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Introduction: Some history and the main theorem

Uniformization Theorem.

x>0 X=0 X<0
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Introduction: Some history and the main theorem

Uniformization Theorem.

x>0 X=0 X<0

Theorem (Uniformization theorem)
o Any compact Riemann surface admits a metric of constant Gauss curvature.

o Given any oriented compact 2-d Riemannian manifold (M, go), there exists a metric
g = e>? gy with constant Gauss curvature.
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Introduction: Some history and the main theorem

For a surface with metric (in isothermal coordinates)

ds® = h(dx* + dy?),
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Introduction: Some history and the main theorem

For a surface with metric (in isothermal coordinates)
ds®> = h(dx* + dy?),

the Gauss curvature form is given by

KdA = —/—1 88"’;_” dz A dz,

where z = x + v/—1y.
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Introduction: Some history and the main theorem

For a surface with metric (in isothermal coordinates)
ds®> = h(dx* + dy?),

the Gauss curvature form is given by
KA = —y=11%8h 4, 5 g3
0z0z
where z = x + +/—1y. By Gauss-Bonnet,

/M K dA = 2mx(M).
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Introduction: Some history and the main theorem

For a surface with metric (in isothermal coordinates)
ds®> = h(dx* + dy?),

the Gauss curvature form is given by

KdA = —/—1 ‘98"’;_” dz A dz,

where z = x + +/—1y. By Gauss-Bonnet,

/M K dA = 2mx(M).

So depending on the sign of x(M), a compact Riemann surface admits a metric of
constant Gauss curvature K = +1 or K = 0.
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Introduction: Some history and the main theorem

For a surface with metric (in isothermal coordinates)
ds®> = h(dx* + dy?),

the Gauss curvature form is given by

2
KdA = —/—12198h 1 £ a5
020z

where z = x + +/—1y. By Gauss-Bonnet,

/ K dA = 2mx(M).

M

So depending on the sign of x(M), a compact Riemann surface admits a metric of
constant Gauss curvature K = +1 or K = 0.

Remark

A purely PDE proof of the case K = 1 (ie. M = S?) is the hardest. This is a harbinger of
things to come!
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Introduction: Some history and the main theorem

Kahler manifolds

@ Let M" be a compact complex manifold with dim¢M = n.
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Introduction: Some history and the main theorem

Kahler manifolds

@ Let M" be a compact complex manifold with dim¢M = n.
@ A Riemannian metric g is called Kahler if there are local coordinates (x',---,x*") in

which
g = 0+ O(|x[*),

and such that for j =1,--- ,n,

Z=x +V=1x"7

are local holomorphic coordinates.
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Introduction: Some history and the main theorem

Kahler manifolds

@ Let M" be a compact complex manifold with dim¢M = n.

@ A Riemannian metric g is called Kahler if there are local coordinates (x',---,x*") in
which
gik = 0+ O(Ix?),

and such that for j =1,--- ,n,
2 =x +=1x"Y

are local holomorphic coordinates.
@ One can associate a (1, 1) form in the following way - If J denotes the canonical

complex structure
gy _ 0 > .
50) = g £ =14

then we define the Kahler form w by

w(-,-) =g(J-).
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Introduction: Some history and the main theorem

Kahler manifolds

@ Let M" be a compact complex manifold with dim¢M = n.

@ A Riemannian metric g is called Kahler if there are local coordinates (x',---,x*") in
which
gik = 0+ O(Ix?),

and such that for j =1,--- ,n,
2 =x +=1x"Y

are local holomorphic coordinates.

@ One can associate a (1, 1) form in the following way - If J denotes the canonical

complex structure
gy _ 0 > .
50) = g £ =14

then we define the Kahler form w by

w(-,-) =g(J-).

o g Kahler <—= dw =0.
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Introduction: Some history and the main theorem

Properties of the Kahler form

@ w is a closed, real form (ie. @ = w), and so represents a cohomology class in
H?(M,R).
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Introduction: Some history and the main theorem

Properties of the Kahler form

@ w is a closed, real form (ie. @ = w), and so represents a cohomology class in
H?(M,R).

@ Locally we can write

V=1 N B
w= Tgagdz Adz?,
where g5 = g(afa, 6?5)' Then the matrix {g,5} is a positive definite Hermitian

matrix.
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Introduction: Some history and the main theorem

Properties of the Kahler form

@ w is a closed, real form (ie. @ = w), and so represents a cohomology class in
H?(M,R).

@ Locally we can write

V=1 N _
w= Tgagdz Adz?,
where g5 = g(az%, 6%). Then the matrix {g,5} is a positive definite Hermitian

matrix.

o Conversely, given such a form w, g(+,-) = w(-, J-) defines a Riemannian metric.
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Introduction: Some history and the main theorem

Properties of the Kahler form

@ w is a closed, real form (ie. @ = w), and so represents a cohomology class in
H?(M,R).
@ Locally we can write

w= T_lgagdza Adz?,

where g5 = g(az%, 6%). Then the matrix {g,5} is a positive definite Hermitian

matrix.
o Conversely, given such a form w, g(+,-) = w(-, J-) defines a Riemannian metric.

@ Any class in H*(M,R) which contains a Kahler metric, is called a Kahler class. The
set of Kahler classes K C H?(M,R) is an open convex cone.
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Introduction: Some history and the main theorem

Properties of the Kahler form

w is a closed, real form (ie. @ = w), and so represents a cohomology class in
H?(M,R).
Locally we can write

w= T_lgagdza Adz?,

where g5 = g(az%, 6%). Then the matrix {g,5} is a positive definite Hermitian

matrix.
Conversely, given such a form w, g(-,-) = w(-, J-) defines a Riemannian metric.

Any class in H?(M,R) which contains a Kahler metric, is called a Kahler class. The
set of Kahler classes K C H?(M,R) is an open convex cone.

(80 Lemma) If [wi] = [w2], then there exists a ¢ € C*°(M,R) such that

wr = w1 +V—190¢.
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Introduction: Some history and the main theorem

Properties of the Kahler form

w is a closed, real form (ie. @ = w), and so represents a cohomology class in
H?(M,R).
Locally we can write

w= T_lgagdza Adz?,

where g5 = g(a%, az%)' Then the matrix {g,5} is a positive definite Hermitian

matrix.
Conversely, given such a form w, g(-,-) = w(-, J-) defines a Riemannian metric.

Any class in H?(M,R) which contains a Kahler metric, is called a Kahler class. The
set of Kahler classes K C H?(M,R) is an open convex cone.

(80 Lemma) If [wi] = [w2], then there exists a ¢ € C*°(M,R) such that

wr = w1 +V—190¢.

Note: Henceforth we will abuse notation and refer to w as simply the Kahler metric.
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Introduction: Some history and the main theorem

Examples

@ Any compact Riemann surface with w being a volume form. Then since n =1,
dw = 0 is trivially true.
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Introduction: Some history and the main theorem

Examples

@ Any compact Riemann surface with w being a volume form. Then since n =1,
dw = 0 is trivially true.

o Complex projective space PV with the Fubini study metric given in homogenous
coordinates [£o, - - - €n] by

wrs = V100 log (|&of? +- - nf?).

When n =1, P! = §?, and the Fubini-Study metric is the usual round metric.
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Introduction: Some history and the main theorem

Examples

@ Any compact Riemann surface with w being a volume form. Then since n =1,
dw = 0 is trivially true.

o Complex projective space PV with the Fubini study metric given in homogenous
coordinates [£o, - - - €n] by

wrs = V100 log (|&of? +- - nf?).

When n =1, P! = §?, and the Fubini-Study metric is the usual round metric.

o Any non-singular sub-variety X C PV, with w given by restricting wrs to X.
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Introduction: Some history and the main theorem

Curvature
@ The Ricci form of the Kahler metric w is defined by

pw = —V/—100 log det(g,53)-

Note that dp., = 0.
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Introduction: Some history and the main theorem

Curvature

@ The Ricci form of the Kahler metric w is defined by
pw = —V/—100 log det(g,53)-

Note that dp., = 0.

@ The Riemannian Ricci curvature is then given by

RiC(~, ) = Pw(', J)
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Introduction: Some history and the main theorem

Curvature

@ The Ricci form of the Kahler metric w is defined by
pw = —V/—100 log det(g,53)-

Note that dp., = 0.

@ The Riemannian Ricci curvature is then given by

Ric(:, ") = pu(:, J)-

Question (Calabi, 1950s)

Given a Kahler manifold M, when does it admit a metric of constant Ricci curvature.
More precisely, when is there a Kahler metric w such that

Puw = )\OJ,

for some X\ € R. Such an w is called a Kihler-Einstein (KE) metric.
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Introduction: Some history and the main theorem

Topological obstruction

@ Recall that the anti-canonical bundle K,\gl is the line bundle locally generated by

9 A0
ozt oz"’
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Introduction: Some history and the main theorem

Topological obstruction

@ Recall that the anti-canonical bundle K,\gl is the line bundle locally generated by

9 A0
ozt oz"’

o If his a hermitian metric then the curvature F, = —9dlog h is a global closed (1, 1)
form, and the first Chern class ¢;(M) € H?>(M,R) is defined by

Cl(M) = Cl(K,\gl) = \éj[Fh]

iy
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Introduction: Some history and the main theorem

Topological obstruction

@ Recall that the anti-canonical bundle K,\gl is the line bundle locally generated by

9 A0
ozt oz"’

o If his a hermitian metric then the curvature F, = —9dlog h is a global closed (1, 1)
form, and the first Chern class ¢;(M) € H?>(M,R) is defined by

Cl(M) = Cl(K,\gl) = \éj[Fh]

iy

o Given Kahler metric w, a natural hermitian metric on K,\;l given by

2
= detg,s,

HiA...A o
0z1 oz"
and hence p,, € 2wci(M).
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Introduction: Some history and the main theorem

Topological obstruction

@ Recall that the anti-canonical bundle K,\gl is the line bundle locally generated by

9 A0
ozt oz"’

o If his a hermitian metric then the curvature F, = —9dlog h is a global closed (1, 1)

form, and the first Chern class ¢;(M) € H?>(M,R) is defined by

Cl(M) = Cl(K,\gl) = \éj[Fh]

iy

o Given Kahler metric w, a natural hermitian metric on K,\;l given by

2
= detg,s,

HiA...A o
0z1 oz"
and hence p,, € 2wci(M).
e So if wis KE, then
A
a(M) = E[w]
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Introduction: Some history and the main theorem

Existence results

o (Yau [8], '78) If ci(M) = 0, then there exists a unique Ricci flat metric w in every
Kahler class.
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Introduction: Some history and the main theorem

Existence results

o (Yau [8], '78) If ci(M) = 0, then there exists a unique Ricci flat metric w in every
Kahler class.

@ (Yau, Aubin [1], '78) If c1(M) < 0O, then there exists a unique KE metric in
—27TC1(M).
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Introduction: Some history and the main theorem

Existence results

o (Yau [8], '78) If ci(M) = 0, then there exists a unique Ricci flat metric w in every
Kahler class.

@ (Yau, Aubin [1], '78) If c1(M) < 0O, then there exists a unique KE metric in
—27TC1(M).

@ (Chen-Donaldson-Sun [2], 2012) If ¢;(M) > 0 (ie. M is Fano), there exists KE in
2mwei(M) if M is K-stable. Converse due to Tian, Berman etc.
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Introduction: Some history and the main theorem

Some remarks

@ Fano case an instance of Kobayashi-Hitchen correspondence

{ Existence of } {Algebro-geometric}
<~

Canonical metrics Stability
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Introduction: Some history and the main theorem

Some remarks

@ Fano case an instance of Kobayashi-Hitchen correspondence

{ Existence of } {Algebro-geometric}
<~

Canonical metrics Stability

@ Examples - Narasimhan-Seshadri, Donaldson-Yau-Uhlenbeck, Kahler-Einstein
metrics on S? with cone angles < 2, - - -.
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Introduction: Some history and the main theorem

Some remarks

@ Fano case an instance of Kobayashi-Hitchen correspondence

{ Existence of } {Algebro-geometric}

Canonical metrics Stability

@ Examples - Narasimhan-Seshadri, Donaldson-Yau-Uhlenbeck, Kahler-Einstein
metrics on S? with cone angles < 2, - - -.

@ Unfortunately K-stability is notoriously difficult to check. eg. Even in manifolds with
large symmetry groups (eg. Toric)
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Introduction: Some history and the main theorem

Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let G C Aut(M) be a compact group. Then M admits a KE if it is G-equivariantly
K-stable with respect to special degenerations.
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Introduction: Some history and the main theorem

Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let G C Aut(M) be a compact group. Then M admits a KE if it is G-equivariantly
K-stable with respect to special degenerations.

Remarks

o We actually prove a much more general theorem on existence of Kahler-Ricci
solitons.
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Introduction: Some history and the main theorem

Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let G C Aut(M) be a compact group. Then M admits a KE if it is G-equivariantly
K-stable with respect to special degenerations.

Remarks

o We actually prove a much more general theorem on existence of Kahler-Ricci
solitons.

@ The theorem can recover some older results (eg. KE metrics on toric manifolds),
and has also led to the discovery of new KE manifolds.
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Introduction: Some history and the main theorem

Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let G C Aut(M) be a compact group. Then M admits a KE if it is G-equivariantly
K-stable with respect to special degenerations.

Remarks

o We actually prove a much more general theorem on existence of Kahler-Ricci
solitons.

@ The theorem can recover some older results (eg. KE metrics on toric manifolds),
and has also led to the discovery of new KE manifolds.

o We need to use a completely different proof from that of CDS.
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K-stability

© K-stability
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K-stability

An analytic obstruction : Futaki invariant

o Let M be a Fano manifold, that is c;(M) > 0, and let w € 2wc; (M) be a Kahler
metric.
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K-stability

An analytic obstruction : Futaki invariant

o Let M be a Fano manifold, that is c;(M) > 0, and let w € 2wc; (M) be a Kahler
metric.

@ Since [po] = [w], there exists an h € C>°(M, R), called the Ricci potential, such that

Pow =W+ V —180h.
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K-stability

An analytic obstruction : Futaki invariant

o Let M be a Fano manifold, that is c;(M) > 0, and let w € 2wc; (M) be a Kahler
metric.

@ Since [pw] = [w], there exists an h € C*(M,R), called the Ricci potential, such that

Pow =W+ V —180h.

o Let n(M) = {hol. vector fields on M}, and define Fut : n(M) — C by

Rue(M.9) =~ [ e

nl’

where V = [, “’n—,n is the volume of the manifold.
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K-stability

An analytic obstruction : Futaki invariant

Let M be a Fano manifold, that is c1(M) > 0, and let w € 2mci1(M) be a Kahler
metric.

Since [pw] = [w], there exists an h € C°°(M,R), called the Ricci potential, such that

Pow =W+ V —180h.

Let n(M) = {hol. vector fields on M}, and define Fut : n(M) — C by

Rue(M.9) =~ [ e

nl’

where V = [, “’n—,n is the volume of the manifold.

(Futaki) Fut(M, &) does not depend on the specific metric w € 2wci(M), and hence
is an invariant of a Fano manifold.
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K-stability

An analytic obstruction : Futaki invariant

Let M be a Fano manifold, that is c1(M) > 0, and let w € 2mci1(M) be a Kahler
metric.

Since [pw] = [w], there exists an h € C°°(M,R), called the Ricci potential, such that

Pow =W+ V —180h.

Let n(M) = {hol. vector fields on M}, and define Fut : n(M) — C by

1 w"

Fut(M = —— h)—

ue(M,€) =~ [ s,
where V = [, “’n—,n is the volume of the manifold.

(Futaki) Fut(M, &) does not depend on the specific metric w € 2wci(M), and hence
is an invariant of a Fano manifold.

It vanishes if the Fano manifold admits a KE.
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K-stability

Futaki invariant (cont.)

Example
BI,P? does not admit a KE. The Futaki does not vanish! J
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K-stability

Futaki invariant (cont.)

Example

BI,P? does not admit a KE. The Futaki does not vanish! J
Question
Is this the only obstruction? J
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K-stability

Futaki invariant (cont.)

Example

BI,P? does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian '97) NO! Examples of Kihler three-folds (so called Mukai-Umemera manifolds)
with n(M) = {0} and yet not admitting any KE.
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K-stability

Futaki invariant (cont.)

Example

BI,P? does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian '97) NO! Examples of Kihler three-folds (so called Mukai-Umemera manifolds)
with n(M) = {0} and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety.
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K-stability

Futaki invariant (cont.)

Example

BI,P? does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian '97) NO! Examples of Kihler three-folds (so called Mukai-Umemera manifolds)
with n(M) = {0} and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety.
Key point.

o (Ding-Tian) The Futaki invariant can be defined on “ sufficiently nice” singular
varieties.

@ (Donaldson) Algebro-geometric definition using Riemann-Roch.
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K-stability

Futaki invariant of a degeneration

@ Since c1(M) > 0, K,\;l is ample, so there is a Kodaira embedding M < P" for some
large N.
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K-stability

Futaki invariant of a degeneration

@ Since c1(M) > 0, K,\;l is ample, so there is a Kodaira embedding M < P" for some
large N.
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K-stability

Futaki invariant of a degeneration

@ Since c1(M) > 0, K,\;l is ample, so there is a Kodaira embedding M — PV for some
large N.

@ A special degeneration is a one-parameter subgroup A : C* — GL(N, C) generated
by the holomorphic vector field £ € gl(N, C), such that the flat limit

W =limA(t)- M
t—0

is a normal Q-Fano variety. Note that ¢ is tangential to W.
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K-stability

Futaki invariant of a degeneration

@ Since c1(M) > 0, K,\;l is ample, so there is a Kodaira embedding M — PV for some
large N.

@ A special degeneration is a one-parameter subgroup A : C* — GL(N, C) generated
by the holomorphic vector field £ € gl(N, C), such that the flat limit

W =limA(t)- M
t—0

is a normal Q-Fano variety. Note that ¢ is tangential to W.
o We define the Futaki invariant for this degeneration by

Fut(M, \) = Fut(W,¢).
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Definition
M is called K-semistable if for any Kodaira embedding, and any special degeneration ),

Fut(M,\) > 0. It is called K-stable if in addition, Fut(M,\) = 0 if and only if there
exists a A € GL(N,C) such that W = A- M.
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Definition

M is called K-semistable if for any Kodaira embedding, and any special degeneration ),
Fut(M,\) > 0. It is called K-stable if in addition, Fut(M,\) = 0 if and only if there
exists a A € GL(N,C) such that W = A- M.

If G C Aut(M), then G acts naturally on K%, and hence can be identified as a subgroup
G C GL(N,C) for any Kodaira embedding M — PV,
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Definition

M is called K-semistable if for any Kodaira embedding, and any special degeneration ),
Fut(M,\) > 0. It is called K-stable if in addition, Fut(M,\) = 0 if and only if there
exists a A € GL(N,C) such that W = A- M.

If G C Aut(M), then G acts naturally on K%, and hence can be identified as a subgroup
G C GL(N,C) for any Kodaira embedding M — PV,

Definition

We say \(t) is a G-equivariant special degeneration, if \(t) : C* — GL(N,C)®, and we
then analogously define G-equivariant K-(semi)stability with A € GL(N,C)°.
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Definition

M is called K-semistable if for any Kodaira embedding, and any special degeneration ),
Fut(M,\) > 0. It is called K-stable if in addition, Fut(M,\) = 0 if and only if there
exists a A € GL(N,C) such that W = A- M.

If G C Aut(M), then G acts naturally on K%, and hence can be identified as a subgroup
G C GL(N,C) for any Kodaira embedding M — PV,

Definition

We say \(t) is a G-equivariant special degeneration, if \(t) : C* — GL(N,C)®, and we
then analogously define G-equivariant K-(semi)stability with A € GL(N,C)°.

Heuristically,
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Definition

M is called K-semistable if for any Kodaira embedding, and any special degeneration ),
Fut(M,\) > 0. It is called K-stable if in addition, Fut(M,\) = 0 if and only if there
exists a A € GL(N,C) such that W = A- M.

If G C Aut(M), then G acts naturally on K%, and hence can be identified as a subgroup
G C GL(N,C) for any Kodaira embedding M — PV,

Definition

We say \(t) is a G-equivariant special degeneration, if \(t) : C* — GL(N,C)®, and we
then analogously define G-equivariant K-(semi)stability with A € GL(N,C)°.

Y

Fut=0

Heuristically,

Figure: K-semistable. Figure: K-stable.
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K-stability

Example

o Consider the embedding

P! < P?

[€0, &1] > [€5, €061, &3]
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K-stability

Example

o Consider the embedding
P! P?
[£0. &1] = [£0, o, €1]-

The image M is the conic y?> — xz = 0 in P?.
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K-stability

Example

o Consider the embedding
P! P?
[£0. &1] = [£0, o, €1]-

The image M is the conic y?> — xz = 0 in P?.

o If we let
t 0 O
AMt)=[(0o t* of,
0o 0 1
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K-stability

Example

o Consider the embedding
P! P?
[£0. &1] = [£0, o, €1]-

The image M is the conic y?> — xz = 0 in P?.

o If we let
t 0 O
AMt)=[(0o t* of,
0o 0 1

then M, = \(t) - M, is given by the conic t’y* — t 'xz = 0, and so the flat limit
W = (xz =0).
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K-stability

Example

o Consider the embedding
P! P?
[£0. &1] = [£0, o, €1]-

The image M is the conic y?> — xz = 0 in P?.

o If we let
t 0 O
AMt)=[(0o t* of,
0o 0 1

then M, = \(t) - M, is given by the conic t’y* — t 'xz = 0, and so the flat limit
W = (xz =0).
@ One can then compute that
3

Fus(M, ) = 2.
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K-stability

Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let G C Aut(M) be a compact group. Then M admits a KE if it is G-equivariantly
K-stable with respect to special degenerations.
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Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let G C Aut(M) be a compact group. Then M admits a KE if it is G-equivariantly
K-stable with respect to special degenerations.

Example

Toric manifolds. Recall that M is toric if there is an effective holomorphic action of
(C*)" with a free, open, dense orbit.
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K-stability

Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let G C Aut(M) be a compact group. Then M admits a KE if it is G-equivariantly
K-stable with respect to special degenerations.

Example

Toric manifolds. Recall that M is toric if there is an effective holomorphic action of
(C*)" with a free, open, dense orbit.

Theorem (Wang-Zhu, 2003)

M admits KE <= the classical Futaki invariant vanishes.
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K-stability

Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let G C Aut(M) be a compact group. Then M admits a KE if it is G-equivariantly
K-stable with respect to special degenerations.

Example

Toric manifolds. Recall that M is toric if there is an effective holomorphic action of
(C*)" with a free, open, dense orbit.

Theorem (Wang-Zhu, 2003)

M admits KE <= the classical Futaki invariant vanishes.

Proof.

= s true in general. For converse, let G = (S')". One can show that all equivariant
degenerations are trivial, and since the classical Futaki is zero by hypothesis, M is
equivariantly K-stable. By main theorem, it admits KE. O

v
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K-stability

Example

T-varieties with complexity one. (liten-Suss [6]) eg.- threefolds with an effective action
of (C*)2.
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K-stability

Example

T-varieties with complexity one. (liten-Suss [6]) eg.- threefolds with an effective action
of (C*)2. Then with G = (S%)?, all equivariant degenerations are either trivial or have a
toric variety as central fiber. Illten-Suss computed the Futaki invariants, and classified the
equivariant K-stable ones.
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K-stability

Example

T-varieties with complexity one. (liten-Suss [6]) eg.- threefolds with an effective action
of (C*)2. Then with G = (S%)?, all equivariant degenerations are either trivial or have a
toric variety as central fiber. Illten-Suss computed the Futaki invariants, and classified the
equivariant K-stable ones.

Concretely, Q C P* be a quadric, and let M be the blow-up along a conic. This admits a
KE, and the only known proof is via the main theorem.
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Outline of the proof

© Outline of the proof

Ved Datar
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Continuity method

Let @ € 2wc1(M) be a Kahler metric invariant under G, and consider the equation

Ric(we) = twe + (1 — t)au. (3.1)
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Continuity method

Let @ € 2wc1(M) be a Kahler metric invariant under G, and consider the equation
Ric(we) = twe + (1 — t)au. (3.1)
Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

I ={t €[0,1] | (3.1) has a solution}.
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Continuity method

Let @ € 2wc1(M) be a Kahler metric invariant under G, and consider the equation
Ric(we) = twe + (1 — t)au. (3.1)
Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

I ={t €[0,1] | (3.1) has a solution}.

To show 1 € /, it is enough to show
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Continuity method

Let @ € 2wc1(M) be a Kahler metric invariant under G, and consider the equation
Ric(we) = twe + (1 — t)au. (3.1)
Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

I ={t €[0,1] | (3.1) has a solution}.

To show 1 € /, it is enough to show
e 0€el,
e [ is open in [0,1],

@ /| is closed.
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Outline of the proof

An interjection: The Donaldson continuity method

@ Chen-Donaldson-Sun consider the following continuity method instead

Ric(wg) = Bws + %[D]
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Outline of the proof

An interjection: The Donaldson continuity method

@ Chen-Donaldson-Sun consider the following continuity method instead
. 1-—-
Ric(ws) = fus + * (D]

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in | — mKp|
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Outline of the proof

An interjection: The Donaldson continuity method

@ Chen-Donaldson-Sun consider the following continuity method instead

Ric(wg) = Bws + %[D]

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in | — mKp|

@ The metrics wg have conical singularities along the divisor D.
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Outline of the proof

An interjection: The Donaldson continuity method

@ Chen-Donaldson-Sun consider the following continuity method instead
. 1-—-
Ric(ws) = fus + * (D]
Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in | — mKp|

@ The metrics wg have conical singularities along the divisor D.
o Disadvantages -
o (Song-Wang) NO smooth G invariant divisors unless G is finite.
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Outline of the proof

An interjection: The Donaldson continuity method

@ Chen-Donaldson-Sun consider the following continuity method instead

Ric(wg) = Bws + %[D]

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in | — mKp|
@ The metrics wg have conical singularities along the divisor D.

o Disadvantages -

o (Song-Wang) NO smooth G invariant divisors unless G is finite.
o (Song-Wang, D.-Guo-Song-Wang) If we relax D to be only simple-normal-crossing,
then the above equation in most cases does not have a solution.
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Outline of the proof

An interjection: The Donaldson continuity method

@ Chen-Donaldson-Sun consider the following continuity method instead

Ric(wg) = Bws + %[D]

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in | — mKp|

The metrics wpg have conical singularities along the divisor D.

Disadvantages -

o (Song-Wang) NO smooth G invariant divisors unless G is finite.
o (Song-Wang, D.-Guo-Song-Wang) If we relax D to be only simple-normal-crossing,
then the above equation in most cases does not have a solution.

@ Advantage - exploiting K-stability, but more about this later.....
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Outline of the proof

An interjection: The Donaldson continuity method

@ Chen-Donaldson-Sun consider the following continuity method instead

Ric(wg) = Bws + %[D]

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in | — mKp|

The metrics wpg have conical singularities along the divisor D.

Disadvantages -

o (Song-Wang) NO smooth G invariant divisors unless G is finite.
o (Song-Wang, D.-Guo-Song-Wang) If we relax D to be only simple-normal-crossing,
then the above equation in most cases does not have a solution.

@ Advantage - exploiting K-stability, but more about this later.....
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PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation :

(a+ /—=100¢:)" = e tetthgn

_ 3.2
wr = a++/—100¢p; > 0, (32)

where h is the Ricci potential of the form «.
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PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation :

(a+ ﬁa&zzr)" = e terthgn (3.2)
wi = a4+ /—180¢: > 0, ’

where h is the Ricci potential of the form «.

o At t =0, we need to solve Ric(wo) = a, where « is a given positive form. This is
precisely the Calabi conjecture solved by Yau [8].
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PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation :

{(a +/—100¢;)" = e~ terthgn

_ 3.2
wr = a++/—100¢p; > 0, (32)

where h is the Ricci potential of the form «.

o At t =0, we need to solve Ric(wo) = a, where « is a given positive form. This is
precisely the Calabi conjecture solved by Yau [8].

o (Openness) The linearization of the equation is given by

Ao, +t.
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PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation :

{(a +/—100¢;)" = e~ terthgn

_ 3.2
wr = a++/—100¢p; > 0, (32)

where h is the Ricci potential of the form «.

o At t =0, we need to solve Ric(wo) = a, where « is a given positive form. This is
precisely the Calabi conjecture solved by Yau [8].

o (Openness) The linearization of the equation is given by
A, +t.

If t <1, then Ric(w:) > twe, and a Bochner-type argument shows that A\1(A,,) > t.
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PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation :

(a+ ﬁ(’)&pr)" = e terthyn (3.2)
wi = a4+ /—180¢: > 0, ’

where h is the Ricci potential of the form «.

o At t =0, we need to solve Ric(wo) = a, where « is a given positive form. This is
precisely the Calabi conjecture solved by Yau [8].

o (Openness) The linearization of the equation is given by
A, +t.

If t <1, then Ric(w:) > tw:, and a Bochner-type argument shows that A1(A.,) > t.
Hence the operator above is invertible, and implicit function theorem =— openness.
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Outline of the proof

o (Closedness) From a priori estimates and Arzela-Ascoli.
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Outline of the proof

o (Closedness) From a priori estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every A and k € N, there exists constants Cy such that

llotllco <A = |tk < Ce
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Outline of the proof

o (Closedness) From a priori estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)
For every A and k € N, there exists constants Cy such that

llotllco <A = |tk < Ce

@ So to complete the proof we “only” need uniform C° estimates. This is where
K-stability comes in.

Ved Datar (UC Berkeley) Kahler-Einstein metrics on Fano manifolds Jan 02, 2018 23 /36



Outline of the proof

o (Closedness) From a priori estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)
For every A and k € N, there exists constants Cy such that

llotllco <A = |tk < Ce

@ So to complete the proof we “only” need uniform C° estimates. This is where
K-stability comes in.

From now on, let tx — T where tx € I. We need to show that T € /.
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Outline of the proof

o (Closedness) From a priori estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every A and k € N, there exists constants Cy such that

llotllco <A = |tk < Ce

@ So to complete the proof we “only” need uniform C° estimates. This is where
K-stability comes in.

From now on, let tx — T where t gl. We need to show that T € /. For ease of
notation, let wx = wy, = a4+ +/—100p«, and gi the corresponding Riemannian metric.
We can assume that tx > tp for some fixed tp.
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Outline of the proof

o (Closedness) From a priori estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)
For every A and k € N, there exists constants Cy such that

llotllco <A = |tk < Ce

@ So to complete the proof we “only” need uniform C° estimates. This is where
K-stability comes in.
From now on, let ty — T where t, € I. We need to show that T € /. For ease of
notation, let wx = wy, = o + +/—109¢«, and gk the corresponding Riemannian metric.
We can assume that tx > t; for some fixed t;. We also assume that T < 1, since if
T =1, the exact same proof of Chen-Donaldson-Sun also works in our case.
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Outline of the proof

Gromov-Hausdorff convergence

@ The metrics satisfy
@ Vol(M,g) = V = &V ¢ (m)".

n!
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Outline of the proof

Gromov-Hausdorff convergence

@ The metrics satisfy
Q Vol(M,g) =V ="

™ e (M),
@ Ric(gk) > togk-
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Outline of the proof

Gromov-Hausdorff convergence

@ The metrics satisfy
Q Vol(M,g) =V := &7
Q Ric(gk) > togk-

© (Meyers') diam(M, gx) <7 2'}—0_1

)" ey (M),
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Outline of the proof

Gromov-Hausdorff convergence

@ The metrics satisfy

Q Vol(M,g) =V := &7

Q Ric(gx) = tog-

© (Meyers') diam(M, gx) <7 2'}—0_1

@ (Volume non-collapse) There exists x > 0 such that for any ball of radius
r < diam(M, g),

)" ey (M),

|B,| > kr?".
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@ (Volume non-collapse) There exists x > 0 such that for any ball of radius
r < diam(M, g),

)" ey (M),

|B,| > kr?".
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Outline of the proof

Gromov-Hausdorff convergence

@ The metrics satisfy

Q Vol(M,g) =V := &7

Q Ric(gx) = tog-

© (Meyers') diam(M, gx) <7 2'}—0_1

@ (Volume non-collapse) There exists x > 0 such that for any ball of radius
r < diam(M, g),

)" ey (M),

|B,| > kr?".

@ (Gromov) The sequence of Riemannian manifolds (M, g«) Lo, (Z,d), where
(Z,d) is a compact metric length space.

Ved Datar (UC Berkeley) Kahler-Einstein metrics on Fano manifolds Jan 02, 2018 24 / 36



Outline of the proof

Gromov-Hausdorff convergence

@ The metrics satisfy

Q Vol(M,g) =V := &7

Q Ric(gx) = tog-

© (Meyers') diam(M, gx) <7 2'}—0_1

@ (Volume non-collapse) There exists x > 0 such that for any ball of radius
r < diam(M, g),

)" ey (M),

|B,| > kr?".
@ (Gromov) The sequence of Riemannian manifolds (M, g«) Lo, (Z,d), where

(Z,d) is a compact metric length space.

@ Z is a candidate for the central fiber of a destabilizing special degeneration.
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Outline of the proof

Gromov-Hausdorff convergence

@ The metrics satisfy

Q Vol(M,g) =V := &7

Q Ric(gx) = tog-

© (Meyers') diam(M, gx) <7 2'}—0_1

@ (Volume non-collapse) There exists x > 0 such that for any ball of radius
r < diam(M, g),

)" ey (M),

|B,| > kr?".

@ (Gromov) The sequence of Riemannian manifolds (M, g«) Lo, (Z,d), where
(Z,d) is a compact metric length space.

@ Z is a candidate for the central fiber of a destabilizing special degeneration.

@ But Z needs to be a “sufficiently nice” algebraic variety, and there should be C*-
special degeneration of M to Z.
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Outline of the proof

Metric geometry to algebraic geometry : Partial C%-estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian
when n = 2.
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Outline of the proof

Metric geometry to algebraic geometry : Partial C%-estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian
when n = 2.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m, and embeddings Fix : M — PN by sections of H*(M, K;,™)
with the following properties
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Metric geometry to algebraic geometry : Partial C%-estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian
when n = 2.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m, and embeddings Fix : M — PN by sections of H*(M, K;,™)
with the following properties

© Fi are uniformly Lipschitz.
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Outline of the proof

Metric geometry to algebraic geometry : Partial C%-estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian
when n = 2.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])
There exists a uniform m, and embeddings Fix : M — PN by sections of H*(M, K;,™)
with the following properties

© Fi are uniformly Lipschitz.

@ Fi(M) converge to a Q-Fano normal flat limit W, and the maps Fi converge to a
homeomorphism F : Z — W.
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Outline of the proof

Metric geometry to algebraic geometry : Partial C%-estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian
when n = 2.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m, and embeddings Fix : M — PN by sections of H*(M, K;,™)
with the following properties
© Fi are uniformly Lipschitz.
@ Fi(M) converge to a Q-Fano normal flat limit W, and the maps Fi converge to a
homeomorphism F : Z — W.

@ (partial C° estimate) There exists a uniform constant C such that
1, _
Wk = ;Fk WFs + V —188¢k,

with WJ/(|CO, V| < C.
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Outline of the proof

Metric geometry to algebraic geometry : Partial C%-estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian
when n = 2.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m, and embeddings Fix : M — PN by sections of H*(M, K;,™)
with the following properties
© Fi are uniformly Lipschitz.

@ Fi(M) converge to a Q-Fano normal flat limit W, and the maps Fi converge to a
homeomorphism F : Z — W.

@ (partial C° estimate) There exists a uniform constant C such that
1, _
Wk = ;Fk WFs + V —188¢k,

with WJ/(|CO, V| < C.
@ Fi(a) converge weakly to a closed current 3 supported on W.
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Outline of the proof

@ From now on, we denote F1(M) by M and Fi(a) by a. For simplicity, we assume

that a = m_les
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Outline of the proof

@ From now on, we denote F1(M) by M and Fi(a) by a. For simplicity, we assume

that a = m_les

o Let px = Fro F{' € GL®, and My = px(M) — W. Also pi(a) — 8.
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Outline of the proof

@ From now on, we denote F1(M) by M and Fi(a) by a. For simplicity, we assume

that a = m_le5’
M

o Let px = Fro F{' € GL®, and My = px(M) — W. Also pi(a) — 8.
@ The partial C° then says that there exists C such that |1x|co < C and

1, _
Wy = Epkas + V —1881/Jk
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Outline of the proof

@ From now on, we denote F1(M) by M and Fi(a) by a. For simplicity, we assume
that a = m_le5’
M

o Let px = Fro F{' € GL®, and My = px(M) — W. Also pi(a) — 8.
@ The partial C° then says that there exists C such that |1x|co < C and

1, _
Wy = Epkas + V —1881/Jk

Proposition J

After passing to a subsequence, px — g € GLC.
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Outline of the proof

@ From now on, we denote F1(M) by M and Fi(a) by a. For simplicity, we assume

that a = m_le5’
M

o Let px = Fro F{' € GL®, and My = px(M) — W. Also pi(a) — 8.
@ The partial C° then says that there exists C such that |1x|co < C and

1, _
Wy = Epkas + vV —1881/Jk

Proposition

After passing to a subsequence, px — g € GLC.

Proof of main theorem.

Proposition =
1 . 1 _
— prWrs — —wrs = V —100vk
m m

with |V/<|Co < C.
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@ From now on, we denote F1(M) by M and Fi(a) by a. For simplicity, we assume

that a = m_le5’
M

o Let px = Fro F{' € GL®, and My = px(M) — W. Also pi(a) — 8.
@ The partial C° then says that there exists C such that |1x|co < C and

1, _
Wy = Epkas + V —1881/Jk

Proposition

After passing to a subsequence, px — g € GLC.

Proof of main theorem.

Proposition =
1 . 1 —
— prWrs — —wrs = V —100vk
m m

with |vi|co < C. Since wx = m™'wrs + /—180wk, @k = 1k + vk, and so combined with
partial C%, |¢x|co < C.

O

v
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Twisted KE on W

@ The currents px(wk) converge weakly to a weak current wr supported on W solving
the twisted KE equation on W in the weak sense -

Ric(wr) = TwT + (]. — T)B
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@ The currents px(wk) converge weakly to a weak current wr supported on W solving
the twisted KE equation on W in the weak sense -

Ric(wr) = TwT + (]. — T)B

o Consequences -
Q "Aut(W,B)" is reductive.
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o Consequences -
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@ The “twisted Futaki invariant”
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for all w € aut(W, B).
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Key difficulty

e W isin the GL® orbit closure but might not be accessible by C*.
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Key difficulty

e W isin the GL® orbit closure but might not be accessible by C*.

o If one could embed all such pairs (W, ) into a large finite dimensional projective,
then since the stabilizer is reductive, one could use Luna slice theorem.
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Key difficulty

e W isin the GL® orbit closure but might not be accessible by C*.

o If one could embed all such pairs (W, ) into a large finite dimensional projective,
then since the stabilizer is reductive, one could use Luna slice theorem.

@ Unfortunately the space of pairs (W, 3) is infinite dimensional.
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Outline of the proof

Key difficulty

e W isin the GL® orbit closure but might not be accessible by C*.

o If one could embed all such pairs (W, ) into a large finite dimensional projective,
then since the stabilizer is reductive, one could use Luna slice theorem.

@ Unfortunately the space of pairs (W, 3) is infinite dimensional. Here the CDS
continuity method has an advantage.
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Key difficulty

e W isin the GL® orbit closure but might not be accessible by C*.

o If one could embed all such pairs (W, ) into a large finite dimensional projective,
then since the stabilizer is reductive, one could use Luna slice theorem.

@ Unfortunately the space of pairs (W, 3) is infinite dimensional. Here the CDS
continuity method has an advantage.

o Key idea. Approximate [ by divisors.
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Outline of the proof

Main argument

o Choose generic hyperplanes {V;}¢_; such that
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o Choose generic hyperplanes {V;}¢_; such that
© Passing to a subsequence p(V;) converges to hyperplane H; for each i.
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o Choose generic hyperplanes {V;}¢_; such that
© Passing to a subsequence p(V;) converges to hyperplane H; for each i.

Q B~ iyl wnH.
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Main argument

o Choose generic hyperplanes {V;}¢_; such that
© Passing to a subsequence p(V;) converges to hyperplane H; for each i.
Q@ s~ 3 i IWnH]
Q aut(W,pB) = aut(W,WNHy, - ,WnN Hy)
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Outline of the proof

Main argument

o Choose generic hyperplanes {V;}¢_; such that
© Passing to a subsequence p(V;) converges to hyperplane H; for each i.
Q@ s~ 3 i IWnH]
Q aut(W,pB) = aut(W,WNHy, - ,WnN Hy)

@ Then awt(W, W N Hy, -, W N Hy) is reductive and

(W, WnNHy, - ,WnNHy) € GLE - (M, MN V-, Vg).
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Outline of the proof

Main argument

o Choose generic hyperplanes {V;}¢_; such that
© Passing to a subsequence p(V;) converges to hyperplane H; for each i.
Q@ s~ 3 i IWnH]
Q aut(W,pB) = aut(W,WNHy, - ,WnN Hy)

@ Then awt(W, W N Hy, -, W N Hy) is reductive and

(W, WnNHy, - ,WnNHy) € GLE - (M, MN V-, Vg).

o Luna slicing = 3 A\(t) : C* — GL® generated by a vector field w, and a fixed
g € GLC® such that

(W, W Hy,- W Hg) = lim A(t)g - (M, MO Vi, -, MO V).
—
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Outline of the proof

Main argument

Choose generic hyperplanes {V;}¢; such that
© Passing to a subsequence p(V;) converges to hyperplane H; for each i.
Q@ s~ 3 i IWnH]
Q aut(W,pB) = aut(W,WNHy, - ,WnN Hy)

Then aut(W, W N Hy, -+, W N Hy) is reductive and

(W, WnNHy, - ,WnNHy) € GLE - (M, MN V-, Vg).

o Luna slicing = 3 A\(t) : C* — GL® generated by a vector field w, and a fixed
g € GLC® such that

(W, W Hy,- W Hg) = lim A(t)g - (M, MO Vi, -, MO V).
—

o In particular W = lim¢_,0 A(t)g - M, and w is tangential to W.
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Outline of the proof

o If 8,, is the Hamiltonian of w, then

Fut(l,T)B(W, W) = Fut(W, W) — (1 — T)%/ 0.,.,(,3 — wFS)W,nrs_l'
w

Ved Datar (UC Berkeley) Kahler-Einstein metrics on Fano manifolds Jan 02, 2018 30/ 36



Outline of the proof

o If 8,, is the Hamiltonian of w, then

Fl].t(lf’r)ﬁ(W7 W) = Fut(W, W) — (1 — T)%/ 0.,.,(,3 — wFS)W,nrs_l'
w

o Using the fact that Fut;_ (W, w) = 0, a calculation shows that

Fut(W,w) =~ (1—-T) [% /W Owwrs — mm:jxew] <o0.
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o Using the fact that Fut;_ (W, w) = 0, a calculation shows that

Fut(W,w) =~ (1—-T) [% /W Owwrs — mm:jxew] <o0.

@ K-stability = it should be equality, and hence w = 0.
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Outline of the proof

o If 8,, is the Hamiltonian of w, then

Fl].t(lf’r)@(W7 W) = Fut(W, W) — (1 — T)%/ 0.,.,(,3 — wFS)W,nrs_l'
w

Using the fact that Fut(;_7)3(W, w) = 0, a calculation shows that

Fut(W,w) =~ (1—-T) [% /W Owwrs — mm:jxew] <o0.

K-stability = it should be equality, and hence w = 0.

@ Since w = 0, the degeneration is trivial, and so

(W,WnHy,-- WNHy)=g-(M,MN Vi,--- ,MnN Vy).
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Outline of the proof

o If 8,, is the Hamiltonian of w, then

Fl].t(lf’r)@(W7 W) = Fut(W, W) — (1 — T)%/ 0.,.,(,3 — wFS)W,nrs_l'
w

Using the fact that Fut(;_7)3(W, w) = 0, a calculation shows that

Fut(W,w) =~ (1—-T) [% /W Owwrs — mm:jxew] <o0.

K-stability = it should be equality, and hence w = 0.

@ Since w = 0, the degeneration is trivial, and so

(W,WnHy,-- WNHy)=g-(M,MN Vi,--- ,MnN Vy).

Recall that H; = limk_ o0 pk(V5).
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Outline of the proof

o If 8,, is the Hamiltonian of w, then

n

Fl].t(lf’r)@(W7 W) = Fut(W, W) — (1 — T)V/ 0.,.,(,3 — wFS)W,nrs_l'
w

Using the fact that Fut(;_7)3(W, w) = 0, a calculation shows that

Fut(W,w) =~ (1—-T) [% /W Owwrs — mm:jxew] <o0.

K-stability = it should be equality, and hence w = 0.

@ Since w = 0, the degeneration is trivial, and so

(W,WnHy,-- WNHy)=g-(M,MN Vi,--- ,MnN Vy).

Recall that H; = limk_ o0 pk(V5).

Since V; are generic, a simple argument now shows that px — g. O
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© What next?
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Extremal metrics

o Let L —+ M be an ample line bundle.
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What next?

Extremal metrics

o Let L —+ M be an ample line bundle.
o (Calabi, 1980s) The critical points of the functional

Ca(w) = /M |Rm(w)| 2,

as w varies over Kahler metrics in the fixed co-homology class 27ci(L) are called
extremal metrics.
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Extremal metrics

o Let L —+ M be an ample line bundle.
o (Calabi, 1980s) The critical points of the functional

Ca(w) = /M |Rm(w)| 2,

as w varies over Kahler metrics in the fixed co-homology class 27ci(L) are called
extremal metrics.

@ The Euler-Lagrange equation says that
v, =0,

where s, is the scalar curvature.
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as w varies over Kahler metrics in the fixed co-homology class 27ci(L) are called
extremal metrics.

@ The Euler-Lagrange equation says that
v, =0,

where s, is the scalar curvature.

@ In particular constant scalar curvature Kahler metrics (cscK), and hence
Kahler-Einstein metrics, are automatically extremal.
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What next?

Extremal metrics

o Let L —+ M be an ample line bundle.
o (Calabi, 1980s) The critical points of the functional

Ca(w) = /M |Rm(w)| 2,

as w varies over Kahler metrics in the fixed co-homology class 27ci(L) are called
extremal metrics.

@ The Euler-Lagrange equation says that
v, =0,

where s, is the scalar curvature.

@ In particular constant scalar curvature Kahler metrics (cscK), and hence
Kahler-Einstein metrics, are automatically extremal.

@ It is expected that existence is again related to certain stability, called relative
K-stability (or some refinement).
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What next?

Perturbation problems

Suppose M admits an extremal metric w. If p € M, and 7 : Bl,(M) — M is the blow-up
with exceptional divisor E, then it is known that L. = n*[w] — €?[E] is Kahler for ¢ << 1.
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Suppose M admits an extremal metric w. If p € M, and 7 : Bl,(M) — M is the blow-up
with exceptional divisor E, then it is known that L. = n*[w] — €?[E] is Kahler for ¢ << 1.

Question
If (Bl,(M), L.) is relatively K-stable, does it admit an extremal metric? J
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Suppose M admits an extremal metric w. If p € M, and 7 : Bl,(M) — M is the blow-up
with exceptional divisor E, then it is known that L. = n*[w] — €?[E] is Kahler for ¢ << 1.

Question
If (Bl,(M), L.) is relatively K-stable, does it admit an extremal metric? J

o (Szekelyhidi) If n > 2, the answer is affirmative for cscK metrics.
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Perturbation problems

Suppose M admits an extremal metric w. If p € M, and 7 : Bl,(M) — M is the blow-up
with exceptional divisor E, then it is known that L. = n*[w] — €?[E] is Kahler for ¢ << 1.

Question
If (Bl,(M), L.) is relatively K-stable, does it admit an extremal metric? J

o (Szekelyhidi) If n > 2, the answer is affirmative for cscK metrics.

o When n = 2, | have recently made some progress [3], but an optimal result is still
missing.
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Suppose M admits an extremal metric w. If p € M, and 7 : Bl,(M) — M is the blow-up
with exceptional divisor E, then it is known that L. = n*[w] — €?[E] is Kahler for ¢ << 1.

Question
If (Bl,(M), L.) is relatively K-stable, does it admit an extremal metric? J

o (Szekelyhidi) If n > 2, the answer is affirmative for cscK metrics.

© When n =2, | have recently made some progress [3], but an optimal result is still
missing.

@ The problem for extremal metrics is completely open in all dimensions.
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What next?

Perturbation problems

Suppose M admits an extremal metric w. If p € M, and 7 : Bl,(M) — M is the blow-up
with exceptional divisor E, then it is known that L. = n*[w] — €?[E] is Kahler for ¢ << 1.

Question

If (Bl,(M), L.) is relatively K-stable, does it admit an extremal metric? J

o (Szekelyhidi) If n > 2, the answer is affirmative for cscK metrics.

© When n =2, | have recently made some progress [3], but an optimal result is still
missing.

@ The problem for extremal metrics is completely open in all dimensions.

o The key difficulty is in relating relative K-stability of blow-ups Bl,(M) to the relative
GIT stability of the point p.
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Convergence of cscK manifolds and partial C° estimate

@ Sequences of cscK manifolds might collapse.

Ved Datar (UC Berkeley) Kahler-Einstein metrics on Fano manifolds Jan 02, 2018 33 /36



Convergence of cscK manifolds and partial C° estimate

@ Sequences of cscK manifolds might collapse.
Question

Is there a uniform partial C° estimate along a sequence of non-collapsed, cscK metrics on
Kahler manifolds with uniform bounds on the total volume, and Calabi energy?

@ For n = 2, there is an optimal convergence result due to Anderson and
Tian-Viaclovsky.
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@ Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C° estimate along a sequence of non-collapsed, cscK metrics on
Kahler manifolds with uniform bounds on the total volume, and Calabi energy?

@ For n = 2, there is an optimal convergence result due to Anderson and
Tian-Viaclovsky.

o For n > 2, the convergence result assumes L"/? bound on ||[Rml]|, which is not
useful, since Ca(w) involves an L? bound.
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Is there a uniform partial C° estimate along a sequence of non-collapsed, cscK metrics on
Kahler manifolds with uniform bounds on the total volume, and Calabi energy?

@ For n = 2, there is an optimal convergence result due to Anderson and
Tian-Viaclovsky.

o For n > 2, the convergence result assumes L"/? bound on ||[Rml]|, which is not
useful, since Ca(w) involves an L? bound.

o What if there is collapsing? Is there a Cheeger-Tian type e-regularity result for
n =2 (small ||[Rml||;2 = control on ||Rm||;e)?
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