k \circ F_1^{-1} \in GL^G$, and $M_k = \rho_k(M) \to W$. Also $\rho_k(\alpha) \to \beta$.
- The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and
 \[
 \omega_k = \frac{1}{m} \rho_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k.
 \]

Proposition

After passing to a subsequence, $\rho_k \to g \in GL^G$.

Proof of main theorem.

Proposition \implies

\[
\frac{1}{m} \rho_k^* \omega_{FS} - \frac{1}{m} \omega_{FS} = \sqrt{-1} \partial \bar{\partial} \nu_k
\]

with $|\nu_k|_{C^0} < C$. Since $\omega_k = m^{-1} \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \varphi_k$, $\varphi_k = \psi_k + \nu_k$, and so combined with partial C^0, $|\varphi_k|_{C^0} < C$.

\[\square\]
Outline of the proof

- From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α. For simplicity, we assume that $\alpha = m^{-1} \omega_{FS} \big|_M$.
- Let $\rho_k = F_k \circ F_1^{-1} \in GL^G$, and $M_k = \rho_k(M) \to W$. Also $\rho_k(\alpha) \to \beta$.
- The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and
 \[
 \omega_k = \frac{1}{m} \rho_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k.
 \]

Proposition

After passing to a subsequence, $\rho_k \to g \in GL^G$.

Proof of main theorem.

Proposition \implies

\[
\frac{1}{m} \rho_k^* \omega_{FS} - \frac{1}{m} \omega_{FS} = \sqrt{-1} \partial \bar{\partial} \nu_k
\]

with $|\nu_k|_{C^0} < C$. Since $\omega_k = m^{-1} \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \varphi_k$, $\varphi_k = \psi_k + \nu_k$, and so combined with partial C^0, $|\varphi_k|_{C^0} < C$.
From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α. For simplicity, we assume that $\alpha = m^{-1} \omega_{FS}\big|_M$.

Let $\rho_k = F_k \circ F_1^{-1} \in \text{GL}^G$, and $M_k = \rho_k(M) \to W$. Also $\rho_k(\alpha) \to \beta$.

The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and

$$\omega_k = \frac{1}{m} \rho_k^* \omega_{FS} + \sqrt{-1} \partial \overline{\partial} \psi_k.$$
Twisted KE on W

- The currents $\rho_k(\omega_k)$ converge weakly to a weak current ω_T supported on W solving the twisted KE equation on W in the weak sense -

$$\text{Ric}(\omega_T) = T\omega_T + (1 - T)\beta.$$

Consequences -

1. “Aut(W, β)” is reductive.
2. The “twisted Futaki invariant”

$$\text{Fut}_{(1-T)\beta}(W, w) = 0$$

for all $w \in \text{aut}(W, \beta)$.

Ved Datar (UC Berkeley)

Kähler-Einstein metrics on Fano manifolds

Jan 02, 2018 27 / 36
The currents $\rho_k(\omega_k)$ converge weakly to a weak current ω_T supported on W solving the twisted KE equation on W in the weak sense -

$$\text{Ric}(\omega_T) = T\omega_T + (1 - T)\beta.$$

Consequences -

1. “$\text{Aut}(W, \beta)$” is reductive.
2. The “twisted Futaki invariant”

$$\text{Fut}_{(1-T)\beta}(W, w) = 0$$

for all $w \in \text{aut}(W, \beta)$.
Twisted KE on W

- The currents $\rho_k(\omega_k)$ converge weakly to a weak current ω_T supported on W solving the twisted KE equation on W in the weak sense -
 \[\operatorname{Ric}(\omega_T) = T\omega_T + (1 - T)\beta. \]

Consequences -
1. "\(\operatorname{Aut}(W, \beta)\)" is reductive.
2. The "twisted Futaki invariant"
 \[\operatorname{Fut}_{(1-T)\beta}(W, w) = 0 \]
 for all $w \in \operatorname{aut}(W, \beta)$.
Twisted KE on W

- The currents $\rho_k(\omega_k)$ converge weakly to a weak current ω_T supported on W solving the twisted KE equation on W in the weak sense -

\[\text{Ric}(\omega_T) = T\omega_T + (1 - T)\beta. \]

- Consequences -
 1. “Aut(W, β)” is reductive.
 2. The “twisted Futaki invariant”

\[\text{Fut}_{(1-T)\beta}(W, w) = 0 \]

for all $w \in \text{aut}(W, \beta)$.
Key difficulty

- W is in the GL^G orbit closure but might not be accessible by \mathbb{C}^*.
- If one could embed all such pairs (W, β) into a large finite dimensional projective, then since the stabilizer is reductive, one could use Luna slice theorem.
- Unfortunately the space of pairs (W, β) is infinite dimensional. Here the CDS continuity method has an advantage.
- Key idea. Approximate β by divisors.
Key difficulty

- W is in the GL^G orbit closure but might not be accessible by \mathbb{C}^*.
- If one could embed all such pairs (W, β) into a large finite dimensional projective, then since the stabilizer is reductive, one could use Luna slice theorem.
- Unfortunately the space of pairs (W, β) is infinite dimensional. Here the CDS continuity method has an advantage.
- Key idea. Approximate β by divisors.
Key difficulty

- W is in the GL^G orbit closure but might not be accessible by \mathbb{C}^*. If one could embed all such pairs (W, β) into a large finite dimensional projective, then since the stabilizer is reductive, one could use Luna slice theorem.

- Unfortunately the space of pairs (W, β) is infinite dimensional. Here the CDS continuity method has an advantage.

- Key idea. Approximate β by divisors.
Key difficulty

- W is in the GL^G orbit closure but might not be accessible by \mathbb{C}^*.
- If one could embed all such pairs (W, β) into a large finite dimensional projective, then since the stabilizer is reductive, one could use Luna slice theorem.
- Unfortunately the space of pairs (W, β) is infinite dimensional. Here the CDS continuity method has an advantage.

Key idea. Approximate β by divisors.
Key difficulty

- W is in the GL^G orbit closure but might not be accessible by \mathbb{C}^*.
- If one could embed all such pairs (W, β) into a large finite dimensional projective, then since the stabilizer is reductive, one could use Luna slice theorem.
- Unfortunately the space of pairs (W, β) is infinite dimensional. Here the CDS continuity method has an advantage.
- **Key idea.** Approximate β by divisors.
Main argument

1. Choose generic hyperplanes \(\{V_i\}_{i=1}^d \) such that
 - Passing to a subsequence \(\rho_k(V_i) \) converges to hyperplane \(H_i \) for each \(i \).
 - \(\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i] \).
 - \(\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \ldots, W \cap H_d) \).
2. Then \(\text{aut}(W, W \cap H_1, \ldots, W \cap H_d) \) is reductive and
 \[
 (W, W \cap H_1, \ldots, W \cap H_d) \in GL^G \cdot (M, M \cap V_1, \ldots, V_d).
 \]
3. Luna slicing \(\implies \exists \lambda(t) : \mathbb{C}^* \to GL^G \) generated by a vector field \(w \), and a fixed \(g \in GL^G \) such that
 \[
 (W, W \cap H_1, \ldots, W \cap H_d) = \lim_{t \to 0} \lambda(t)g : (M, M \cap V_1, \ldots, M \cap V_d).
 \]
4. In particular \(W = \lim_{t \to 0} \lambda(t)g : M \), and \(w \) is tangential to \(W \).
Main argument

- Choose generic hyperplanes \(\{ V_i \}_{i=1}^d \) such that
 - Passing to a subsequence \(\rho_k(V_i) \) converges to hyperplane \(H_i \) for each \(i \).
 - \(\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i] \).
 - \(\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \cdots, W \cap H_d) \).
- Then \(\text{aut}(W, W \cap H_1, \cdots, W \cap H_d) \) is reductive and
 \[
 (W, W \cap H_1, \cdots, W \cap H_d) \in GL^G \cdot (M, M \cap V_1, \cdots, V_d).
 \]
- Luna slicing \(\implies \exists \lambda(t) : \mathbb{C}^* \to GL^G \) generated by a vector field \(w \), and a fixed \(g \in GL^G \) such that
 \[
 (W, W \cap H_1, \cdots, W \cap H_d) = \lim_{t \to 0} \lambda(t)g \cdot (M, M \cap V_1, \cdots, M \cap V_d).
 \]
- In particular \(W = \lim_{t \to 0} \lambda(t)g \cdot M \), and \(w \) is tangential to \(W \).
Outline of the proof

Main argument

Choose generic hyperplanes $\{V_i\}_{i=1}^d$ such that

1. Passing to a subsequence $\rho_k(V_i)$ converges to hyperplane H_i for each i.
2. $\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i]$.
3. $\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \cdots, W \cap H_d)$.

Then $\text{aut}(W, W \cap H_1, \cdots, W \cap H_d)$ is reductive and

$$(W, W \cap H_1, \cdots, W \cap H_d) \in \overline{\text{GL}^G \cdot (M, M \cap V_1, \cdots, V_d)}.$$

Luna slicing $\implies \exists \lambda(t) : \mathbb{C}^* \to \text{GL}^G$ generated by a vector field w, and a fixed $g \in \text{GL}^G$ such that

$$(W, W \cap H_1, \cdots, W \cap H_d) = \lim_{t \to 0} \lambda(t)g \cdot (M, M \cap V_1, \cdots, M \cap V_d).$$

In particular $W = \lim_{t \to 0} \lambda(t)g \cdot M$, and w is tangential to W.

Ved Datar (UC Berkeley)
Main argument

- Choose generic hyperplanes \(\{ V_i \}_{i=1}^d \) such that
 1. Passing to a subsequence \(\rho_k(V_i) \) converges to hyperplane \(H_i \) for each \(i \).
 2. \(\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i] \).
 3. \(\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \cdots, W \cap H_d) \).
- Then \(\text{aut}(W, W \cap H_1, \cdots, W \cap H_d) \) is reductive and
 \[
 (W, W \cap H_1, \cdots, W \cap H_d) \in \text{GL}^G \cdot (M, M \cap V_1, \cdots, V_d).
 \]
- Luna slicing \(\implies \exists \lambda(t) : \mathbb{C}^* \to \text{GL}^G \) generated by a vector field \(w \), and a fixed \(g \in \text{GL}^G \) such that
 \[
 (W, W \cap H_1, \cdots, W \cap H_d) = \lim_{t \to 0} \lambda(t) g \cdot (M, M \cap V_1, \cdots, M \cap V_d).
 \]
- In particular \(W = \lim_{t \to 0} \lambda(t) g \cdot M \), and \(w \) is tangential to \(W \).
Choose generic hyperplanes \(\{ V_i \}_{i=1}^d \) such that

1. Passing to a subsequence \(\rho_k(V_i) \) converges to hyperplane \(H_i \) for each \(i \).
2. \(\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i] \).
3. \(\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \ldots, W \cap H_d) \).

Then \(\text{aut}(W, W \cap H_1, \ldots, W \cap H_d) \) is reductive and

\[
(W, W \cap H_1, \ldots, W \cap H_d) \in \overline{GL^G \cdot (M, M \cap V_1, \ldots, V_d)}.
\]

Luna slicing \(\Longrightarrow \exists \lambda(t) : \mathbb{C}^* \rightarrow GL^G \) generated by a vector field \(w \), and a fixed \(g \in GL^G \) such that

\[
(W, W \cap H_1, \ldots, W \cap H_d) = \lim_{t \to 0} \lambda(t)g \cdot (M, M \cap V_1, \ldots, M \cap V_d).
\]

In particular \(W = \lim_{t \to 0} \lambda(t)g \cdot M \), and \(w \) is tangential to \(W \).
Main argument

- Choose generic hyperplanes \(\{V_i\}_{i=1}^d \) such that
 1. Passing to a subsequence \(\rho_k(V_i) \) converges to hyperplane \(H_i \) for each \(i \).
 2. \(\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i] \).
 3. \(\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \cdots, W \cap H_d) \)
- Then \(\text{aut}(W, W \cap H_1, \cdots, W \cap H_d) \) is reductive and
 \[(W, W \cap H_1, \cdots, W \cap H_d) \in \overline{GL^G \cdot (M, M \cap V_1, \cdots, V_d)}. \]
- Luna slicing \(\implies \exists \lambda(t) : \mathbb{C}^* \to GL^G \) generated by a vector field \(w \), and a fixed \(g \in GL^G \) such that
 \[(W, W \cap H_1, \cdots, W \cap H_d) = \lim_{t \to 0} \lambda(t)g \cdot (M, M \cap V_1, \cdots, M \cap V_d). \]
- In particular \(W = \lim_{t \to 0} \lambda(t)g \cdot M \), and \(w \) is tangential to \(W \).
Outline of the proof

Main argument

- Choose generic hyperplanes \(\{V_i\}_{i=1}^d \) such that
 1. Passing to a subsequence \(\rho_k(V_i) \) converges to hyperplane \(H_i \) for each \(i \).
 2. \(\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i] \).
 3. \(\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \cdots, W \cap H_d) \)
- Then \(\text{aut}(W, W \cap H_1, \cdots, W \cap H_d) \) is reductive and
 \[
 (W, W \cap H_1, \cdots, W \cap H_d) \in \overline{GL^G \cdot (M, M \cap V_1, \cdots, V_d)}.
 \]

- Luna slicing \(\implies \exists \lambda(t) : \mathbb{C}^* \to GL^G \) generated by a vector field \(w \), and a fixed \(g \in GL^G \) such that
 \[
 (W, W \cap H_1, \cdots, W \cap H_d) = \lim_{t \to 0} \lambda(t)g \cdot (M, M \cap V_1, \cdots, M \cap V_d).
 \]

- In particular \(W = \lim_{t \to 0} \lambda(t)g \cdot M \), and \(w \) is tangential to \(W \).
If θ_w is the Hamiltonian of w, then

$$\text{Fut}_{(1-T)^{\beta}}(W, w) = \text{Fut}(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w(\beta - \omega_{FS})\omega_{FS}^{n-1}.$$

Using the fact that $\text{Fut}_{(1-T)^{\beta}}(W, w) = 0$, a calculation shows that

$$\text{Fut}(W, w) \approx (1 - T) \left[\frac{1}{V} \int_W \theta_w \omega_{FS}^n - \max_W \theta_w \right] \leq 0.$$

K-stability \implies it should be equality, and hence $w = 0$.

Since $w = 0$, the degeneration is trivial, and so

$$(W, W \cap H_1, \ldots, W \cap H_d) = g \cdot (M, M \cap V_1, \ldots, M \cap V_d).$$

Recall that $H_i = \lim_{k \to \infty} \rho_k(V_i)$.

Since V_i are generic, a simple argument now shows that $\rho_k \to g$. \qed
If θ_w is the Hamiltonian of w, then

$$\text{Fut}_{(1-T)\beta}(W, w) = \text{Fut}(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w(\beta - \omega_{FS})\omega_{FS}^{n-1}.$$

Using the fact that $\text{Fut}_{(1-T)\beta}(W, w) = 0$, a calculation shows that

$$\text{Fut}(W, w) \approx (1 - T) \left[\frac{1}{V} \int_W \theta_w \omega_{FS}^n - \max_W \theta_w \right] \leq 0.$$

K-stability \implies it should be equality, and hence $w = 0$.

Since $w = 0$, the degeneration is trivial, and so

$$(W, W \cap H_1, \cdots, W \cap H_d) = g \cdot (M, M \cap V_1, \cdots, M \cap V_d).$$

Recall that $H_i = \lim_{k \to \infty} \rho_k(V_i)$.

Since V_i are generic, a simple argument now shows that $\rho_k \to g$. \qed
If θ_w is the Hamiltonian of w, then
\[
\text{Fut}_{(1-T)\beta}(W, w) = \text{Fut}(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w(\beta - \omega_{FS})\omega_{FS}^{n-1}.
\]

Using the fact that $\text{Fut}_{(1-T)\beta}(W, w) = 0$, a calculation shows that
\[
\text{Fut}(W, w) \approx (1 - T) \left[\frac{1}{V} \int_W \theta_w^n - \max_W \theta_w \right] \leq 0.
\]

K-stability \implies it should be equality, and hence $w = 0$.

Since $w = 0$, the degeneration is trivial, and so
\[
(W, W \cap H_1, \ldots, W \cap H_d) = g \cdot (M, M \cap V_1, \ldots, M \cap V_d).
\]

Recall that $H_i = \lim_{k \to \infty} \rho_k(V_i)$.

Since V_i are generic, a simple argument now shows that $\rho_k \to g$.

\[\square\]
If θ_w is the Hamiltonian of w, then

$$Fut_{(1-T)\beta}(W, w) = Fut(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w(\beta - \omega_{FS})\omega_{FS}^{n-1}.$$

Using the fact that $Fut_{(1-T)\beta}(W, w) = 0$, a calculation shows that

$$Fut(W, w) \approx (1 - T) \left[\frac{1}{V} \int_W \theta_w^n \omega_{FS} - \max_W \theta_w \right] \leq 0.$$

K-stability \implies it should be equality, and hence $w = 0$.

Since $w = 0$, the degeneration is trivial, and so

$$(W, W \cap H_1, \cdots, W \cap H_d) = g \cdot (M, M \cap V_1, \cdots, M \cap V_d).$$

Recall that $H_i = \lim_{k \to \infty} \rho_k(V_i)$.

Since V_i are generic, a simple argument now shows that $\rho_k \to g$.

\medskip

\medskip

\medskip

\medskip
If θ_w is the Hamiltonian of w, then

$$\text{Fut}_{(1-T)\beta}(W, w) = \text{Fut}(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w(\beta - \omega_{FS}) \omega_{FS}^{n-1}.$$

Using the fact that $\text{Fut}_{(1-T)\beta}(W, w) = 0$, a calculation shows that

$$\text{Fut}(W, w) \simeq (1 - T) \left[\frac{1}{V} \int_W \theta_w \omega_{FS}^n - \max_W \theta_w \right] \leq 0.$$

K-stability \implies it should be equality, and hence $w = 0$.

Since $w = 0$, the degeneration is trivial, and so

$$(W, W \cap H_1, \ldots, W \cap H_d) = g \cdot (M, M \cap V_1, \ldots, M \cap V_d).$$

Recall that $H_i = \lim_{k \to \infty} \rho_k(V_i)$.

Since V_i are generic, a simple argument now shows that $\rho_k \to g$. \hfill \blacksquare
If θ_w is the Hamiltonian of w, then

$$\text{Fut}_{(1-T)\beta}(W, w) = \text{Fut}(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w(\beta - \omega_{FS})\omega_{FS}^{n-1}.$$

Using the fact that $\text{Fut}_{(1-T)\beta}(W, w) = 0$, a calculation shows that

$$\text{Fut}(W, w) \approx (1 - T) \left[\frac{1}{V} \int_W \theta_w \omega_{FS}^n - \max_W \theta_w \right] \leq 0.$$

K-stability \implies it should be equality, and hence $w = 0$.

Since $w = 0$, the degeneration is trivial, and so

$$(W, W \cap H_1, \ldots, W \cap H_d) = g \cdot (M, M \cap V_1, \ldots, M \cap V_d).$$

Recall that $H_i = \lim_{k \to \infty} \rho_k(V_i)$.

Since V_i are generic, a simple argument now shows that $\rho_k \to g$.

\hfill \square
1 Introduction: Some history and the main theorem

2 K-stability

3 Outline of the proof

4 What next?
Extremal metrics

- Let $L \to M$ be an ample line bundle.
- (Calabi, 1980s) The critical points of the functional
 \[Ca(\omega) = \int_M \|Rm(\omega)\|^2, \]
 as ω varies over Kähler metrics in the fixed co-homology class $2\pi c_1(L)$ are called extremal metrics.
- The Euler-Lagrange equation says that
 \[\bar{\partial} \nabla^{1,0} s_\omega = 0, \]
 where s_ω is the scalar curvature.
- In particular constant scalar curvature Kähler metrics (cscK), and hence Kähler-Einstein metrics, are automatically extremal.
- It is expected that existence is again related to certain stability, called relative K-stability (or some refinement).
Extremal metrics

- Let $L \to M$ be an ample line bundle.
- (Calabi, 1980s) The critical points of the functional

$$Ca(\omega) = \int_M ||Rm(\omega)||^2,$$

as ω varies over Kähler metrics in the fixed co-homology class $2\pi c_1(L)$ are called extremal metrics.

- The Euler-Lagrange equation says that

$$\bar{\partial}^{1,0} \nabla s_\omega = 0,$$

where s_ω is the scalar curvature.

- In particular constant scalar curvature Kähler metrics (cscK), and hence Kähler-Einstein metrics, are automatically extremal.

- It is expected that existence is again related to certain stability, called relative K-stability (or some refinement).
Extremal metrics

- Let $L \to M$ be an ample line bundle.
- (Calabi, 1980s) The critical points of the functional
 \[
 Ca(\omega) = \int_M \|Rm(\omega)\|^2,
 \]
 as ω varies over Kähler metrics in the fixed co-homology class $2\pi c_1(L)$ are called extreme metrics.
- The Euler-Lagrange equation says that
 \[
 \overline{\partial} \nabla^{1,0} s_\omega = 0,
 \]
 where s_ω is the scalar curvature.
- In particular constant scalar curvature Kähler metrics (cscK), and hence Kähler-Einstein metrics, are automatically extremal.
- It is expected that existence is again related to certain stability, called relative K-stability (or some refinement).
Extremal metrics

- Let $L \to M$ be an ample line bundle.
- (Calabi, 1980s) The critical points of the functional
 \[Ca(\omega) = \int_M \| Rm(\omega) \|^2, \]
 as ω varies over Kähler metrics in the fixed co-homology class $2\pi c_1(L)$ are called extremal metrics.
- The Euler-Lagrange equation says that
 \[\bar{\partial} \nabla^{1,0} s_\omega = 0, \]
 where s_ω is the scalar curvature.
- In particular constant scalar curvature Kähler metrics (cscK), and hence Kähler-Einstein metrics, are automatically extremal.
- It is expected that existence is again related to certain stability, called relative K-stability (or some refinement).
Extremal metrics

- Let $L \to M$ be an ample line bundle.
- (Calabi, 1980s) The critical points of the functional
 \[Ca(\omega) = \int_M \|Rm(\omega)\|^2, \]
 as ω varies over Kähler metrics in the fixed co-homology class $2\pi c_1(L)$ are called extremal metrics.
- The Euler-Lagrange equation says that
 \[\bar{\partial} \nabla^{1,0} s_\omega = 0, \]
 where s_ω is the scalar curvature.
- In particular constant scalar curvature Kähler metrics (cscK), and hence Kähler-Einstein metrics, are automatically extremal.
- It is expected that existence is again related to certain stability, called relative K-stability (or some refinement).
Perturbation problems

Suppose M admits an extremal metric ω. If $p \in M$, and $\pi : Bl_p(M) \to M$ is the blow-up with exceptional divisor E, then it is known that $L_\varepsilon = \pi^*\omega - \varepsilon^2[E]$ is Kähler for $\varepsilon << 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K-stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K-stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p.
Suppose M admits an extremal metric ω. If $p \in M$, and $\pi : Bl_p(M) \to M$ is the blow-up with exceptional divisor E, then it is known that $L_\varepsilon = \pi^*[\omega] - \varepsilon^2[E]$ is Kähler for $\varepsilon << 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K-stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K-stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p.

Ved Datar (UC Berkeley)
What next?

Perturbation problems

Suppose M admits an extremal metric ω. If $p \in M$, and $\pi : Bl_p(M) \to M$ is the blow-up with exceptional divisor E, then it is known that $L_\varepsilon = \pi^*[\omega] - \varepsilon^2[E]$ is Kähler for $\varepsilon << 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K-stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K-stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p.
Suppose M admits an extremal metric ω. If $p \in M$, and $\pi : Bl_p(M) \to M$ is the blow-up with exceptional divisor E, then it is known that $L_\varepsilon = \pi^*[\omega] - \varepsilon^2[E]$ is Kähler for $\varepsilon \ll 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K-stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K-stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p.
Suppose M admits an extremal metric ω. If $p \in M$, and $\pi : Bl_p(M) \to M$ is the blow-up with exceptional divisor E, then it is known that $L_\varepsilon = \pi^*[\omega] - \varepsilon^2[E]$ is Kähler for $\varepsilon << 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K-stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K-stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p.
Suppose M admits an extremal metric ω. If $p \in M$, and $\pi : Bl_p(M) \to M$ is the blow-up with exceptional divisor E, then it is known that $L_\varepsilon = \pi^*[\omega] - \varepsilon^2[E]$ is Kähler for $\varepsilon << 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K-stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K-stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p.
Convergence of cscK manifolds and partial C^0 estimate

- Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C^0 estimate along a sequence of non-collapsed, cscK metrics on Kähler manifolds with uniform bounds on the total volume, and Calabi energy?

- For $n = 2$, there is an optimal convergence result due to Anderson and Tian-Viaclovsky.
- For $n > 2$, the convergence result assumes $L^{n/2}$ bound on $||Rm||$, which is not useful, since $Ca(\omega)$ involves an L^2 bound.
- What if there is collapsing? Is there a Cheeger-Tian type ε-regularity result for $n = 2$ (small $||Rm||_{L^2} \implies$ control on $||Rm||_{L^\infty}$)?
Convergence of cscK manifolds and partial C^0 estimate

- Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C^0 estimate along a sequence of non-collapsed, cscK metrics on Kähler manifolds with uniform bounds on the total volume, and Calabi energy?

- For $n = 2$, there is an optimal convergence result due to Anderson and Tian-Viaclovsky.
- For $n > 2$, the convergence result assumes $L^{n/2}$ bound on $||Rm||$, which is not useful, since $Ca(\omega)$ involves an L^2 bound.
- What if there is collapsing? Is there a Cheeger-Tian type ε-regularity result for $n = 2$ (small $||Rm||_{L^2} \implies$ control on $||Rm||_{L^\infty}$)?
Convergence of cscK manifolds and partial C^0 estimate

- Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C^0 estimate along a sequence of non-collapsed, cscK metrics on Kähler manifolds with uniform bounds on the total volume, and Calabi energy?

- For $n = 2$, there is an optimal convergence result due to Anderson and Tian-Viaclovsky.
- For $n > 2$, the convergence result assumes $L^{n/2}$ bound on $\|Rm\|$, which is not useful, since $Ca(\omega)$ involves an L^2 bound.
- What if there is collapsing? Is there a Cheeger-Tian type ε-regularity result for $n = 2$ (small $\|Rm\|_{L^2} \implies$ control on $\|Rm\|_{L^\infty}$)?
Convergence of cscK manifolds and partial C^0 estimate

Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C^0 estimate along a sequence of non-collapsed, cscK metrics on Kähler manifolds with uniform bounds on the total volume, and Calabi energy?

For $n = 2$, there is an optimal convergence result due to Anderson and Tian-Viaclovsky.

For $n > 2$, the convergence result assumes $L^{n/2}$ bound on $||Rm||$, which is not useful, since $Ca(\omega)$ involves an L^2 bound.

What if there is collapsing? Is there a Cheeger-Tian type ε-regularity result for $n = 2$ (small $||Rm||_{L^2} \implies$ control on $||Rm||_{L^\infty}$)?
Convergence of cscK manifolds and partial C^0 estimate

- Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C^0 estimate along a sequence of non-collapsed, cscK metrics on Kähler manifolds with uniform bounds on the total volume, and Calabi energy?

- For $n = 2$, there is an optimal convergence result due to Anderson and Tian-Viaclovsky.
- For $n > 2$, the convergence result assumes $L^{n/2}$ bound on $||Rm||$, which is not useful, since $Ca(\omega)$ involves an L^2 bound.
- What if there is collapsing? Is there a Cheeger-Tian type ε-regularity result for $n = 2$ (small $||Rm||_{L^2} \implies$ control on $||Rm||_{L^\infty}$)?
Thank You for your attention!
I

Aubin, T.
Équations du type Monge-Ampère sur les variétés kählériennes compactes.

Chen, X. X., Donaldson, S. K., and Sun, S.
Kähler-Einstein metrics and stability.

Datar, V.
Expansions of solutions to extremal metric type equations on blow-ups of csck surfaces.

Datar, V., and Székelyhidi, G.
Kähler-Einstein metrics along the smooth continuity method.

Donaldson, S., and Sun, S.
Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry.
Ilten, N., and Süss, H.
K-stability for Fano manifolds with torus action of complexity 1.

Székelyhidi, G.
The partial C^0-estimate along the continuity method.

Yau, S. T.
On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I.