

Kähler-Einstein metrics on Fano manifolds

Ved Datar

UC Berkeley

Jan 02, 2018

Outline

1 Introduction: Some history and the main theorem

2 K -stability

3 Outline of the proof

4 What next?

Outline

1 Introduction: Some history and the main theorem

2 K -stability

3 Outline of the proof

4 What next?

Outline

- 1 Introduction: Some history and the main theorem
- 2 K -stability
- 3 Outline of the proof
- 4 What next?

Outline

- 1 Introduction: Some history and the main theorem
- 2 K -stability
- 3 Outline of the proof
- 4 What next?

Uniformization Theorem.

Theorem (Uniformization theorem)

- Any compact Riemann surface admits a metric of constant Gauss curvature.
- Given any oriented compact 2-d Riemannian manifold (M, g_0) , there exists a metric $g = e^{2\varphi} g_0$ with constant Gauss curvature.

Uniformization Theorem.

Theorem (Uniformization theorem)

- Any compact Riemann surface admits a metric of constant Gauss curvature.
- Given any oriented compact 2-d Riemannian manifold (M, g_0) , there exists a metric $g = e^{2\varphi} g_0$ with constant Gauss curvature.

For a surface with metric (in isothermal coordinates)

$$ds^2 = h(dx^2 + dy^2),$$

the Gauss curvature form is given by

$$KdA = -\sqrt{-1} \frac{\partial^2 \log h}{\partial z \partial \bar{z}} dz \wedge d\bar{z},$$

where $z = x + \sqrt{-1}y$. By Gauss-Bonnet,

$$\int_M K dA = 2\pi\chi(M).$$

So depending on the sign of $\chi(M)$, a compact Riemann surface admits a metric of constant Gauss curvature $K = \pm 1$ or $K = 0$.

Remark

A purely PDE proof of the case $K = 1$ (ie. $M = S^2$) is the hardest. This is a harbinger of things to come!

For a surface with metric (in isothermal coordinates)

$$ds^2 = h(dx^2 + dy^2),$$

the Gauss curvature form is given by

$$KdA = -\sqrt{-1} \frac{\partial^2 \log h}{\partial z \partial \bar{z}} dz \wedge d\bar{z},$$

where $z = x + \sqrt{-1}y$. By Gauss-Bonnet,

$$\int_M K dA = 2\pi\chi(M).$$

So depending on the sign of $\chi(M)$, a compact Riemann surface admits a metric of constant Gauss curvature $K = \pm 1$ or $K = 0$.

Remark

A purely PDE proof of the case $K = 1$ (ie. $M = S^2$) is the hardest. This is a harbinger of things to come!

For a surface with metric (in isothermal coordinates)

$$ds^2 = h(dx^2 + dy^2),$$

the Gauss curvature form is given by

$$KdA = -\sqrt{-1} \frac{\partial^2 \log h}{\partial z \partial \bar{z}} dz \wedge d\bar{z},$$

where $z = x + \sqrt{-1}y$. By Gauss-Bonnet,

$$\int_M K dA = 2\pi\chi(M).$$

So depending on the sign of $\chi(M)$, a compact Riemann surface admits a metric of constant Gauss curvature $K = \pm 1$ or $K = 0$.

Remark

A purely PDE proof of the case $K = 1$ (ie. $M = S^2$) is the hardest. This is a harbinger of things to come!

For a surface with metric (in isothermal coordinates)

$$ds^2 = h(dx^2 + dy^2),$$

the Gauss curvature form is given by

$$KdA = -\sqrt{-1} \frac{\partial^2 \log h}{\partial z \partial \bar{z}} dz \wedge d\bar{z},$$

where $z = x + \sqrt{-1}y$. By Gauss-Bonnet,

$$\int_M K dA = 2\pi\chi(M).$$

So depending on the sign of $\chi(M)$, a compact Riemann surface admits a metric of constant Gauss curvature $K = \pm 1$ or $K = 0$.

Remark

A purely PDE proof of the case $K = 1$ (ie. $M = S^2$) is the hardest. This is a harbinger of things to come!

For a surface with metric (in isothermal coordinates)

$$ds^2 = h(dx^2 + dy^2),$$

the Gauss curvature form is given by

$$KdA = -\sqrt{-1} \frac{\partial^2 \log h}{\partial z \partial \bar{z}} dz \wedge d\bar{z},$$

where $z = x + \sqrt{-1}y$. By Gauss-Bonnet,

$$\int_M K dA = 2\pi\chi(M).$$

So depending on the sign of $\chi(M)$, a compact Riemann surface admits a metric of constant Gauss curvature $K = \pm 1$ or $K = 0$.

Remark

A purely PDE proof of the case $K = 1$ (ie. $M = S^2$) is the hardest. This is a harbinger of things to come!

Kähler manifolds

- Let M^n be a compact complex manifold with $\dim_{\mathbb{C}} M = n$.
- A Riemannian metric g is called Kähler if there are local coordinates (x^1, \dots, x^{2n}) in which

$$g_{jk} = \delta_{jk} + O(|x|^2),$$

and such that for $j = 1, \dots, n$,

$$z^j = x^j + \sqrt{-1}x^{n+j}$$

are local holomorphic coordinates.

- One can associate a $(1, 1)$ form in the following way - If J denotes the canonical complex structure

$$J\left(\frac{\partial}{\partial x^j}\right) = \frac{\partial}{\partial x^{n+j}}, \quad J^2 = -\text{id},$$

then we define the Kähler form ω by

$$\omega(\cdot, \cdot) = g(J\cdot, \cdot).$$

- g Kähler $\iff d\omega = 0$.

Kähler manifolds

- Let M^n be a compact complex manifold with $\dim_{\mathbb{C}} M = n$.
- A Riemannian metric g is called Kähler if there are local coordinates (x^1, \dots, x^{2n}) in which

$$g_{jk} = \delta_{jk} + O(|x|^2),$$

and such that for $j = 1, \dots, n$,

$$z^j = x^j + \sqrt{-1}x^{n+j}$$

are local holomorphic coordinates.

- One can associate a $(1, 1)$ form in the following way - If J denotes the canonical complex structure

$$J\left(\frac{\partial}{\partial x^j}\right) = \frac{\partial}{\partial x^{n+j}}, \quad J^2 = -\text{id},$$

then we define the Kähler form ω by

$$\omega(\cdot, \cdot) = g(J\cdot, \cdot).$$

- g Kähler $\iff d\omega = 0$.

Kähler manifolds

- Let M^n be a compact complex manifold with $\dim_{\mathbb{C}} M = n$.
- A Riemannian metric g is called Kähler if there are local coordinates (x^1, \dots, x^{2n}) in which

$$g_{jk} = \delta_{jk} + O(|x|^2),$$

and such that for $j = 1, \dots, n$,

$$z^j = x^j + \sqrt{-1}x^{n+j}$$

are local holomorphic coordinates.

- One can associate a $(1, 1)$ form in the following way - If J denotes the canonical complex structure

$$J\left(\frac{\partial}{\partial x^j}\right) = \frac{\partial}{\partial x^{n+j}}, \quad J^2 = -\text{id},$$

then we define the Kähler form ω by

$$\omega(\cdot, \cdot) = g(J\cdot, \cdot).$$

- g Kähler $\iff d\omega = 0$.

Kähler manifolds

- Let M^n be a compact complex manifold with $\dim_{\mathbb{C}} M = n$.
- A Riemannian metric g is called Kähler if there are local coordinates (x^1, \dots, x^{2n}) in which

$$g_{jk} = \delta_{jk} + O(|x|^2),$$

and such that for $j = 1, \dots, n$,

$$z^j = x^j + \sqrt{-1}x^{n+j}$$

are local holomorphic coordinates.

- One can associate a $(1, 1)$ form in the following way - If J denotes the canonical complex structure

$$J\left(\frac{\partial}{\partial x^j}\right) = \frac{\partial}{\partial x^{n+j}}, \quad J^2 = -\text{id},$$

then we define the Kähler form ω by

$$\omega(\cdot, \cdot) = g(J\cdot, \cdot).$$

- g Kähler $\iff d\omega = 0$.

Properties of the Kähler form

- ω is a closed, real form (ie. $\bar{\omega} = \omega$), and so represents a cohomology class in $H^2(M, \mathbb{R})$.
- Locally we can write

$$\omega = \frac{\sqrt{-1}}{2} g_{\alpha\bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,$$

where $g_{\alpha\bar{\beta}} = g\left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta}\right)$. Then the matrix $\{g_{\alpha\bar{\beta}}\}$ is a positive definite Hermitian matrix.

- Conversely, given such a form ω , $g(\cdot, \cdot) = \omega(\cdot, J\cdot)$ defines a Riemannian metric.
- Any class in $H^2(M, \mathbb{R})$ which contains a Kähler metric, is called a Kähler class. The set of Kähler classes $\mathcal{K} \subset H^2(M, \mathbb{R})$ is an open convex cone.
- ($\partial\bar{\partial}$ Lemma) If $[\omega_1] = [\omega_2]$, then there exists a $\varphi \in C^\infty(M, \mathbb{R})$ such that

$$\omega_2 = \omega_1 + \sqrt{-1}\partial\bar{\partial}\varphi.$$

Note: Henceforth we will abuse notation and refer to ω as simply the Kähler metric.

Properties of the Kähler form

- ω is a closed, real form (ie. $\bar{\omega} = \omega$), and so represents a cohomology class in $H^2(M, \mathbb{R})$.
- Locally we can write

$$\omega = \frac{\sqrt{-1}}{2} g_{\alpha\bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,$$

where $g_{\alpha\bar{\beta}} = g\left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta}\right)$. Then the matrix $\{g_{\alpha\bar{\beta}}\}$ is a positive definite Hermitian matrix.

- Conversely, given such a form ω , $g(\cdot, \cdot) = \omega(\cdot, J\cdot)$ defines a Riemannian metric.
- Any class in $H^2(M, \mathbb{R})$ which contains a Kähler metric, is called a Kähler class. The set of Kähler classes $\mathcal{K} \subset H^2(M, \mathbb{R})$ is an open convex cone.
- ($\partial\bar{\partial}$ Lemma) If $[\omega_1] = [\omega_2]$, then there exists a $\varphi \in C^\infty(M, \mathbb{R})$ such that

$$\omega_2 = \omega_1 + \sqrt{-1}\partial\bar{\partial}\varphi.$$

Note: Henceforth we will abuse notation and refer to ω as simply the Kähler metric.

Properties of the Kähler form

- ω is a closed, real form (ie. $\bar{\omega} = \omega$), and so represents a cohomology class in $H^2(M, \mathbb{R})$.
- Locally we can write

$$\omega = \frac{\sqrt{-1}}{2} g_{\alpha\bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,$$

where $g_{\alpha\bar{\beta}} = g\left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta}\right)$. Then the matrix $\{g_{\alpha\bar{\beta}}\}$ is a positive definite Hermitian matrix.

- Conversely, given such a form ω , $g(\cdot, \cdot) = \omega(\cdot, J\cdot)$ defines a Riemannian metric.
- Any class in $H^2(M, \mathbb{R})$ which contains a Kähler metric, is called a Kähler class. The set of Kähler classes $\mathcal{K} \subset H^2(M, \mathbb{R})$ is an open convex cone.
- ($\partial\bar{\partial}$ Lemma) If $[\omega_1] = [\omega_2]$, then there exists a $\varphi \in C^\infty(M, \mathbb{R})$ such that

$$\omega_2 = \omega_1 + \sqrt{-1}\partial\bar{\partial}\varphi.$$

Note: Henceforth we will abuse notation and refer to ω as simply the Kähler metric.

Properties of the Kähler form

- ω is a closed, real form (ie. $\bar{\omega} = \omega$), and so represents a cohomology class in $H^2(M, \mathbb{R})$.
- Locally we can write

$$\omega = \frac{\sqrt{-1}}{2} g_{\alpha\bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,$$

where $g_{\alpha\bar{\beta}} = g\left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta}\right)$. Then the matrix $\{g_{\alpha\bar{\beta}}\}$ is a positive definite Hermitian matrix.

- Conversely, given such a form ω , $g(\cdot, \cdot) = \omega(\cdot, J\cdot)$ defines a Riemannian metric.
- Any class in $H^2(M, \mathbb{R})$ which contains a Kähler metric, is called a Kähler class. The set of Kähler classes $\mathcal{K} \subset H^2(M, \mathbb{R})$ is an open convex cone.
- ($\partial\bar{\partial}$ Lemma) If $[\omega_1] = [\omega_2]$, then there exists a $\varphi \in C^\infty(M, \mathbb{R})$ such that

$$\omega_2 = \omega_1 + \sqrt{-1}\partial\bar{\partial}\varphi.$$

Note: Henceforth we will abuse notation and refer to ω as simply the Kähler metric.

Properties of the Kähler form

- ω is a closed, real form (ie. $\bar{\omega} = \omega$), and so represents a cohomology class in $H^2(M, \mathbb{R})$.
- Locally we can write

$$\omega = \frac{\sqrt{-1}}{2} g_{\alpha\bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,$$

where $g_{\alpha\bar{\beta}} = g\left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta}\right)$. Then the matrix $\{g_{\alpha\bar{\beta}}\}$ is a positive definite Hermitian matrix.

- Conversely, given such a form ω , $g(\cdot, \cdot) = \omega(\cdot, J\cdot)$ defines a Riemannian metric.
- Any class in $H^2(M, \mathbb{R})$ which contains a Kähler metric, is called a Kähler class. The set of Kähler classes $\mathcal{K} \subset H^2(M, \mathbb{R})$ is an open convex cone.
- ($\partial\bar{\partial}$ Lemma) If $[\omega_1] = [\omega_2]$, then there exists a $\varphi \in C^\infty(M, \mathbb{R})$ such that

$$\omega_2 = \omega_1 + \sqrt{-1}\partial\bar{\partial}\varphi.$$

Note: Henceforth we will abuse notation and refer to ω as simply the Kähler metric.

Properties of the Kähler form

- ω is a closed, real form (ie. $\bar{\omega} = \omega$), and so represents a cohomology class in $H^2(M, \mathbb{R})$.
- Locally we can write

$$\omega = \frac{\sqrt{-1}}{2} g_{\alpha\bar{\beta}} dz^\alpha \wedge d\bar{z}^\beta,$$

where $g_{\alpha\bar{\beta}} = g\left(\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial \bar{z}^\beta}\right)$. Then the matrix $\{g_{\alpha\bar{\beta}}\}$ is a positive definite Hermitian matrix.

- Conversely, given such a form ω , $g(\cdot, \cdot) = \omega(\cdot, J\cdot)$ defines a Riemannian metric.
- Any class in $H^2(M, \mathbb{R})$ which contains a Kähler metric, is called a Kähler class. The set of Kähler classes $\mathcal{K} \subset H^2(M, \mathbb{R})$ is an open convex cone.
- ($\partial\bar{\partial}$ Lemma) If $[\omega_1] = [\omega_2]$, then there exists a $\varphi \in C^\infty(M, \mathbb{R})$ such that

$$\omega_2 = \omega_1 + \sqrt{-1}\partial\bar{\partial}\varphi.$$

Note: Henceforth we will abuse notation and refer to ω as simply the Kähler metric.

Examples

- Any compact Riemann surface with ω being a volume form. Then since $n = 1$, $d\omega = 0$ is trivially true.
- Complex projective space \mathbb{P}^N with the Fubini study metric given in homogenous coordinates $[\xi_0, \dots, \xi_N]$ by

$$\omega_{FS} = \sqrt{-1} \partial \bar{\partial} \log \left(|\xi_0|^2 + \dots + |\xi_N|^2 \right).$$

When $n = 1$, $\mathbb{P}^1 = S^2$, and the Fubini-Study metric is the usual round metric.

- Any non-singular sub-variety $X \subset \mathbb{P}^N$, with ω given by restricting ω_{FS} to X .

Examples

- Any compact Riemann surface with ω being a volume form. Then since $n = 1$, $d\omega = 0$ is trivially true.
- Complex projective space \mathbb{P}^N with the Fubini study metric given in homogenous coordinates $[\xi_0, \dots, \xi_N]$ by

$$\omega_{FS} = \sqrt{-1} \partial \bar{\partial} \log \left(|\xi_0|^2 + \dots + |\xi_N|^2 \right).$$

When $n = 1$, $\mathbb{P}^1 = S^2$, and the Fubini-Study metric is the usual round metric.

- Any non-singular sub-variety $X \subset \mathbb{P}^N$, with ω given by restricting ω_{FS} to X .

Examples

- Any compact Riemann surface with ω being a volume form. Then since $n = 1$, $d\omega = 0$ is trivially true.
- Complex projective space \mathbb{P}^N with the Fubini study metric given in homogenous coordinates $[\xi_0, \dots, \xi_N]$ by

$$\omega_{FS} = \sqrt{-1} \partial \bar{\partial} \log \left(|\xi_0|^2 + \dots + |\xi_N|^2 \right).$$

When $n = 1$, $\mathbb{P}^1 = S^2$, and the Fubini-Study metric is the usual round metric.

- Any non-singular sub-variety $X \subset \mathbb{P}^N$, with ω given by restricting ω_{FS} to X .

Curvature

- The Ricci form of the Kähler metric ω is defined by

$$\rho_\omega = -\sqrt{-1}\partial\bar{\partial} \log \det(g_{\alpha\bar{\beta}}).$$

Note that $d\rho_\omega = 0$.

- The Riemannian Ricci curvature is then given by

$$\text{Ric}(\cdot, \cdot) = \rho_\omega(\cdot, J\cdot).$$

Question (Calabi, 1950s)

Given a Kähler manifold M , when does it admit a metric of constant Ricci curvature. More precisely, when is there a Kähler metric ω such that

$$\rho_\omega = \lambda\omega,$$

for some $\lambda \in \mathbb{R}$. Such an ω is called a Kähler-Einstein (KE) metric.

Curvature

- The Ricci form of the Kähler metric ω is defined by

$$\rho_\omega = -\sqrt{-1}\partial\bar{\partial} \log \det(g_{\alpha\bar{\beta}}).$$

Note that $d\rho_\omega = 0$.

- The Riemannian Ricci curvature is then given by

$$\text{Ric}(\cdot, \cdot) = \rho_\omega(\cdot, J\cdot).$$

Question (Calabi, 1950s)

Given a Kähler manifold M , when does it admit a metric of constant Ricci curvature. More precisely, when is there a Kähler metric ω such that

$$\rho_\omega = \lambda\omega,$$

for some $\lambda \in \mathbb{R}$. Such an ω is called a Kähler-Einstein (KE) metric.

Curvature

- The Ricci form of the Kähler metric ω is defined by

$$\rho_\omega = -\sqrt{-1}\partial\bar{\partial} \log \det(g_{\alpha\bar{\beta}}).$$

Note that $d\rho_\omega = 0$.

- The Riemannian Ricci curvature is then given by

$$\text{Ric}(\cdot, \cdot) = \rho_\omega(\cdot, J\cdot).$$

Question (Calabi, 1950s)

Given a Kähler manifold M , when does it admit a metric of constant Ricci curvature. More precisely, when is there a Kähler metric ω such that

$$\rho_\omega = \lambda\omega,$$

for some $\lambda \in \mathbb{R}$. Such an ω is called a Kähler-Einstein (KE) metric.

Topological obstruction

- Recall that the anti-canonical bundle K_M^{-1} is the line bundle locally generated by

$$\frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n}.$$

- If h is a hermitian metric then the curvature $F_h = -\partial\bar{\partial}\log h$ is a global closed $(1,1)$ form, and the first Chern class $c_1(M) \in H^2(M, \mathbb{R})$ is defined by

$$c_1(M) := c_1(K_M^{-1}) := \frac{\sqrt{-1}}{2\pi} [F_h].$$

- Given Kähler metric ω , a natural hermitian metric on K_M^{-1} given by

$$\left\| \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n} \right\|^2 = \det g_{\alpha\bar{\beta}},$$

and hence $\rho_\omega \in 2\pi c_1(M)$.

- So if ω is KE, then

$$c_1(M) = \frac{\lambda}{2\pi} [\omega].$$

Topological obstruction

- Recall that the anti-canonical bundle K_M^{-1} is the line bundle locally generated by

$$\frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n}.$$

- If h is a hermitian metric then the curvature $F_h = -\partial\bar{\partial}\log h$ is a global closed $(1,1)$ form, and the first Chern class $c_1(M) \in H^2(M, \mathbb{R})$ is defined by

$$c_1(M) := c_1(K_M^{-1}) := \frac{\sqrt{-1}}{2\pi} [F_h].$$

- Given Kähler metric ω , a natural hermitian metric on K_M^{-1} given by

$$\left\| \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n} \right\|^2 = \det g_{\alpha\bar{\beta}},$$

and hence $\rho_\omega \in 2\pi c_1(M)$.

- So if ω is KE, then

$$c_1(M) = \frac{\lambda}{2\pi} [\omega].$$

Topological obstruction

- Recall that the anti-canonical bundle K_M^{-1} is the line bundle locally generated by

$$\frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n}.$$

- If h is a hermitian metric then the curvature $F_h = -\partial\bar{\partial}\log h$ is a global closed $(1, 1)$ form, and the first Chern class $c_1(M) \in H^2(M, \mathbb{R})$ is defined by

$$c_1(M) := c_1(K_M^{-1}) := \frac{\sqrt{-1}}{2\pi} [F_h].$$

- Given Kähler metric ω , a natural hermitian metric on K_M^{-1} given by

$$\left\| \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n} \right\|^2 = \det g_{\alpha\bar{\beta}},$$

and hence $\rho_\omega \in 2\pi c_1(M)$.

- So if ω is KE, then

$$c_1(M) = \frac{\lambda}{2\pi} [\omega].$$

Topological obstruction

- Recall that the anti-canonical bundle K_M^{-1} is the line bundle locally generated by

$$\frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n}.$$

- If h is a hermitian metric then the curvature $F_h = -\partial\bar{\partial}\log h$ is a global closed $(1,1)$ form, and the first Chern class $c_1(M) \in H^2(M, \mathbb{R})$ is defined by

$$c_1(M) := c_1(K_M^{-1}) := \frac{\sqrt{-1}}{2\pi} [F_h].$$

- Given Kähler metric ω , a natural hermitian metric on K_M^{-1} given by

$$\left\| \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^n} \right\|^2 = \det g_{\alpha\bar{\beta}},$$

and hence $\rho_\omega \in 2\pi c_1(M)$.

- So if ω is KE, then

$$c_1(M) = \frac{\lambda}{2\pi} [\omega].$$

Existence results

- (Yau [8], '78) If $c_1(M) = 0$, then there exists a unique Ricci flat metric ω in every Kähler class.
- (Yau, Aubin [1], '78) If $c_1(M) < 0$, then there exists a unique KE metric in $-2\pi c_1(M)$.
- (Chen-Donaldson-Sun [2], 2012) If $c_1(M) > 0$ (ie. M is Fano), there exists KE in $2\pi c_1(M)$ if M is K -stable. Converse due to Tian, Berman etc.

Existence results

- (Yau [8], '78) If $c_1(M) = 0$, then there exists a unique Ricci flat metric ω in every Kähler class.
- (Yau, Aubin [1], '78) If $c_1(M) < 0$, then there exists a unique KE metric in $-2\pi c_1(M)$.
- (Chen-Donaldson-Sun [2], 2012) If $c_1(M) > 0$ (ie. M is Fano), there exists KE in $2\pi c_1(M)$ if M is K -stable. Converse due to Tian, Berman etc.

Existence results

- (Yau [8], '78) If $c_1(M) = 0$, then there exists a unique Ricci flat metric ω in every Kähler class.
- (Yau, Aubin [1], '78) If $c_1(M) < 0$, then there exists a unique KE metric in $-2\pi c_1(M)$.
- (Chen-Donaldson-Sun [2], 2012) If $c_1(M) > 0$ (ie. M is Fano), there exists KE in $2\pi c_1(M)$ if M is K -stable. Converse due to Tian, Berman etc.

Some remarks

- Fano case an instance of Kobayashi-Hitchin correspondence

$$\left\{ \begin{array}{l} \text{Existence of} \\ \text{Canonical metrics} \end{array} \right\} \iff \left\{ \begin{array}{l} \text{Algebro-geometric} \\ \text{Stability} \end{array} \right\}$$

- Examples - Narasimhan-Seshadri, Donaldson-Yau-Uhlenbeck, Kähler-Einstein metrics on S^2 with cone angles $< 2\pi, \dots$.
- Unfortunately K -stability is notoriously difficult to check. eg. Even in manifolds with large symmetry groups (eg. Toric)

Some remarks

- Fano case an instance of Kobayashi-Hitchin correspondence

$$\left\{ \begin{array}{l} \text{Existence of} \\ \text{Canonical metrics} \end{array} \right\} \iff \left\{ \begin{array}{l} \text{Algebro-geometric} \\ \text{Stability} \end{array} \right\}$$

- Examples - Narasimhan-Seshadri, Donaldson-Yau-Uhlenbeck, Kähler-Einstein metrics on S^2 with cone angles $< 2\pi, \dots$.
- Unfortunately K -stability is notoriously difficult to check. eg. Even in manifolds with large symmetry groups (eg. Toric)

Some remarks

- Fano case an instance of Kobayashi-Hitchin correspondence

$$\left\{ \begin{array}{l} \text{Existence of} \\ \text{Canonical metrics} \end{array} \right\} \iff \left\{ \begin{array}{l} \text{Algebro-geometric} \\ \text{Stability} \end{array} \right\}$$

- Examples - Narasimhan-Seshadri, Donaldson-Yau-Uhlenbeck, Kähler-Einstein metrics on S^2 with cone angles $< 2\pi, \dots$.
- Unfortunately K -stability is notoriously difficult to check. eg. Even in manifolds with large symmetry groups (eg. Toric)

Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G -equivariantly K -stable with respect to special degenerations.

Remarks

- We actually prove a much more general theorem on existence of Kähler-Ricci solitons.
- The theorem can recover some older results (eg. KE metrics on toric manifolds), and has also led to the discovery of new KE manifolds.
- We need to use a completely different proof from that of CDS.

Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G -equivariantly K -stable with respect to special degenerations.

Remarks

- We actually prove a much more general theorem on existence of Kähler-Ricci solitons.
- The theorem can recover some older results (eg. KE metrics on toric manifolds), and has also led to the discovery of new KE manifolds.
- We need to use a completely different proof from that of CDS.

Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G -equivariantly K-stable with respect to special degenerations.

Remarks

- We actually prove a much more general theorem on existence of Kähler-Ricci solitons.
- The theorem can recover some older results (eg. KE metrics on toric manifolds), and has also led to the discovery of new KE manifolds.
- We need to use a completely different proof from that of CDS.

Main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G -equivariantly K-stable with respect to special degenerations.

Remarks

- We actually prove a much more general theorem on existence of Kähler-Ricci solitons.
- The theorem can recover some older results (eg. KE metrics on toric manifolds), and has also led to the discovery of new KE manifolds.
- We need to use a completely different proof from that of CDS.

1 Introduction: Some history and the main theorem

2 *K*-stability

3 Outline of the proof

4 What next?

An analytic obstruction : Futaki invariant

- Let M be a Fano manifold, that is $c_1(M) > 0$, and let $\omega \in 2\pi c_1(M)$ be a Kähler metric.
- Since $[\rho_\omega] = [\omega]$, there exists an $h \in C^\infty(M, \mathbb{R})$, called the Ricci potential, such that

$$\rho_\omega = \omega + \sqrt{-1}\partial\bar{\partial}h.$$

- Let $\eta(M) = \{\text{hol. vector fields on } M\}$, and define $\text{Fut} : \eta(M) \rightarrow \mathbb{C}$ by

$$\text{Fut}(M, \xi) = -\frac{1}{V} \int_M \xi(h) \frac{\omega^n}{n!},$$

where $V = \int_M \frac{\omega^n}{n!}$ is the volume of the manifold.

- (Futaki) $\text{Fut}(M, \xi)$ does not depend on the specific metric $\omega \in 2\pi c_1(M)$, and hence is an invariant of a Fano manifold.
- It vanishes if the Fano manifold admits a KE.

An analytic obstruction : Futaki invariant

- Let M be a Fano manifold, that is $c_1(M) > 0$, and let $\omega \in 2\pi c_1(M)$ be a Kähler metric.
- Since $[\rho_\omega] = [\omega]$, there exists an $h \in C^\infty(M, \mathbb{R})$, called the Ricci potential, such that

$$\rho_\omega = \omega + \sqrt{-1} \partial \bar{\partial} h.$$

- Let $\eta(M) = \{\text{hol. vector fields on } M\}$, and define $\text{Fut} : \eta(M) \rightarrow \mathbb{C}$ by

$$\text{Fut}(M, \xi) = -\frac{1}{V} \int_M \xi(h) \frac{\omega^n}{n!},$$

where $V = \int_M \frac{\omega^n}{n!}$ is the volume of the manifold.

- (Futaki) $\text{Fut}(M, \xi)$ does not depend on the specific metric $\omega \in 2\pi c_1(M)$, and hence is an invariant of a Fano manifold.
- It vanishes if the Fano manifold admits a KE.

An analytic obstruction : Futaki invariant

- Let M be a Fano manifold, that is $c_1(M) > 0$, and let $\omega \in 2\pi c_1(M)$ be a Kähler metric.
- Since $[\rho_\omega] = [\omega]$, there exists an $h \in C^\infty(M, \mathbb{R})$, called the Ricci potential, such that

$$\rho_\omega = \omega + \sqrt{-1} \partial \bar{\partial} h.$$

- Let $\eta(M) = \{\text{hol. vector fields on } M\}$, and define $\text{Fut} : \eta(M) \rightarrow \mathbb{C}$ by

$$\text{Fut}(M, \xi) = -\frac{1}{V} \int_M \xi(h) \frac{\omega^n}{n!},$$

where $V = \int_M \frac{\omega^n}{n!}$ is the volume of the manifold.

- (Futaki) $\text{Fut}(M, \xi)$ does not depend on the specific metric $\omega \in 2\pi c_1(M)$, and hence is an invariant of a Fano manifold.
- It vanishes if the Fano manifold admits a KE.

An analytic obstruction : Futaki invariant

- Let M be a Fano manifold, that is $c_1(M) > 0$, and let $\omega \in 2\pi c_1(M)$ be a Kähler metric.
- Since $[\rho_\omega] = [\omega]$, there exists an $h \in C^\infty(M, \mathbb{R})$, called the Ricci potential, such that

$$\rho_\omega = \omega + \sqrt{-1} \partial \bar{\partial} h.$$

- Let $\eta(M) = \{\text{hol. vector fields on } M\}$, and define $\text{Fut} : \eta(M) \rightarrow \mathbb{C}$ by

$$\text{Fut}(M, \xi) = -\frac{1}{V} \int_M \xi(h) \frac{\omega^n}{n!},$$

where $V = \int_M \frac{\omega^n}{n!}$ is the volume of the manifold.

- (Futaki) $\text{Fut}(M, \xi)$ does not depend on the specific metric $\omega \in 2\pi c_1(M)$, and hence is an invariant of a Fano manifold.
- It vanishes if the Fano manifold admits a KE.

An analytic obstruction : Futaki invariant

- Let M be a Fano manifold, that is $c_1(M) > 0$, and let $\omega \in 2\pi c_1(M)$ be a Kähler metric.
- Since $[\rho_\omega] = [\omega]$, there exists an $h \in C^\infty(M, \mathbb{R})$, called the Ricci potential, such that

$$\rho_\omega = \omega + \sqrt{-1} \partial \bar{\partial} h.$$

- Let $\eta(M) = \{\text{hol. vector fields on } M\}$, and define $\text{Fut} : \eta(M) \rightarrow \mathbb{C}$ by

$$\text{Fut}(M, \xi) = -\frac{1}{V} \int_M \xi(h) \frac{\omega^n}{n!},$$

where $V = \int_M \frac{\omega^n}{n!}$ is the volume of the manifold.

- (Futaki) $\text{Fut}(M, \xi)$ does not depend on the specific metric $\omega \in 2\pi c_1(M)$, and hence is an invariant of a Fano manifold.
- It vanishes if the Fano manifold admits a KE.

Futaki invariant (cont.)

Example

$Bl_p \mathbb{P}^2$ does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian '97) NO! Examples of Kähler three-folds (so called Mukai-Umemura manifolds) with $\eta(M) = \{0\}$ and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety. Key point.

- (Ding-Tian) The Futaki invariant can be defined on “sufficiently nice” singular varieties.
- (Donaldson) Algebro-geometric definition using Riemann-Roch.

Futaki invariant (cont.)

Example

$Bl_p \mathbb{P}^2$ does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian '97) NO! Examples of Kähler three-folds (so called Mukai-Umemura manifolds) with $\eta(M) = \{0\}$ and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety. Key point.

- (Ding-Tian) The Futaki invariant can be defined on “sufficiently nice” singular varieties.
- (Donaldson) Algebro-geometric definition using Riemann-Roch.

Futaki invariant (cont.)

Example

$Bl_p \mathbb{P}^2$ does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian '97) NO! Examples of Kähler three-folds (so called Mukai-Umemura manifolds) with $\eta(M) = \{0\}$ and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety.
Key point.

- (Ding-Tian) The Futaki invariant can be defined on “sufficiently nice” singular varieties.
- (Donaldson) Algebro-geometric definition using Riemann-Roch.

Futaki invariant (cont.)

Example

$Bl_p \mathbb{P}^2$ does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian '97) NO! Examples of Kähler three-folds (so called Mukai-Umemura manifolds) with $\eta(M) = \{0\}$ and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety.
Key point.

- (Ding-Tian) The Futaki invariant can be defined on “sufficiently nice” singular varieties.
- (Donaldson) Algebro-geometric definition using Riemann-Roch.

Futaki invariant (cont.)

Example

$Bl_p \mathbb{P}^2$ does not admit a KE. The Futaki does not vanish!

Question

Is this the only obstruction?

Answer

(Tian '97) NO! Examples of Kähler three-folds (so called Mukai-Umemura manifolds) with $\eta(M) = \{0\}$ and yet not admitting any KE.

In general one needs to allow the manifold to degenerate to a possibly singular variety.

Key point.

- (Ding-Tian) The Futaki invariant can be defined on “sufficiently nice” singular varieties.
- (Donaldson) Algebro-geometric definition using Riemann-Roch.

Futaki invariant of a degeneration

- Since $c_1(M) > 0$, K_M^{-1} is ample, so there is a Kodaira embedding $M \hookrightarrow \mathbb{P}^N$ for some large N .
- A special degeneration is a one-parameter subgroup $\lambda : \mathbb{C}^* \rightarrow GL(N, \mathbb{C})$ generated by the holomorphic vector field $\xi \in \mathfrak{gl}(N, \mathbb{C})$, such that the flat limit

$$W = \lim_{t \rightarrow 0} \lambda(t) \cdot M$$

is a normal \mathbb{Q} -Fano variety. Note that ξ is tangential to W .

• The Futaki invariant of W is given by

$\text{Fut}(W) = \int_W \text{Fut}(M) \cdot \omega_W$

Futaki invariant of a degeneration

- Since $c_1(M) > 0$, K_M^{-1} is ample, so there is a Kodaira embedding $M \hookrightarrow \mathbb{P}^N$ for some large N .

- A special degeneration is a one-parameter subgroup $\lambda : \mathbb{C}^* \rightarrow GL(N, \mathbb{C})$ generated by the holomorphic vector field $\xi \in \mathfrak{gl}(N, \mathbb{C})$, such that the flat limit

$$W = \lim_{t \rightarrow 0} \lambda(t) \cdot M$$

is a normal \mathbb{Q} -Fano variety. Note that ξ is tangential to W .

- We define the Futaki invariant for this degeneration by

$$\text{Fut}(M, \lambda) = \text{Fut}(W, \xi).$$

Futaki invariant of a degeneration

- Since $c_1(M) > 0$, K_M^{-1} is ample, so there is a Kodaira embedding $M \hookrightarrow \mathbb{P}^N$ for some large N .

- A special degeneration is a one-parameter subgroup $\lambda : \mathbb{C}^* \rightarrow GL(N, \mathbb{C})$ generated by the holomorphic vector field $\xi \in \mathfrak{gl}(N, \mathbb{C})$, such that the flat limit

$$W = \lim_{t \rightarrow 0} \lambda(t) \cdot M$$

is a normal \mathbb{Q} -Fano variety. Note that ξ is tangential to W .

- We define the Futaki invariant for this degeneration by

$$\text{Fut}(M, \lambda) = \text{Fut}(W, \xi).$$

Futaki invariant of a degeneration

- Since $c_1(M) > 0$, K_M^{-1} is ample, so there is a Kodaira embedding $M \hookrightarrow \mathbb{P}^N$ for some large N .

- A special degeneration is a one-parameter subgroup $\lambda : \mathbb{C}^* \rightarrow GL(N, \mathbb{C})$ generated by the holomorphic vector field $\xi \in \mathfrak{gl}(N, \mathbb{C})$, such that the flat limit

$$W = \lim_{t \rightarrow 0} \lambda(t) \cdot M$$

is a normal \mathbb{Q} -Fano variety. Note that ξ is tangential to W .

- We define the Futaki invariant for this degeneration by

$$\text{Fut}(M, \lambda) = \text{Fut}(W, \xi).$$

Definition

M is called K -semistable if for any Kodaira embedding, and any special degeneration λ , $\text{Fut}(M, \lambda) \geq 0$. It is called K -stable if in addition, $\text{Fut}(M, \lambda) = 0$ if and only if there exists a $A \in GL(N, \mathbb{C})$ such that $W = A \cdot M$.

If $G \subset Aut(M)$, then G acts naturally on K_M^{-1} , and hence can be identified as a subgroup $G \subset GL(N, \mathbb{C})$ for any Kodaira embedding $M \hookrightarrow \mathbb{P}^N$.

Definition

We say $\lambda(t)$ is a G -equivariant special degeneration, if $\lambda(t) : \mathbb{C}^* \rightarrow GL(N, \mathbb{C})^G$, and we then analogously define G -equivariant K -(semi)stability with $A \in GL(N, \mathbb{C})^G$.

Heuristically,

Definition

M is called K -semistable if for any Kodaira embedding, and any special degeneration λ , $\text{Fut}(M, \lambda) \geq 0$. It is called K -stable if in addition, $\text{Fut}(M, \lambda) = 0$ if and only if there exists a $A \in GL(N, \mathbb{C})$ such that $W = A \cdot M$.

If $G \subset Aut(M)$, then G acts naturally on K_M^{-1} , and hence can be identified as a subgroup $G \subset GL(N, \mathbb{C})$ for any Kodaira embedding $M \hookrightarrow \mathbb{P}^N$.

Definition

We say $\lambda(t)$ is a G -equivariant special degeneration, if $\lambda(t) : \mathbb{C}^* \rightarrow GL(N, \mathbb{C})^G$, and we then analogously define G -equivariant K -(semi)stability with $A \in GL(N, \mathbb{C})^G$.

Heuristically,

Definition

M is called K -semistable if for any Kodaira embedding, and any special degeneration λ , $\text{Fut}(M, \lambda) \geq 0$. It is called K -stable if in addition, $\text{Fut}(M, \lambda) = 0$ if and only if there exists a $A \in GL(N, \mathbb{C})$ such that $W = A \cdot M$.

If $G \subset Aut(M)$, then G acts naturally on K_M^{-1} , and hence can be identified as a subgroup $G \subset GL(N, \mathbb{C})$ for any Kodaira embedding $M \hookrightarrow \mathbb{P}^N$.

Definition

We say $\lambda(t)$ is a G -equivariant special degeneration, if $\lambda(t) : \mathbb{C}^* \rightarrow GL(N, \mathbb{C})^G$, and we then analogously define G -equivariant K -(semi)stability with $A \in GL(N, \mathbb{C})^G$.

Heuristically,

Definition

M is called K -semistable if for any Kodaira embedding, and any special degeneration λ , $\text{Fut}(M, \lambda) \geq 0$. It is called K -stable if in addition, $\text{Fut}(M, \lambda) = 0$ if and only if there exists a $A \in GL(N, \mathbb{C})$ such that $W = A \cdot M$.

If $G \subset Aut(M)$, then G acts naturally on K_M^{-1} , and hence can be identified as a subgroup $G \subset GL(N, \mathbb{C})$ for any Kodaira embedding $M \hookrightarrow \mathbb{P}^N$.

Definition

We say $\lambda(t)$ is a G -equivariant special degeneration, if $\lambda(t) : \mathbb{C}^* \rightarrow GL(N, \mathbb{C})^G$, and we then analogously define G -equivariant K -(semi)stability with $A \in GL(N, \mathbb{C})^G$.

Heuristically,

Definition

M is called K -semistable if for any Kodaira embedding, and any special degeneration λ , $\text{Fut}(M, \lambda) \geq 0$. It is called K -stable if in addition, $\text{Fut}(M, \lambda) = 0$ if and only if there exists a $A \in GL(N, \mathbb{C})$ such that $W = A \cdot M$.

If $G \subset Aut(M)$, then G acts naturally on K_M^{-1} , and hence can be identified as a subgroup $G \subset GL(N, \mathbb{C})$ for any Kodaira embedding $M \hookrightarrow \mathbb{P}^N$.

Definition

We say $\lambda(t)$ is a G -equivariant special degeneration, if $\lambda(t) : \mathbb{C}^* \rightarrow GL(N, \mathbb{C})^G$, and we then analogously define G -equivariant K -(semi)stability with $A \in GL(N, \mathbb{C})^G$.

Heuristically,

Figure: K -semistable.

Figure: K -stable.

Example

- Consider the embedding

$$\mathbb{P}^1 \hookrightarrow \mathbb{P}^2$$

$$[\xi_0, \xi_1] \mapsto [\xi_0^2, \xi_0 \xi_1, \xi_1^2].$$

The image M is the conic $y^2 - xz = 0$ in \mathbb{P}^2 .

- If we let

$$\lambda(t) = \begin{pmatrix} t & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

then $M_t = \lambda(t) \cdot M$, is given by the conic $t^2 y^2 - t^{-1} xz = 0$, and so the flat limit $W = (xz = 0)$.

- One can then compute that

$$\text{Fut}(M, \lambda) = \frac{3}{2}.$$

Example

- Consider the embedding

$$\mathbb{P}^1 \hookrightarrow \mathbb{P}^2$$

$$[\xi_0, \xi_1] \mapsto [\xi_0^2, \xi_0 \xi_1, \xi_1^2].$$

The image M is the conic $y^2 - xz = 0$ in \mathbb{P}^2 .

- If we let

$$\lambda(t) = \begin{pmatrix} t & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

then $M_t = \lambda(t) \cdot M$, is given by the conic $t^2 y^2 - t^{-1} xz = 0$, and so the flat limit $W = (xz = 0)$.

- One can then compute that

$$\text{Fut}(M, \lambda) = \frac{3}{2}.$$

Example

- Consider the embedding

$$\mathbb{P}^1 \hookrightarrow \mathbb{P}^2$$

$$[\xi_0, \xi_1] \mapsto [\xi_0^2, \xi_0 \xi_1, \xi_1^2].$$

The image M is the conic $y^2 - xz = 0$ in \mathbb{P}^2 .

- If we let

$$\lambda(t) = \begin{pmatrix} t & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

then $M_t = \lambda(t) \cdot M$, is given by the conic $t^2 y^2 - t^{-1} xz = 0$, and so the flat limit $W = (xz = 0)$.

- One can then compute that

$$\text{Fut}(M, \lambda) = \frac{3}{2}.$$

Example

- Consider the embedding

$$\mathbb{P}^1 \hookrightarrow \mathbb{P}^2$$

$$[\xi_0, \xi_1] \mapsto [\xi_0^2, \xi_0 \xi_1, \xi_1^2].$$

The image M is the conic $y^2 - xz = 0$ in \mathbb{P}^2 .

- If we let

$$\lambda(t) = \begin{pmatrix} t & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

then $M_t = \lambda(t) \cdot M$, is given by the conic $t^2 y^2 - t^{-1} xz = 0$, and so the flat limit $W = (xz = 0)$.

- One can then compute that

$$\text{Fut}(M, \lambda) = \frac{3}{2}.$$

Example

- Consider the embedding

$$\mathbb{P}^1 \hookrightarrow \mathbb{P}^2$$

$$[\xi_0, \xi_1] \mapsto [\xi_0^2, \xi_0 \xi_1, \xi_1^2].$$

The image M is the conic $y^2 - xz = 0$ in \mathbb{P}^2 .

- If we let

$$\lambda(t) = \begin{pmatrix} t & 0 & 0 \\ 0 & t^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

then $M_t = \lambda(t) \cdot M$, is given by the conic $t^2 y^2 - t^{-1} xz = 0$, and so the flat limit $W = (xz = 0)$.

- One can then compute that

$$\text{Fut}(M, \lambda) = \frac{3}{2}.$$

Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G -equivariantly K-stable with respect to special degenerations.

Example

Toric manifolds. Recall that M is toric if there is an effective holomorphic action of $(\mathbb{C}^*)^n$ with a free, open, dense orbit.

Theorem (Wang-Zhu, 2003)

M admits KE \iff the classical Futaki invariant vanishes.

Proof.

\implies is true in general. For converse, let $G = (S^1)^n$. One can show that all equivariant degenerations are trivial, and since the classical Futaki is zero by hypothesis, M is equivariantly K-stable. By main theorem, it admits KE. □

Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G -equivariantly K-stable with respect to special degenerations.

Example

Toric manifolds. Recall that M is toric if there is an effective holomorphic action of $(\mathbb{C}^*)^n$ with a free, open, dense orbit.

Theorem (Wang-Zhu, 2003)

M admits KE \iff the classical Futaki invariant vanishes.

Proof.

\implies is true in general. For converse, let $G = (S^1)^n$. One can show that all equivariant degenerations are trivial, and since the classical Futaki is zero by hypothesis, M is equivariantly K-stable. By main theorem, it admits KE. □

Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G -equivariantly K-stable with respect to special degenerations.

Example

Toric manifolds. Recall that M is toric if there is an effective holomorphic action of $(\mathbb{C}^*)^n$ with a free, open, dense orbit.

Theorem (Wang-Zhu, 2003)

M admits KE \iff the classical Futaki invariant vanishes.

Proof.

\implies is true in general. For converse, let $G = (S^1)^n$. One can show that all equivariant degenerations are trivial, and since the classical Futaki is zero by hypothesis, M is equivariantly K-stable. By main theorem, it admits KE. □

Applications of the main theorem

Main Theorem (D.-Szekelyhidi [4], 2015)

Let $G \subset \text{Aut}(M)$ be a compact group. Then M admits a KE if it is G -equivariantly K-stable with respect to special degenerations.

Example

Toric manifolds. Recall that M is toric if there is an effective holomorphic action of $(\mathbb{C}^*)^n$ with a free, open, dense orbit.

Theorem (Wang-Zhu, 2003)

M admits KE \iff the classical Futaki invariant vanishes.

Proof.

\implies is true in general. For converse, let $G = (S^1)^n$. One can show that all equivariant degenerations are trivial, and since the classical Futaki is zero by hypothesis, M is equivariantly K-stable. By main theorem, it admits KE. □

Example

T -varieties with complexity one. (Ilten-Suss [6]) eg.- *threefolds with an effective action of $(\mathbb{C}^*)^2$. Then with $G = (S^1)^2$, all equivariant degenerations are either trivial or have a toric variety as central fiber. Ilten-Suss computed the Futaki invariants, and classified the equivariant K -stable ones.*

Concretely, $Q \subset \mathbb{P}^4$ be a quadric, and let M be the blow-up along a conic. This admits a KE, and the only known proof is via the main theorem.

Example

T -varieties with complexity one. (Ilten-Suss [6]) eg.- threefolds with an effective action of $(\mathbb{C}^*)^2$. Then with $G = (S^1)^2$, all equivariant degenerations are either trivial or have a toric variety as central fiber. Ilten-Suss computed the Futaki invariants, and classified the equivariant K -stable ones.

Concretely, $Q \subset \mathbb{P}^4$ be a quadric, and let M be the blow-up along a conic. This admits a KE, and the only known proof is via the main theorem.

Example

T -varieties with complexity one. (Ilten-Suss [6]) eg.- threefolds with an effective action of $(\mathbb{C}^*)^2$. Then with $G = (S^1)^2$, all equivariant degenerations are either trivial or have a toric variety as central fiber. Ilten-Suss computed the Futaki invariants, and classified the equivariant K -stable ones.

Concretely, $Q \subset \mathbb{P}^4$ be a quadric, and let M be the blow-up along a conic. This admits a KE, and the only known proof is via the main theorem.

1 Introduction: Some history and the main theorem

2 K -stability

3 Outline of the proof

4 What next?

Continuity method

Let $\alpha \in 2\pi c_1(M)$ be a Kähler metric invariant under G , and consider the equation

$$Ric(\omega_t) = t\omega_t + (1-t)\alpha. \quad (3.1)$$

Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

$$I = \{t \in [0, 1] \mid (3.1) \text{ has a solution}\}.$$

To show $1 \in I$, it is enough to show

- $0 \in I$,
- I is open in $[0, 1]$,
- I is closed.

Continuity method

Let $\alpha \in 2\pi c_1(M)$ be a Kähler metric invariant under G , and consider the equation

$$Ric(\omega_t) = t\omega_t + (1-t)\alpha. \quad (3.1)$$

Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

$$I = \{t \in [0, 1] \mid (3.1) \text{ has a solution}\}.$$

To show $1 \in I$, it is enough to show

- $0 \in I$,
- I is open in $[0, 1]$,
- I is closed.

Continuity method

Let $\alpha \in 2\pi c_1(M)$ be a Kähler metric invariant under G , and consider the equation

$$Ric(\omega_t) = t\omega_t + (1-t)\alpha. \quad (3.1)$$

Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

$$I = \{t \in [0, 1] \mid (3.1) \text{ has a solution}\}.$$

To show $1 \in I$, it is enough to show

- $0 \in I$,
- I is open in $[0, 1]$,
- I is closed.

Continuity method

Let $\alpha \in 2\pi c_1(M)$ be a Kähler metric invariant under G , and consider the equation

$$Ric(\omega_t) = t\omega_t + (1-t)\alpha. \quad (3.1)$$

Here, and henceforth, we will be using the notation Ric to also denote the Ricci form. Let

$$I = \{t \in [0, 1] \mid (3.1) \text{ has a solution}\}.$$

To show $1 \in I$, it is enough to show

- $0 \in I$,
- I is open in $[0, 1]$,
- I is closed.

An interjection: The Donaldson continuity method

- Chen-Donaldson-Sun consider the following continuity method instead

$$Ric(\omega_\beta) = \beta \omega_\beta + \frac{1-\beta}{m} [D].$$

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in $|-mK_M|$

- The metrics ω_β have conical singularities along the divisor D .
- Disadvantages -
 - (Song-Wang) NO smooth G invariant divisors unless G is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax D to be only simple normal-crossing, then the above equation in most cases does not have a solution.
- Advantage – exploiting K -stability, but more about this later....

An interjection: The Donaldson continuity method

- Chen-Donaldson-Sun consider the following continuity method instead

$$Ric(\omega_\beta) = \beta \omega_\beta + \frac{1-\beta}{m} [D].$$

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in $|-mK_M|$

- The metrics ω_β have conical singularities along the divisor D .
- Disadvantages -
 - (Song-Wang) NO smooth G invariant divisors unless G is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax D to be only simple-normal-crossing, then the above equation in most cases does not have a solution.
- Advantage – exploiting K -stability, but more about this later....

An interjection: The Donaldson continuity method

- Chen-Donaldson-Sun consider the following continuity method instead

$$Ric(\omega_\beta) = \beta \omega_\beta + \frac{1-\beta}{m} [D].$$

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in $|-mK_M|$

- The metrics ω_β have conical singularities along the divisor D .
- Disadvantages -
 - (Song-Wang) NO smooth G invariant divisors unless G is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax D to be only simple-normal-crossing, then the above equation in most cases does not have a solution.
- Advantage - exploiting K -stability, but more about this later....

An interjection: The Donaldson continuity method

- Chen-Donaldson-Sun consider the following continuity method instead

$$Ric(\omega_\beta) = \beta \omega_\beta + \frac{1-\beta}{m} [D].$$

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in $|-mK_M|$

- The metrics ω_β have conical singularities along the divisor D .
- Disadvantages -
 - (Song-Wang) NO smooth G invariant divisors unless G is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax D to be only simple-normal-crossing, then the above equation in most cases does not have a solution.
- Advantage - exploiting K -stability, but more about this later....

An interjection: The Donaldson continuity method

- Chen-Donaldson-Sun consider the following continuity method instead

$$Ric(\omega_\beta) = \beta \omega_\beta + \frac{1-\beta}{m} [D].$$

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in $|-mK_M|$

- The metrics ω_β have conical singularities along the divisor D .
- Disadvantages -
 - (Song-Wang) NO smooth G invariant divisors unless G is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax D to be only simple-normal-crossing, then the above equation in most cases does not have a solution.
- Advantage - exploiting K -stability, but more about this later....

An interjection: The Donaldson continuity method

- Chen-Donaldson-Sun consider the following continuity method instead

$$Ric(\omega_\beta) = \beta \omega_\beta + \frac{1-\beta}{m} [D].$$

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in $|-mK_M|$

- The metrics ω_β have conical singularities along the divisor D .
- Disadvantages -
 - (Song-Wang) NO smooth G invariant divisors unless G is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax D to be only simple-normal-crossing, then the above equation in most cases does not have a solution.
- Advantage - exploiting K -stability, but more about this later.....

An interjection: The Donaldson continuity method

- Chen-Donaldson-Sun consider the following continuity method instead

$$Ric(\omega_\beta) = \beta \omega_\beta + \frac{1-\beta}{m} [D].$$

Here D is some smooth co-dimension 1 sub-variety (smooth divisor) in $|-mK_M|$

- The metrics ω_β have conical singularities along the divisor D .
- Disadvantages -
 - (Song-Wang) NO smooth G invariant divisors unless G is finite.
 - (Song-Wang, D.-Guo-Song-Wang) If we relax D to be only simple-normal-crossing, then the above equation in most cases does not have a solution.
- Advantage - exploiting K -stability, but more about this later.....

PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation :

$$\begin{cases} (\alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t)^n = e^{-t\varphi_t+h}\alpha^n \\ \omega_t := \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t > 0, \end{cases} \quad (3.2)$$

where h is the Ricci potential of the form α .

- At $t = 0$, we need to solve $Ric(\omega_0) = \alpha$, where α is a given positive form. This is precisely the Calabi conjecture solved by Yau [8].
- (Openness) The linearization of the equation is given by

$$\Delta_{\omega_t} + t.$$

If $t < 1$, then $Ric(\omega_t) > t\omega_t$, and a Bochner-type argument shows that $\lambda_1(\Delta_{\omega_t}) > t$. Hence the operator above is invertible, and implicit function theorem \implies openness.

PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation :

$$\begin{cases} (\alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t)^n = e^{-t\varphi_t+h}\alpha^n \\ \omega_t := \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t > 0, \end{cases} \quad (3.2)$$

where h is the Ricci potential of the form α .

- At $t = 0$, we need to solve $Ric(\omega_0) = \alpha$, where α is a given positive form. This is precisely the Calabi conjecture solved by Yau [8].
- (Openness) The linearization of the equation is given by

$$\Delta_{\omega_t} + t.$$

If $t < 1$, then $Ric(\omega_t) > t\omega_t$, and a Bochner-type argument shows that $\lambda_1(\Delta_{\omega_t}) > t$. Hence the operator above is invertible, and implicit function theorem \implies openness.

PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation :

$$\begin{cases} (\alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t)^n = e^{-t\varphi_t+h}\alpha^n \\ \omega_t := \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t > 0, \end{cases} \quad (3.2)$$

where h is the Ricci potential of the form α .

- At $t = 0$, we need to solve $Ric(\omega_0) = \alpha$, where α is a given positive form. This is precisely the Calabi conjecture solved by Yau [8].
- (Openness) The linearization of the equation is given by

$$\Delta_{\omega_t} + t.$$

If $t < 1$, then $Ric(\omega_t) > t\omega_t$, and a Bochner-type argument shows that $\lambda_1(\Delta_{\omega_t}) > t$. Hence the operator above is invertible, and implicit function theorem \implies openness.

PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation :

$$\begin{cases} (\alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t)^n = e^{-t\varphi_t+h}\alpha^n \\ \omega_t := \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t > 0, \end{cases} \quad (3.2)$$

where h is the Ricci potential of the form α .

- At $t = 0$, we need to solve $Ric(\omega_0) = \alpha$, where α is a given positive form. This is precisely the Calabi conjecture solved by Yau [8].
- (Openness) The linearization of the equation is given by

$$\Delta_{\omega_t} + t.$$

If $t < 1$, then $Ric(\omega_t) > t\omega_t$, and a Bochner-type argument shows that $\lambda_1(\Delta_{\omega_t}) > t$. Hence the operator above is invertible, and implicit function theorem \implies openness.

PDE aspect

We can recast the equation (3.1) into the following complex Monge-Ampere equation :

$$\begin{cases} (\alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t)^n = e^{-t\varphi_t+h}\alpha^n \\ \omega_t := \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_t > 0, \end{cases} \quad (3.2)$$

where h is the Ricci potential of the form α .

- At $t = 0$, we need to solve $Ric(\omega_0) = \alpha$, where α is a given positive form. This is precisely the Calabi conjecture solved by Yau [8].
- (Openness) The linearization of the equation is given by

$$\Delta_{\omega_t} + t.$$

If $t < 1$, then $Ric(\omega_t) > t\omega_t$, and a Bochner-type argument shows that $\lambda_1(\Delta_{\omega_t}) > t$. Hence the operator above is invertible, and implicit function theorem \implies openness.

- (Closedness) From *a priori* estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every A and $k \in \mathbb{N}$, there exists constants C_k such that

$$\|\varphi_t\|_{C^0} \leq A \implies \|\varphi_t\|_{C^k} \leq C_k.$$

- So to complete the proof we “only” need uniform C^0 estimates. This is where K -stability comes in.

From now on, let $t_k \rightarrow T$ where $t_k \in I$. We need to show that $T \in I$. For ease of notation, let $\omega_k = \omega_k = \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_k$, and g_k the corresponding Riemannian metric. We can assume that $t_k \geq t_0$ for some fixed t_0 . We also assume that $T < 1$, since if $T = 1$, the exact same proof of Chen-Donaldson-Sun also works in our case.

- (Closedness) From *a priori* estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every A and $k \in \mathbb{N}$, there exists constants C_k such that

$$\|\varphi_t\|_{C^0} \leq A \implies \|\varphi_t\|_{C^k} \leq C_k.$$

- So to complete the proof we “only” need uniform C^0 estimates. This is where K -stability comes in.

From now on, let $t_k \rightarrow T$ where $t_k \in I$. We need to show that $T \in I$. For ease of notation, let $w_k = w_{t_k} = \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_k$, and g_k the corresponding Riemannian metric. We can assume that $t_k \geq t_0$ for some fixed t_0 . We also assume that $T < 1$, since if $T = 1$, the exact same proof of Chen-Donaldson-Sun also works in our case.

- (Closedness) From *a priori* estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every A and $k \in \mathbb{N}$, there exists constants C_k such that

$$\|\varphi_t\|_{C^0} \leq A \implies \|\varphi_t\|_{C^k} \leq C_k.$$

- So to complete the proof we “only” need uniform C^0 estimates. This is where K -stability comes in.

From now on, let $t_k \rightarrow T$ where $t_k \in I$. We need to show that $T \in I$. For ease of notation, let $\omega_k = \omega_{t_k} = \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_k$, and g_k the corresponding Riemannian metric. We can assume that $t_k \geq t_0$ for some fixed t_0 . We also assume that $T < 1$, since if $T = 1$, the exact same proof of Chen-Donaldson-Sun also works in our case.

- (Closedness) From *a priori* estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every A and $k \in \mathbb{N}$, there exists constants C_k such that

$$\|\varphi_t\|_{C^0} \leq A \implies \|\varphi_t\|_{C^k} \leq C_k.$$

- So to complete the proof we “only” need uniform C^0 estimates. This is where K -stability comes in.

From now on, let $t_k \rightarrow T$ where $t_k \in I$. We need to show that $T \in I$. For ease of notation, let $\omega_k = \omega_{t_k} = \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_k$, and g_k the corresponding Riemannian metric. We can assume that $t_k \geq t_0$ for some fixed t_0 . We also assume that $T < 1$, since if $T = 1$, the exact same proof of Chen-Donaldson-Sun also works in our case.

- (Closedness) From *a priori* estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every A and $k \in \mathbb{N}$, there exists constants C_k such that

$$\|\varphi_t\|_{C^0} \leq A \implies \|\varphi_t\|_{C^k} \leq C_k.$$

- So to complete the proof we “only” need uniform C^0 estimates. This is where K -stability comes in.

From now on, let $t_k \rightarrow T$ where $t_k \in I$. We need to show that $T \in I$. For ease of notation, let $\omega_k = \omega_{t_k} = \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_k$, and g_k the corresponding Riemannian metric. We can assume that $t_k \geq t_0$ for some fixed t_0 . We also assume that $T < 1$, since if $T = 1$, the exact same proof of Chen-Donaldson-Sun also works in our case.

- (Closedness) From *a priori* estimates and Arzela-Ascoli.

Proposition (Aubin and Yau, 1970s)

For every A and $k \in \mathbb{N}$, there exists constants C_k such that

$$\|\varphi_t\|_{C^0} \leq A \implies \|\varphi_t\|_{C^k} \leq C_k.$$

- So to complete the proof we “only” need uniform C^0 estimates. This is where K -stability comes in.

From now on, let $t_k \rightarrow T$ where $t_k \in I$. We need to show that $T \in I$. For ease of notation, let $\omega_k = \omega_{t_k} = \alpha + \sqrt{-1}\partial\bar{\partial}\varphi_k$, and g_k the corresponding Riemannian metric. We can assume that $t_k \geq t_0$ for some fixed t_0 . We also assume that $T < 1$, since if $T = 1$, the exact same proof of Chen-Donaldson-Sun also works in our case.

Gromov-Hausdorff convergence

- The metrics satisfy

- ➊ $\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n.$

- ➋ $\text{Ric}(g_k) \geq t_0 g_k.$

- ➌ (Meyers') $\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$

- ➍ (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,

$$|B_r| \geq \kappa r^{2n}.$$

- (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.
- Z is a candidate for the central fiber of a destabilizing special degeneration.
- But Z needs to be a “sufficiently nice” algebraic variety, and there should be \mathbb{C}^* -special degeneration of M to Z .

Gromov-Hausdorff convergence

- The metrics satisfy

- ➊ $\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n.$

- ➋ $\text{Ric}(g_k) \geq t_0 g_k.$

- ➌ (Meyers') $\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$

- ➍ (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,

$$|B_r| \geq \kappa r^{2n}.$$

- (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.
- Z is a candidate for the central fiber of a destabilizing special degeneration.
- But Z needs to be a “sufficiently nice” algebraic variety, and there should be \mathbb{C}^* -special degeneration of M to Z .

Gromov-Hausdorff convergence

- The metrics satisfy

$$① \text{ Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n.$$

$$② \text{ Ric}(g_k) \geq t_0 g_k.$$

$$③ \text{ (Meyers')} \text{ diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$$

④ (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,

$$|B_r| \geq \kappa r^{2n}.$$

- (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.
- Z is a candidate for the central fiber of a destabilizing special degeneration.
- But Z needs to be a “sufficiently nice” algebraic variety, and there should be \mathbb{C}^* -special degeneration of M to Z .

Gromov-Hausdorff convergence

- The metrics satisfy

- ➊ $\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n.$

- ➋ $\text{Ric}(g_k) \geq t_0 g_k.$

- ➌ (Meyers') $\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$

- ➍ (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,

$$|B_r| \geq \kappa r^{2n}.$$

- (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.
- Z is a candidate for the central fiber of a destabilizing special degeneration.
- But Z needs to be a “sufficiently nice” algebraic variety, and there should be \mathbb{C}^* -special degeneration of M to Z .

Gromov-Hausdorff convergence

- The metrics satisfy

- ➊ $\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n.$

- ➋ $\text{Ric}(g_k) \geq t_0 g_k.$

- ➌ (Meyers') $\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$

- ➍ (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,

$$|B_r| \geq \kappa r^{2n}.$$

- (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.
- Z is a candidate for the central fiber of a destabilizing special degeneration.
- But Z needs to be a “sufficiently nice” algebraic variety, and there should be \mathbb{C}^* -special degeneration of M to Z .

Gromov-Hausdorff convergence

- The metrics satisfy

- ➊ $\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n.$

- ➋ $\text{Ric}(g_k) \geq t_0 g_k.$

- ➌ (Meyers') $\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$

- ➍ (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,

$$|B_r| \geq \kappa r^{2n}.$$

- (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.
- Z is a candidate for the central fiber of a destabilizing special degeneration.
- But Z needs to be a “sufficiently nice” algebraic variety, and there should be \mathbb{C}^* -special degeneration of M to Z .

Gromov-Hausdorff convergence

- The metrics satisfy

- ➊ $\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n.$

- ➋ $\text{Ric}(g_k) \geq t_0 g_k.$

- ➌ (Meyers') $\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$

- ➍ (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,

$$|B_r| \geq \kappa r^{2n}.$$

- (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.
- Z is a candidate for the central fiber of a destabilizing special degeneration.
- But Z needs to be a “sufficiently nice” algebraic variety, and there should be \mathbb{C}^* -special degeneration of M to Z .

Gromov-Hausdorff convergence

- The metrics satisfy

- ➊ $\text{Vol}(M, g_k) = V := \frac{(2\pi)^n}{n!} c_1(M)^n.$

- ➋ $\text{Ric}(g_k) \geq t_0 g_k.$

- ➌ (Meyers') $\text{diam}(M, g_k) \leq \pi \sqrt{\frac{2n-1}{t_0}}$

- ➍ (Volume non-collapse) There exists $\kappa > 0$ such that for any ball of radius $r < \text{diam}(M, g_k)$,

$$|B_r| \geq \kappa r^{2n}.$$

- (Gromov) The sequence of Riemannian manifolds $(M, g_k) \xrightarrow{G-H} (Z, d)$, where (Z, d) is a compact metric length space.
- Z is a candidate for the central fiber of a destabilizing special degeneration.
- But Z needs to be a “sufficiently nice” algebraic variety, and there should be \mathbb{C}^* -special degeneration of M to Z .

Metric geometry to algebraic geometry : Partial C^0 -estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian when $n = 2$.

Theorem (Donaldson-Sun (for KE) [5], Székelyhidi (in the present context) [7])

There exists a uniform m , and embeddings $F_k : M \hookrightarrow \mathbb{P}^N$ by sections of $H^0(M, K_M^{-m})$ with the following properties

- ① F_k are uniformly Lipschitz.
- ② $F_k(M)$ converge to a \mathbb{Q} -Fano normal flat limit W , and the maps F_k converge to a homeomorphism $F : Z \rightarrow W$.
- ③ (partial C^0 estimate) There exists a uniform constant C such that

$$\omega_k = \frac{1}{m} F_k^* \omega_F + \sqrt{-1} \partial \bar{\partial} \psi_k,$$

with $|\psi_k|_{C^0}, |\nabla \psi_k| < C$.

- ④ $F_k(\alpha)$ converge weakly to a closed current β supported on W .

Metric geometry to algebraic geometry : Partial C^0 -estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian when $n = 2$.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m , and embeddings $F_k : M \hookrightarrow \mathbb{P}^N$ by sections of $H^0(M, K_M^{-m})$ with the following properties

- ① F_k are uniformly Lipschitz.
- ② $F_k(M)$ converge to a \mathbb{Q} -Fano normal flat limit W , and the maps F_k converge to a homeomorphism $F : Z \rightarrow W$.
- ③ (partial C^0 estimate) There exists a uniform constant C such that

$$\omega_k = \frac{1}{m} F_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k,$$

with $|\psi_k|_{C^0}, |\nabla \psi_k| < C$.

- ④ $F_k(\alpha)$ converge weakly to a closed current β supported on W .

Metric geometry to algebraic geometry : Partial C^0 -estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian when $n = 2$.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m , and embeddings $F_k : M \hookrightarrow \mathbb{P}^N$ by sections of $H^0(M, K_M^{-m})$ with the following properties

- ① F_k are uniformly Lipschitz.
- ② $F_k(M)$ converge to a \mathbb{Q} -Fano normal flat limit W , and the maps F_k converge to a homeomorphism $F : Z \rightarrow W$.
- ③ (partial C^0 estimate) There exists a uniform constant C such that

$$\omega_k = \frac{1}{m} F_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k,$$

with $|\psi_k|_{C^0}, |\nabla \psi_k| < C$.

- ④ $F_k(\alpha)$ converge weakly to a closed current β supported on W .

Metric geometry to algebraic geometry : Partial C^0 -estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian when $n = 2$.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m , and embeddings $F_k : M \hookrightarrow \mathbb{P}^N$ by sections of $H^0(M, K_M^{-m})$ with the following properties

- ① F_k are uniformly Lipschitz.
- ② $F_k(M)$ converge to a \mathbb{Q} -Fano normal flat limit W , and the maps F_k converge to a homeomorphism $F : Z \rightarrow W$.
- ③ (partial C^0 estimate) There exists a uniform constant C such that

$$\omega_k = \frac{1}{m} F_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k,$$

with $|\psi_k|_{C^0}, |\nabla \psi_k| < C$.

- ④ $F_k(\alpha)$ converge weakly to a closed current β supported on W .

Metric geometry to algebraic geometry : Partial C^0 -estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian when $n = 2$.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m , and embeddings $F_k : M \hookrightarrow \mathbb{P}^N$ by sections of $H^0(M, K_M^{-m})$ with the following properties

- ① F_k are uniformly Lipschitz.
- ② $F_k(M)$ converge to a \mathbb{Q} -Fano normal flat limit W , and the maps F_k converge to a homeomorphism $F : Z \rightarrow W$.
- ③ (partial C^0 estimate) There exists a uniform constant C such that

$$\omega_k = \frac{1}{m} F_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k,$$

with $|\psi_k|_{C^0}, |\nabla \psi_k| < C$.

- ④ $F_k(\alpha)$ converge weakly to a closed current β supported on W .

Metric geometry to algebraic geometry : Partial C^0 -estimate

The following theorem was conjectured by Yau, and made precise, and proved by Tian when $n = 2$.

Theorem (Donaldson-Sun (for KE) [5], Szekelyhidi (in the present context) [7])

There exists a uniform m , and embeddings $F_k : M \hookrightarrow \mathbb{P}^N$ by sections of $H^0(M, K_M^{-m})$ with the following properties

- ① F_k are uniformly Lipschitz.
- ② $F_k(M)$ converge to a \mathbb{Q} -Fano normal flat limit W , and the maps F_k converge to a homeomorphism $F : Z \rightarrow W$.
- ③ (partial C^0 estimate) There exists a uniform constant C such that

$$\omega_k = \frac{1}{m} F_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k,$$

with $|\psi_k|_{C^0}, |\nabla \psi_k| < C$.

- ④ $F_k(\alpha)$ converge weakly to a closed current β supported on W .

- From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α . For simplicity, we assume that $\alpha = m^{-1}\omega_{FS} \Big|_M$.
- Let $\rho_k = F_k \circ F_1^{-1} \in GL^G$, and $M_k = \rho_k(M) \rightarrow W$. Also $\rho_k(\alpha) \rightarrow \beta$.
- The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and

$$\omega_k = \frac{1}{m} \rho_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k.$$

Proposition

After passing to a subsequence, $\rho_k \rightarrow g \in GL^G$.

Proof of main theorem.

Proposition \implies

$$\frac{1}{m} \rho_k^* \omega_{FS} - \frac{1}{m} \omega_{FS} = \sqrt{-1} \partial \bar{\partial} \nu_k$$

with $|\nu_k|_{C^0} < C$. Since $\omega_k = m^{-1}\omega_{FS} + \sqrt{-1} \partial \bar{\partial} \varphi_k$, $\varphi_k = \psi_k + \nu_k$, and so combined with partial C^1 , $|\varphi_k|_{C^1} < C$.

- From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α . For simplicity, we assume that $\alpha = m^{-1} \omega_{FS} \Big|_M$.
- Let $\rho_k = F_k \circ F_1^{-1} \in GL^G$, and $M_k = \rho_k(M) \rightarrow W$. Also $\rho_k(\alpha) \rightarrow \beta$.
- The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and

$$\omega_k = \frac{1}{m} \rho_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k.$$

Proposition

After passing to a subsequence, $\rho_k \rightarrow g \in GL^G$.

Proof of main theorem.

Proposition \implies

$$\frac{1}{m} \rho_k^* \omega_{FS} - \frac{1}{m} \omega_{FS} = \sqrt{-1} \partial \bar{\partial} \nu_k$$

with $|\nu_k|_{C^0} < C$. Since $\omega_k = m^{-1} \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \varphi_k$, $\varphi_k = \psi_k + \nu_k$, and so combined with partial C^1 , $|\varphi_k|_{C^1} < C$.

- From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α . For simplicity, we assume that $\alpha = m^{-1} \omega_{FS} \Big|_M$.
- Let $\rho_k = F_k \circ F_1^{-1} \in GL^G$, and $M_k = \rho_k(M) \rightarrow W$. Also $\rho_k(\alpha) \rightarrow \beta$.
- The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and

$$\omega_k = \frac{1}{m} \rho_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k.$$

Proposition

After passing to a subsequence, $\rho_k \rightarrow g \in GL^G$.

Proof of main theorem.

Proposition \implies

$$\frac{1}{m} \rho_k^* \omega_{FS} - \frac{1}{m} \omega_{FS} = \sqrt{-1} \partial \bar{\partial} \nu_k$$

with $|\nu_k|_{C^0} < C$. Since $\omega_k = m^{-1} \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \varphi_k$, $\varphi_k = \psi_k + \nu_k$, and so combined with partial C^0 , $|\varphi_k|_{C^0} < C$.

- From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α . For simplicity, we assume that $\alpha = m^{-1}\omega_{FS} \Big|_M$.
- Let $\rho_k = F_k \circ F_1^{-1} \in GL^G$, and $M_k = \rho_k(M) \rightarrow W$. Also $\rho_k(\alpha) \rightarrow \beta$.
- The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and

$$\omega_k = \frac{1}{m} \rho_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k.$$

Proposition

After passing to a subsequence, $\rho_k \rightarrow g \in GL^G$.

Proof of main theorem.

Proposition \implies

$$\frac{1}{m} \rho_k^* \omega_{FS} - \frac{1}{m} \omega_{FS} = \sqrt{-1} \partial \bar{\partial} \nu_k$$

with $|\nu_k|_{C^0} < C$. Since $\omega_k = m^{-1} \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \varphi_k$, $\varphi_k = \psi_k + \nu_k$, and so combined with partial C^0 , $|\varphi_k|_{C^0} < C$.

- From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α . For simplicity, we assume that $\alpha = m^{-1}\omega_{FS} \Big|_M$.
- Let $\rho_k = F_k \circ F_1^{-1} \in GL^G$, and $M_k = \rho_k(M) \rightarrow W$. Also $\rho_k(\alpha) \rightarrow \beta$.
- The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and

$$\omega_k = \frac{1}{m} \rho_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k.$$

Proposition

After passing to a subsequence, $\rho_k \rightarrow g \in GL^G$.

Proof of main theorem.

Proposition \implies

$$\frac{1}{m} \rho_k^* \omega_{FS} - \frac{1}{m} \omega_{FS} = \sqrt{-1} \partial \bar{\partial} \nu_k$$

with $|\nu_k|_{C^0} < C$. Since $\omega_k = m^{-1}\omega_{FS} + \sqrt{-1} \partial \bar{\partial} \varphi_k$, $\varphi_k = \psi_k + \nu_k$, and so combined with partial C^0 , $|\varphi_k|_{C^0} < C$.

- From now on, we denote $F_1(M)$ by M and $F_1(\alpha)$ by α . For simplicity, we assume that $\alpha = m^{-1}\omega_{FS} \Big|_M$.
- Let $\rho_k = F_k \circ F_1^{-1} \in GL^G$, and $M_k = \rho_k(M) \rightarrow W$. Also $\rho_k(\alpha) \rightarrow \beta$.
- The partial C^0 then says that there exists C such that $|\psi_k|_{C^0} < C$ and

$$\omega_k = \frac{1}{m} \rho_k^* \omega_{FS} + \sqrt{-1} \partial \bar{\partial} \psi_k.$$

Proposition

After passing to a subsequence, $\rho_k \rightarrow g \in GL^G$.

Proof of main theorem.

Proposition \implies

$$\frac{1}{m} \rho_k^* \omega_{FS} - \frac{1}{m} \omega_{FS} = \sqrt{-1} \partial \bar{\partial} \nu_k$$

with $|\nu_k|_{C^0} < C$. Since $\omega_k = m^{-1}\omega_{FS} + \sqrt{-1} \partial \bar{\partial} \varphi_k$, $\varphi_k = \psi_k + \nu_k$, and so combined with partial C^0 , $|\varphi_k|_{C^0} < C$.

Twisted KE on W

- The currents $\rho_k(\omega_k)$ converge weakly to a weak current ω_T supported on W solving the twisted KE equation on W in the weak sense -

$$\text{Ric}(\omega_T) = T\omega_T + (1 - T)\beta.$$

- Consequences -

- 1 “Aut(W, β)” is reductive.
- 2 The “twisted Futaki invariant”

$$\text{Fut}_{(1-T)\beta}(W, w) = 0$$

for all $w \in \text{aut}(W, \beta)$.

Twisted KE on W

- The currents $\rho_k(\omega_k)$ converge weakly to a weak current ω_T supported on W solving the twisted KE equation on W in the weak sense -

$$\text{Ric}(\omega_T) = T\omega_T + (1 - T)\beta.$$

- Consequences -

- ① “ $\text{Aut}(W, \beta)$ ” is reductive.
- ② The “twisted Futaki invariant”

$$\text{Fut}_{(1-T)\beta}(W, w) = 0$$

for all $w \in \text{aut}(W, \beta)$.

Twisted KE on W

- The currents $\rho_k(\omega_k)$ converge weakly to a weak current ω_T supported on W solving the twisted KE equation on W in the weak sense -

$$\text{Ric}(\omega_T) = T\omega_T + (1 - T)\beta.$$

- Consequences -

- ① “ $\text{Aut}(W, \beta)$ ” is reductive.
- ② The “twisted Futaki invariant”

$$\text{Fut}_{(1-T)\beta}(W, w) = 0$$

for all $w \in \text{aut}(W, \beta)$.

Twisted KE on W

- The currents $\rho_k(\omega_k)$ converge weakly to a weak current ω_T supported on W solving the twisted KE equation on W in the weak sense -

$$\text{Ric}(\omega_T) = T\omega_T + (1 - T)\beta.$$

- Consequences -

- ① “ $\text{Aut}(W, \beta)$ ” is reductive.
- ② The “twisted Futaki invariant”

$$\text{Fut}_{(1-T)\beta}(W, w) = 0$$

for all $w \in \text{aut}(W, \beta)$.

Key difficulty

- W is in the GL^G orbit closure but might not be accessible by \mathbb{C}^* .
- If one could embed all such pairs (W, β) into a large finite dimensional projective, then since the stabilizer is reductive, one could use Luna slice theorem.
- Unfortunately the space of pairs (W, β) is infinite dimensional. Here the CDS continuity method has an advantage.
- Key idea. Approximate β by divisors.

Key difficulty

- W is in the GL^G orbit closure but might not be accessible by \mathbb{C}^* .
- If one could embed all such pairs (W, β) into a large finite dimensional projective, then since the stabilizer is reductive, one could use Luna slice theorem.
- Unfortunately the space of pairs (W, β) is infinite dimensional. Here the CDS continuity method has an advantage.
- Key idea. Approximate β by divisors.

Key difficulty

- W is in the GL^G orbit closure but might not be accessible by \mathbb{C}^* .
- If one could embed all such pairs (W, β) into a large finite dimensional projective, then since the stabilizer is reductive, one could use Luna slice theorem.
- Unfortunately the space of pairs (W, β) is infinite dimensional. Here the CDS continuity method has an advantage.
- Key idea. Approximate β by divisors.

Key difficulty

- W is in the GL^G orbit closure but might not be accessible by \mathbb{C}^* .
- If one could embed all such pairs (W, β) into a large finite dimensional projective, then since the stabilizer is reductive, one could use Luna slice theorem.
- Unfortunately the space of pairs (W, β) is infinite dimensional. Here the CDS continuity method has an advantage.
- Key idea. Approximate β by divisors.

Key difficulty

- W is in the GL^G orbit closure but might not be accessible by \mathbb{C}^* .
- If one could embed all such pairs (W, β) into a large finite dimensional projective, then since the stabilizer is reductive, one could use Luna slice theorem.
- Unfortunately the space of pairs (W, β) is infinite dimensional. Here the CDS continuity method has an advantage.
- **Key idea.** Approximate β by divisors.

Main argument

- Choose generic hyperplanes $\{V_i\}_{i=1}^d$ such that
 - ➊ Passing to a subsequence $\rho_k(V_i)$ converges to hyperplane H_i for each i .
 - ➋ $\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i]$.
 - ➌ $\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \dots, W \cap H_d)$
- Then $\text{aut}(W, W \cap H_1, \dots, W \cap H_d)$ is reductive and

$$(W, W \cap H_1, \dots, W \cap H_d) \in \overline{GL^G \cdot (M, M \cap V_1, \dots, V_d)}.$$
- Luna slicing $\implies \exists \lambda(t) : \mathbb{C}^* \rightarrow GL^G$ generated by a vector field w , and a fixed $g \in GL^G$ such that

$$(W, W \cap H_1, \dots, W \cap H_d) = \lim_{t \rightarrow 0} \lambda(t)g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$
- In particular $W = \lim_{t \rightarrow 0} \lambda(t)g \cdot M$, and w is tangential to W .

Main argument

- Choose generic hyperplanes $\{V_i\}_{i=1}^d$ such that
 - ➊ Passing to a subsequence $\rho_k(V_i)$ converges to hyperplane H_i for each i .
 - ➋ $\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i]$.
 - ➌ $\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \dots, W \cap H_d)$
- Then $\text{aut}(W, W \cap H_1, \dots, W \cap H_d)$ is reductive and

$$(W, W \cap H_1, \dots, W \cap H_d) \in \overline{GL^G \cdot (M, M \cap V_1, \dots, V_d)}.$$
- Luna slicing $\implies \exists \lambda(t) : \mathbb{C}^* \rightarrow GL^G$ generated by a vector field w , and a fixed $g \in GL^G$ such that

$$(W, W \cap H_1, \dots, W \cap H_d) = \lim_{t \rightarrow 0} \lambda(t)g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$
- In particular $W = \lim_{t \rightarrow 0} \lambda(t)g \cdot M$, and w is tangential to W .

Main argument

- Choose generic hyperplanes $\{V_i\}_{i=1}^d$ such that
 - ➊ Passing to a subsequence $\rho_k(V_i)$ converges to hyperplane H_i for each i .
 - ➋ $\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i]$.
 - ➌ $\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \dots, W \cap H_d)$
- Then $\text{aut}(W, W \cap H_1, \dots, W \cap H_d)$ is reductive and

$$(W, W \cap H_1, \dots, W \cap H_d) \in \overline{GL^G \cdot (M, M \cap V_1, \dots, V_d)}.$$
- Luna slicing $\implies \exists \lambda(t) : \mathbb{C}^* \rightarrow GL^G$ generated by a vector field w , and a fixed $g \in GL^G$ such that

$$(W, W \cap H_1, \dots, W \cap H_d) = \lim_{t \rightarrow 0} \lambda(t)g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$
- In particular $W = \lim_{t \rightarrow 0} \lambda(t)g \cdot M$, and w is tangential to W .

Main argument

- Choose generic hyperplanes $\{V_i\}_{i=1}^d$ such that
 - ➊ Passing to a subsequence $\rho_k(V_i)$ converges to hyperplane H_i for each i .
 - ➋ $\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i]$.
 - ➌ $\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \dots, W \cap H_d)$
- Then $\text{aut}(W, W \cap H_1, \dots, W \cap H_d)$ is reductive and

$$(W, W \cap H_1, \dots, W \cap H_d) \in \overline{GL^G \cdot (M, M \cap V_1, \dots, V_d)}.$$
- Luna slicing $\implies \exists \lambda(t) : \mathbb{C}^* \rightarrow GL^G$ generated by a vector field w , and a fixed $g \in GL^G$ such that

$$(W, W \cap H_1, \dots, W \cap H_d) = \lim_{t \rightarrow 0} \lambda(t)g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$
- In particular $W = \lim_{t \rightarrow 0} \lambda(t)g \cdot M$, and w is tangential to W .

Main argument

- Choose generic hyperplanes $\{V_i\}_{i=1}^d$ such that
 - Passing to a subsequence $\rho_k(V_i)$ converges to hyperplane H_i for each i .
 - $\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i]$.
 - $\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \dots, W \cap H_d)$

- Then $\text{aut}(W, W \cap H_1, \dots, W \cap H_d)$ is reductive and

$$(W, W \cap H_1, \dots, W \cap H_d) \in \overline{GL^G \cdot (M, M \cap V_1, \dots, V_d)}.$$

- Luna slicing $\implies \exists \lambda(t) : \mathbb{C}^* \rightarrow GL^G$ generated by a vector field w , and a fixed $g \in GL^G$ such that

$$(W, W \cap H_1, \dots, W \cap H_d) = \lim_{t \rightarrow 0} \lambda(t)g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$

- In particular $W = \lim_{t \rightarrow 0} \lambda(t)g \cdot M$, and w is tangential to W .

Main argument

- Choose generic hyperplanes $\{V_i\}_{i=1}^d$ such that
 - Passing to a subsequence $\rho_k(V_i)$ converges to hyperplane H_i for each i .
 - $\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i]$.
 - $\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \dots, W \cap H_d)$
- Then $\text{aut}(W, W \cap H_1, \dots, W \cap H_d)$ is reductive and

$$(W, W \cap H_1, \dots, W \cap H_d) \in \overline{GL^G \cdot (M, M \cap V_1, \dots, V_d)}.$$

- Luna slicing $\implies \exists \lambda(t) : \mathbb{C}^* \rightarrow GL^G$ generated by a vector field w , and a fixed $g \in GL^G$ such that

$$(W, W \cap H_1, \dots, W \cap H_d) = \lim_{t \rightarrow 0} \lambda(t)g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$

- In particular $W = \lim_{t \rightarrow 0} \lambda(t)g \cdot M$, and w is tangential to W .

Main argument

- Choose generic hyperplanes $\{V_i\}_{i=1}^d$ such that
 - ➊ Passing to a subsequence $\rho_k(V_i)$ converges to hyperplane H_i for each i .
 - ➋ $\beta \approx \frac{1}{d} \sum_{i=1}^d [W \cap H_i]$.
 - ➌ $\text{aut}(W, \beta) = \text{aut}(W, W \cap H_1, \dots, W \cap H_d)$

- Then $\text{aut}(W, W \cap H_1, \dots, W \cap H_d)$ is reductive and

$$(W, W \cap H_1, \dots, W \cap H_d) \in \overline{GL^G \cdot (M, M \cap V_1, \dots, V_d)}.$$

- Luna slicing $\implies \exists \lambda(t) : \mathbb{C}^* \rightarrow GL^G$ generated by a vector field w , and a fixed $g \in GL^G$ such that

$$(W, W \cap H_1, \dots, W \cap H_d) = \lim_{t \rightarrow 0} \lambda(t)g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$

- In particular $W = \lim_{t \rightarrow 0} \lambda(t)g \cdot M$, and w is tangential to W .

- If θ_w is the Hamiltonian of w , then

$$\text{Fut}_{(1-T)\beta}(W, w) = \text{Fut}(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w (\beta - \omega_{FS}) \omega_{FS}^{n-1}.$$

- Using the fact that $\text{Fut}_{(1-T)\beta}(W, w) = 0$, a calculation shows that

$$\text{Fut}(W, w) \approx (1 - T) \left[\frac{1}{V} \int_W \theta_w \omega_{FS}^n - \max_W \theta_w \right] \leq 0.$$

- K -stability \implies it should be equality, and hence $w = 0$.
- Since $w = 0$, the degeneration is trivial, and so

$$(W, W \cap H_1, \dots, W \cap H_d) = g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$

- Recall that $H_i = \lim_{k \rightarrow \infty} p_k(V_i)$.
- Since V_i are generic, a simple argument now shows that $p_k \rightarrow g$. □

- If θ_w is the Hamiltonian of w , then

$$\text{Fut}_{(1-T)\beta}(W, w) = \text{Fut}(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w (\beta - \omega_{FS}) \omega_{FS}^{n-1}.$$

- Using the fact that $\text{Fut}_{(1-T)\beta}(W, w) = 0$, a calculation shows that

$$\text{Fut}(W, w) \approx (1 - T) \left[\frac{1}{V} \int_W \theta_w \omega_{FS}^n - \max_W \theta_w \right] \leq 0.$$

- K -stability \implies it should be equality, and hence $w = 0$.
- Since $w = 0$, the degeneration is trivial, and so

$$(W, W \cap H_1, \dots, W \cap H_d) = g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$

- Recall that $H_i = \lim_{k \rightarrow \infty} \rho_k(V_i)$.
- Since V_i are generic, a simple argument now shows that $\rho_k \rightarrow g$. □

- If θ_w is the Hamiltonian of w , then

$$\text{Fut}_{(1-T)\beta}(W, w) = \text{Fut}(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w (\beta - \omega_{FS}) \omega_{FS}^{n-1}.$$

- Using the fact that $\text{Fut}_{(1-T)\beta}(W, w) = 0$, a calculation shows that

$$\text{Fut}(W, w) \approx (1 - T) \left[\frac{1}{V} \int_W \theta_w \omega_{FS}^n - \max_W \theta_w \right] \leq 0.$$

- K -stability \implies it should be equality, and hence $w = 0$.

- Since $w = 0$, the degeneration is trivial, and so

$$(W, W \cap H_1, \dots, W \cap H_d) = g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$

- Recall that $H_i = \lim_{k \rightarrow \infty} \rho_k(V_i)$.

- Since V_i are generic, a simple argument now shows that $\rho_k \rightarrow g$. □

- If θ_w is the Hamiltonian of w , then

$$\text{Fut}_{(1-T)\beta}(W, w) = \text{Fut}(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w (\beta - \omega_{FS}) \omega_{FS}^{n-1}.$$

- Using the fact that $\text{Fut}_{(1-T)\beta}(W, w) = 0$, a calculation shows that

$$\text{Fut}(W, w) \approx (1 - T) \left[\frac{1}{V} \int_W \theta_w \omega_{FS}^n - \max_W \theta_w \right] \leq 0.$$

- K -stability \implies it should be equality, and hence $w = 0$.
- Since $w = 0$, the degeneration is trivial, and so

$$(W, W \cap H_1, \dots, W \cap H_d) = g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$

- Recall that $H_i = \lim_{k \rightarrow \infty} \rho_k(V_i)$.
- Since V_i are generic, a simple argument now shows that $\rho_k \rightarrow g$. □

- If θ_w is the Hamiltonian of w , then

$$\text{Fut}_{(1-T)\beta}(W, w) = \text{Fut}(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w (\beta - \omega_{FS}) \omega_{FS}^{n-1}.$$

- Using the fact that $\text{Fut}_{(1-T)\beta}(W, w) = 0$, a calculation shows that

$$\text{Fut}(W, w) \approx (1 - T) \left[\frac{1}{V} \int_W \theta_w \omega_{FS}^n - \max_W \theta_w \right] \leq 0.$$

- K -stability \implies it should be equality, and hence $w = 0$.
- Since $w = 0$, the degeneration is trivial, and so

$$(W, W \cap H_1, \dots, W \cap H_d) = g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$

- Recall that $H_i = \lim_{k \rightarrow \infty} \rho_k(V_i)$.
- Since V_i are generic, a simple argument now shows that $\rho_k \rightarrow g$. □

- If θ_w is the Hamiltonian of w , then

$$\text{Fut}_{(1-T)\beta}(W, w) = \text{Fut}(W, w) - (1 - T) \frac{n}{V} \int_W \theta_w (\beta - \omega_{FS}) \omega_{FS}^{n-1}.$$

- Using the fact that $\text{Fut}_{(1-T)\beta}(W, w) = 0$, a calculation shows that

$$\text{Fut}(W, w) \approx (1 - T) \left[\frac{1}{V} \int_W \theta_w \omega_{FS}^n - \max_W \theta_w \right] \leq 0.$$

- K -stability \implies it should be equality, and hence $w = 0$.
- Since $w = 0$, the degeneration is trivial, and so

$$(W, W \cap H_1, \dots, W \cap H_d) = g \cdot (M, M \cap V_1, \dots, M \cap V_d).$$

- Recall that $H_i = \lim_{k \rightarrow \infty} \rho_k(V_i)$.
- Since V_i are generic, a simple argument now shows that $\rho_k \rightarrow g$.

□

1 Introduction: Some history and the main theorem

2 K -stability

3 Outline of the proof

4 What next?

Extremal metrics

- Let $L \rightarrow M$ be an ample line bundle.
- (Calabi, 1980s) The critical points of the functional

$$Ca(\omega) = \int_M ||\text{Rm}(\omega)||^2,$$

as ω varies over Kähler metrics in the fixed co-homology class $2\pi c_1(L)$ are called extremal metrics.

- The Euler-Lagrange equation says that

$$\bar{\partial} \nabla^{1,0} s_\omega = 0,$$

where s_ω is the scalar curvature.

- In particular constant scalar curvature Kähler metrics (cscK), and hence Kähler-Einstein metrics, are automatically extremal.
- It is expected that existence is again related to certain stability, called relative K -stability (or some refinement).

Extremal metrics

- Let $L \rightarrow M$ be an ample line bundle.
- (Calabi, 1980s) The critical points of the functional

$$Ca(\omega) = \int_M ||\text{Rm}(\omega)||^2,$$

as ω varies over Kähler metrics in the fixed co-homology class $2\pi c_1(L)$ are called extremal metrics.

- The Euler-Lagrange equation says that

$$\bar{\partial} \nabla^{1,0} s_\omega = 0,$$

where s_ω is the scalar curvature.

- In particular constant scalar curvature Kähler metrics (cscK), and hence Kähler-Einstein metrics, are automatically extremal.
- It is expected that existence is again related to certain stability, called relative K -stability (or some refinement).

Extremal metrics

- Let $L \rightarrow M$ be an ample line bundle.
- (Calabi, 1980s) The critical points of the functional

$$Ca(\omega) = \int_M ||\text{Rm}(\omega)||^2,$$

as ω varies over Kähler metrics in the fixed co-homology class $2\pi c_1(L)$ are called extremal metrics.

- The Euler-Lagrange equation says that

$$\bar{\partial} \nabla^{1,0} \mathbf{s}_\omega = 0,$$

where \mathbf{s}_ω is the scalar curvature.

- In particular constant scalar curvature Kähler metrics (cscK), and hence Kähler-Einstein metrics, are automatically extremal.
- It is expected that existence is again related to certain stability, called relative K -stability (or some refinement).

Extremal metrics

- Let $L \rightarrow M$ be an ample line bundle.
- (Calabi, 1980s) The critical points of the functional

$$Ca(\omega) = \int_M ||\text{Rm}(\omega)||^2,$$

as ω varies over Kähler metrics in the fixed co-homology class $2\pi c_1(L)$ are called extremal metrics.

- The Euler-Lagrange equation says that

$$\bar{\partial} \nabla^{1,0} \mathbf{s}_\omega = 0,$$

where \mathbf{s}_ω is the scalar curvature.

- In particular constant scalar curvature Kähler metrics (cscK), and hence Kähler-Einstein metrics, are automatically extremal.
- It is expected that existence is again related to certain stability, called relative K -stability (or some refinement).

Extremal metrics

- Let $L \rightarrow M$ be an ample line bundle.
- (Calabi, 1980s) The critical points of the functional

$$Ca(\omega) = \int_M ||\text{Rm}(\omega)||^2,$$

as ω varies over Kähler metrics in the fixed co-homology class $2\pi c_1(L)$ are called extremal metrics.

- The Euler-Lagrange equation says that

$$\bar{\partial} \nabla^{1,0} \mathbf{s}_\omega = 0,$$

where \mathbf{s}_ω is the scalar curvature.

- In particular constant scalar curvature Kähler metrics (cscK), and hence Kähler-Einstein metrics, are automatically extremal.
- It is expected that existence is again related to certain stability, called relative K -stability (or some refinement).

Perturbation problems

Suppose M admits an extremal metric ω . If $p \in M$, and $\pi : Bl_p(M) \rightarrow M$ is the blow-up with exceptional divisor E , then it is known that $L_\varepsilon = \pi^*[\omega] - \varepsilon^2[E]$ is Kähler for $\varepsilon \ll 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K -stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K -stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p .

Perturbation problems

Suppose M admits an extremal metric ω . If $p \in M$, and $\pi : Bl_p(M) \rightarrow M$ is the blow-up with exceptional divisor E , then it is known that $L_\varepsilon = \pi^*[\omega] - \varepsilon^2[E]$ is Kähler for $\varepsilon \ll 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K-stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K-stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p .

Perturbation problems

Suppose M admits an extremal metric ω . If $p \in M$, and $\pi : Bl_p(M) \rightarrow M$ is the blow-up with exceptional divisor E , then it is known that $L_\varepsilon = \pi^*[\omega] - \varepsilon^2[E]$ is Kähler for $\varepsilon \ll 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K-stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K-stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p .

Perturbation problems

Suppose M admits an extremal metric ω . If $p \in M$, and $\pi : Bl_p(M) \rightarrow M$ is the blow-up with exceptional divisor E , then it is known that $L_\varepsilon = \pi^*[\omega] - \varepsilon^2[E]$ is Kähler for $\varepsilon \ll 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K-stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K-stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p .

Perturbation problems

Suppose M admits an extremal metric ω . If $p \in M$, and $\pi : Bl_p(M) \rightarrow M$ is the blow-up with exceptional divisor E , then it is known that $L_\varepsilon = \pi^*[\omega] - \varepsilon^2[E]$ is Kähler for $\varepsilon \ll 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K-stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K-stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p .

Perturbation problems

Suppose M admits an extremal metric ω . If $p \in M$, and $\pi : Bl_p(M) \rightarrow M$ is the blow-up with exceptional divisor E , then it is known that $L_\varepsilon = \pi^*[\omega] - \varepsilon^2[E]$ is Kähler for $\varepsilon \ll 1$.

Question

If $(Bl_p(M), L_\varepsilon)$ is relatively K-stable, does it admit an extremal metric?

- (Szekelyhidi) If $n > 2$, the answer is affirmative for cscK metrics.
- When $n = 2$, I have recently made some progress [3], but an optimal result is still missing.
- The problem for extremal metrics is completely open in all dimensions.
- The key difficulty is in relating relative K-stability of blow-ups $Bl_p(M)$ to the relative GIT stability of the point p .

Convergence of cscK manifolds and partial C^0 estimate

- Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C^0 estimate along a sequence of non-collapsed, cscK metrics on Kähler manifolds with uniform bounds on the total volume, and Calabi energy?

- For $n = 2$, there is an optimal convergence result due to Anderson and Tian-Viaclovsky.
- For $n > 2$, the convergence result assumes $L^{n/2}$ bound on $\|\text{Rm}\|$, which is not useful, since $\text{Ca}(\omega)$ involves an L^2 bound.
- What if there is collapsing? Is there a Cheeger-Tian type ε -regularity result for $n = 2$ (small $\|\text{Rm}\|_{L^2} \implies$ control on $\|\text{Rm}\|_{L^\infty}$)?

Convergence of cscK manifolds and partial C^0 estimate

- Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C^0 estimate along a sequence of non-collapsed, cscK metrics on Kähler manifolds with uniform bounds on the total volume, and Calabi energy?

- For $n = 2$, there is an optimal convergence result due to Anderson and Tian-Viaclovsky.
- For $n > 2$, the convergence result assumes $L^{n/2}$ bound on $\|\text{Rm}\|$, which is not useful, since $\text{Ca}(\omega)$ involves an L^2 bound.
- What if there is collapsing? Is there a Cheeger-Tian type ε -regularity result for $n = 2$ (small $\|\text{Rm}\|_{L^2} \implies$ control on $\|\text{Rm}\|_{L^\infty}$)?

Convergence of cscK manifolds and partial C^0 estimate

- Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C^0 estimate along a sequence of non-collapsed, cscK metrics on Kähler manifolds with uniform bounds on the total volume, and Calabi energy?

- For $n = 2$, there is an optimal convergence result due to Anderson and Tian-Viaclovsky.
- For $n > 2$, the convergence result assumes $L^{n/2}$ bound on $\|\text{Rm}\|$, which is not useful, since $\text{Ca}(\omega)$ involves an L^2 bound.
- What if there is collapsing? Is there a Cheeger-Tian type ε -regularity result for $n = 2$ ($\text{small } \|\text{Rm}\|_{L^2} \implies \text{control on } \|\text{Rm}\|_{L^\infty}$)?

Convergence of cscK manifolds and partial C^0 estimate

- Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C^0 estimate along a sequence of non-collapsed, cscK metrics on Kähler manifolds with uniform bounds on the total volume, and Calabi energy?

- For $n = 2$, there is an optimal convergence result due to Anderson and Tian-Viaclovsky.
- For $n > 2$, the convergence result assumes $L^{n/2}$ bound on $\|\text{Rm}\|$, which is not useful, since $\text{Ca}(\omega)$ involves an L^2 bound.
- What if there is collapsing? Is there a Cheeger-Tian type ε -regularity result for $n = 2$ (small $\|\text{Rm}\|_{L^2} \implies$ control on $\|\text{Rm}\|_{L^\infty}$)?

Convergence of cscK manifolds and partial C^0 estimate

- Sequences of cscK manifolds might collapse.

Question

Is there a uniform partial C^0 estimate along a sequence of non-collapsed, cscK metrics on Kähler manifolds with uniform bounds on the total volume, and Calabi energy?

- For $n = 2$, there is an optimal convergence result due to Anderson and Tian-Viaclovsky.
- For $n > 2$, the convergence result assumes $L^{n/2}$ bound on $\|\text{Rm}\|$, which is not useful, since $\text{Ca}(\omega)$ involves an L^2 bound.
- What if there is collapsing? Is there a Cheeger-Tian type ε -regularity result for $n = 2$ (small $\|\text{Rm}\|_{L^2} \implies$ control on $\|\text{Rm}\|_{L^\infty}$)?

Thank You for your attention!

References |

- AUBIN, T.
 Équations du type Monge-Ampère sur les variétés kähleriennes compactes.
Bull. Sci. Math. (2) **102**, 1 (1978), 63–95.
- CHEN, X. X., DONALDSON, S. K., AND SUN, S.
 Kähler-Einstein metrics and stability.
Int. Math. Res. Not., 8 (2014), 2119–2125.
- DATAR, V.
 Expansions of solutions to extremal metric type equations on blow-ups of csck surfaces.
arXiv:1708.01024 (2017).
- DATAR, V., AND SZÉKELYHIDI, G.
 Kähler-Einstein metrics along the smooth continuity method.
Geom. Funct. Anal. **26**, 4 (2016), 975–1010.
- DONALDSON, S., AND SUN, S.
 Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry.
Acta Math. **213**, 1 (2014), 63–106.

References II

- ILTEN, N., AND SÜSS, H.
K-stability for Fano manifolds with torus action of complexity 1.
Duke Math. J. 166, 1 (2017), 177–204.
- SZÉKELYHIDI, G.
The partial C^0 -estimate along the continuity method.
J. Amer. Math. Soc. 29, 2 (2016), 537–560.
- YAU, S. T.
On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I.
Comm. Pure Appl. Math. 31, 3 (1978), 339–411.