
ON ANALYTIC INTERPOLATION MANIFOLDS IN
BOUNDARIES OF WEAKLY PSEUDOCONVEX DOMAINS

GAUTAM BHARALI

Abstract. Let Ω be a bounded, weakly pseudoconvex domain in Cn, n ≥ 2, with real-analytic

boundary. A real-analytic submanifold M ⊂ ∂Ω is called an analytic interpolation manifold if

every real-analytic function on M extends to a function belonging to O(Ω). We provide sufficient

conditions forM to be an analytic interpolation manifold. We give examples showing that neither

of these conditions can be relaxed, as well as examples of analytic interpolation manifolds lying

entirely within the set of weakly pseudoconvex points of ∂Ω.

1. Introduction and Statement of Main Result

In this paper, we will work with bounded (weakly) pseudoconvex domains Ω in Cn, n ≥ 2, with
real-analytic boundary. A real-analytic submanifold M of Cn contained in ∂Ω is called an analytic
interpolation manifold if every real-analytic function onM extends to some function holomorphic
in a neighbourhood of Ω (this neighbourhood will, of course, depend on the prescribed function).
This definition is due to Burns and Stout [3]. Their article proves the following result :

Theorem 1.1 (Burns-Stout). Let Ω be a smoothly bounded strictly pseudoconvex domain in Cn,
n ≥ 2. A real-analytic submanifold M of Cn, M⊂ ∂Ω, is an analytic interpolation manifold if and
only if Tp(M) ⊆ Hp(∂Ω) ∀p ∈M.

In the above result, H(∂Ω) is the maximal complex sub-bundle of the tangent bundle T (∂Ω).
One could ask whether a real-analytic submanifold M ⊂ ∂Ω, given that ∂Ω is not strictly pseudo-
convex along M, is an analytic interpolation manifold if it is complex tangential, i.e. if Tp(M) ⊆
Hp(∂Ω) ∀p ∈ M, and if some appropriately defined higher Levi-form is strictly positive definite at
each point p ∈ M. It will become clear below that complex-tangency is a necessary condition for
M to be an analytic interpolation manifold, but the two aforementioned conditions (once precisely
defined) are not sufficient for M to be an analytic interpolation manifold. To describe our result,
we need the following definition.

Definition 1.2. Let HC(∂Ω) = H1,0(∂Ω) ⊕ H0,1(∂Ω) denote the complexification of H(∂Ω) and
TC(∂Ω) denote the complexification of T (∂Ω). For p ∈ ∂Ω, let L1

p(∂Ω) = HC
p (∂Ω), and for j ≥ 2,

let Lj
p(∂Ω) be the C-vector space spanned by HC

p (∂Ω) and all iterated commutators of length ≤ j

formed by the elements of HC
p (∂Ω). A point p ∈ ∂Ω is said to be of Bloom-Graham type M (or
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simply, of type M) if there exists an M ∈ N such that LM
p (∂Ω) = TC

p (∂Ω) and Lj
p(∂Ω)  TC

p (∂Ω)
for j < M .

Our result below shows that if ∂Ω is of constant type (say M) along M, if M is complex-
tangential, and if the (M − 1)th Levi-form (which is defined below) is positive definite on a certain
subspace of Hp(∂Ω) ∀p ∈M, then M is an analytic interpolation manifold. It is worthwhile noting
that the (M − 1)th Levi form at p ∈ M is not required to be strictly positive definite on all of
Hp(∂Ω). Furthermore, neither of the aforementioned conditions can be relaxed. We shall show this
through examples in Section 4 below.

We now define the higher Levi-forms of ∂Ω that were mentioned above.

Definition 1.3. Let Ω be a smoothly bounded pseudoconvex domain and let p ∈ ∂Ω. Suppose p
is of type k + 1. Then, we define the kth Levi-form of ∂Ω at p, L

(k)
∂Ω(p ; �) : H1,0

p (∂Ω) → R as
follows :

(1) There exist holomorphic coordinates (w1, ..., wn) near p such that ∂Ω is defined, in a neigh-
bourhood of p, by

(1.1) %(w) =
∑

|α|+|β|=k+1
1≤|β|<k+1

A
(p)
αβw∗

αw̄ β
∗ + Ep(w∗, im(wn))− re(wn),

where we write w = (w1, ..., wn) ≡ (w∗, wn) and where Ep is a smooth function with the
property that Ep(0, 0) = 0, ∇Ep(0, 0) = 0, and that any term of order ≤ k + 1 is a mixed
term involving non-zero powers of im(wn), w∗ and w̄∗. This is a result from [2]. Let Φp

be the biholomorphism associated with the above change of coordinate. Let v ∈ H1,0
p (∂Ω);

dΦp(p)(v) is an (n− 1)-tuple dΦp(p)(v) = (ζ1, ..., ζn−1). We define

L
(k)
∂Ω(p;v) =

∑
|α|+|β|=k+1
1≤|β|<k+1

A
(p)
αβζ

αζ̄β .

(2) There is a canonical identification of Hp(∂Ω), regarded as a C-hyperplane in Cn, with
H1,0

p (∂Ω) given by

Hp(∂Ω) 3 (ξ1, ..., ξn) 

n∑

l=1

ξl
∂

∂zl

∣∣∣∣
p

∈ H1,0
p (∂Ω).

So, when we say that the Levi-form L
(k)
∂Ω(p ; �) acts on (ξ1, ..., ξn) ∈ Hp(∂Ω), it will mean the

action of that Levi-form on
∑n

l=1 ξl
∂

∂zl

∣∣∣∣
p

∈ H1,0
p (∂Ω).

We can now state our main result precisely (J below is the standard complex structure map on
Cn, and its effect on a vector is equivalent to multiplication by i) :

Theorem 1.4. Let Ω be a bounded, weakly pseudoconvex domain with real-analytic boundary, and
let M be a real-analytic, totally real submanifold of ∂Ω. Assume that Tp(M) ⊆ Hp(∂Ω) for each
p ∈ M, ∂Ω is of constant type M along M and that the (M − 1)th Levi-form of ∂Ω is positive
definite on the real vector space JTp(M) ⊆ Hp(∂Ω) ∀p ∈M. Then, M is an analytic interpolation
manifold.
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Remark 1.5. For M to be an analytic interpolation manifold, it is necessary for it to be totally real,
since M must not admit any tangential Cauchy-Riemann equations induced by ∂Ω. This condition
on M is absent from Theorem 1.1 since it follows from strict pseudoconvexity. Additionally, the
proof of Theorem 1.4 depends on showing that a complexification of M does not intersect Ω, in
the sense of germs, off M; we use the fact that M is totally real, in our proof, to construct a
complexification of M that is naturally a complex submanifold of an open set in Cn.

Remark 1.6. Given p ∈ ∂Ω, we would like to find a formula for computing L
(k)
∂Ω(p ; �) directly,

without having to find holomorphic charts near each p in which the defining function has the form
(1.1). Also, if p is of type M , Definition 1.3 only tells us what the (M − 1)th Levi-form should be,
whereas we would like to be able to compute L

(k)
∂Ω(p ; �) for each k. Furthermore, we would like to

define L
(k)
∂Ω(p ; �) on Hp(∂Ω) independently of the choice of local holomorphic coordinates. These

issues are addressed in the next section.

2. Preliminary Lemmas

In this section, we state some general results concerning weakly pseudoconvex domains, which we
shall use in Section 3 to prove Theorem 1.4.

Proposition 2.1. Let Ω and M be as in Theorem 1.4. Let p ∈M. There exist an open neighbour-
hood U(p) ⊆ Cn of p and a smooth family {(Φq;ωq)}q∈U(p)∩M of biholomorphisms

Φq : (ωq, q) → (Φq(ωq), 0)

such that Φq(ωq ∩ ∂Ω) is defined by

(2.1) %q(w) =
∑

|α|+|β|=M
1≤|β|<M

A
(q)
αβw∗

αw̄ β
∗ + Eq(w∗, im(wn))− re(wn),

where we write w = (w1, ..., wn) ≡ (w∗, wn) and where Eq is a real-analytic function with the property
that Eq(0, 0) = 0, ∇Eq(0, 0) = 0, and that any term of order ≤M is a mixed term involving non-zero
powers of im(wn), w∗ and w̄∗.

Proof. The proof of this statement is standard and originates in [2]. �

We now provide a coordinate-free definition for the higher Levi forms, which allows us to compute
L

(k)
∂Ω(p ; �) given p ∈ ∂Ω. To do this, we will need some preliminary notation. For a multi-index

α = (α1, ..., αn−1) ∈ Nn−1 and an integer 1 ≤ µ ≤ (n− 1) define the multi-index α ∗ µ by

α ∗ µ =

(α1, ..., αµ−1, αµ − 1, αµ+1, ..., αn−1), if αµ ≥ 1

(0, ..., 0), otherwise.

Furthermore, if {Sj}n−1
j=1 is any local basis of vector fields for H1,0(∂Ω) near a point p ∈ ∂Ω, we

define Sα as
Sα := Sα1

1 ... Sαn−1
n−1 ,

and we define S
α

in an analogous way. Also, we will use angular brackets 〈 , 〉 to denote contraction
between a tangent vector and a form.
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Definition 2.2 (This definition is due to Bloom, [1]). Let Ω be a bounded, weakly pseudoconvex
domain in Cn with smooth boundary, let p ∈ ∂Ω, and let ρ be a defining function for Ω.

(1) An alternate definition of the kth Levi-form of ∂Ω at p, L
(k)
∂Ω(p ; �) : H1,0

p (∂Ω) → R is as
follows : Let {Sj}n−1

j=1 be any local basis of vector fields for H1,0(∂Ω) near p. Then, for any
v ∈ H1,0

p (∂Ω)

L
(k)
∂Ω(p;v) =

∑
|α|+|β|=k+1
1≤|β|<k+1

aαβ(p)
α! β!

ζαζ̄β ,

where ζj are so defined that v =
∑n−1

j=1 ζjSj |p, and where

aαβ(p) = −Sα∗µS
β∗ν〈[Sµ,Sν ] , ∂ρ〉(p),

µ, ν being so chosen that α ∗ µ, β ∗ ν 6= 0 (the coefficient aαβ will be independent of the
choice of µ, ν – this has been shown in [1]). We note here that L

(1)
∂Ω(p ; �) is just the usual

Levi form of ∂Ω at p and that if p is a point of type M , then L
(k)
∂Ω(p ; �) = 0 if k < M − 1.

(2) We would like to show that the foregoing definition is the same as Definition 1.3. This
follows from the following result :

Theorem. Let Ω be as in item (1), p ∈ ∂Ω, and let p be of type M . Let Φp be as defined in
Proposition 2.1. The (M − 1)th Levi-form of Φq(ωq ∩ ∂Ω) at the origin, L

(M−1)
Φq(ωq∩∂Ω)(0 ; �) is

defined by
L

(M−1)
Φq(ωq∩∂Ω)(0 ; �) : Cn−1 3 ζ 7→

∑
|α|+|β|=M
1≤|β|<M

A
(q)
αβζ

αζ
β
.

The above is a result of Bloom [1, Theorem 3.3]

Remark 2.3. Our definition of L
(k)
∂Ω(p ; �) (assume that p is a point of type M) differs from that in

[1] by a sign. This is because, in that paper, the normal form for ∂Ω analogous to (2.1) above, in
local coordinates, is taken to be

%(w) = re(wn) +
∑

|α|+|β|=M
1≤|β|<M

A
(p)
αβw∗

αw̄ β
∗ + Ep(w∗, im(wn)).

The reader can check that Definition 2.2(1), when applied to L
(1)
∂Ω(p ; �), gives us the usual Levi-form,

which, if Ω is a pseudoconvex domain, is a positive semi-definite Hermitian form on H1,0
p (∂Ω).

Lemma 2.4. Let Ω be a smoothly bounded pseudoconvex domain. Suppose that 0 ∈ ∂Ω and suppose
that, in a neighbourhood of 0, ∂Ω is defined by

ρ(w) = h(w∗, im(wn))− re(wn),

where h is a smooth function with h(0) = 0 and ∇h(0) = 0 (and where we write w = (w1, ..., wn) ≡
(w∗, wn)). Let D be an open neighbourhood of 0 ∈ Rm and let γ = (γ1, ..., γn) : (D, 0) → (∂Ω, 0) be
a smooth imbedding. Assume that

(1) Tγ(x)(Image(γ)) ⊆ Hγ(x)(∂Ω) for every x ∈ D;
(2) The first Levi-form vanishes on H1,0

γ(x)(∂Ω) for each γ(x).

Then, γn ≡ 0.
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Proof. {Sj}n−1
j=1 is a basis of H1,0(∂Ω) near the origin, where Sj have the form

Sj |w =
∂

∂wj

∣∣∣∣
w

+ Fj(w∗, wn)
∂

∂wn

∣∣∣∣
w

.

For any (1,0)-vector field given by L|w =
∑n−1

j=1 Aj(w)Sj |w, we compute :

[L , L] = 2i =m

 n−1∑
µ,j=1

Aj(w)
∂Aµ

∂wj
(w)

∂

∂w̄µ
+

n−1∑
µ,j=1

Aj(w)
{
∂Aµ

∂wj
(w)Fµ(w) +Aµ(w)

∂Fµ

∂wj
(w)
}

∂

∂w̄n

+
n−1∑

µ,j=1

Aj(w)Fj(w)
∂Aµ

∂wn
(w)

∂

∂w̄µ
+

n−1∑
µ,j=1

Aj(w)
{
Aµ(w)Fj(w)

∂Fµ

∂wn
(w) +Aj(w)Fj(w)Fµ(w)

∂Aµ

∂wn
(w)
}

∂

∂w̄n

 .
Thus, we have
(2.2)

[L , L] = V + 2i =m

 n−1∑
µ,j=1

Aj(w)Aµ(w)
∂Fµ

∂wj
(w) +

n−1∑
µ,j=1

Aj(w)Aµ(w)Fj(w)
∂Fµ

∂wn
(w)

 ∂

∂w̄n

 ,
where V is a section of HC(∂Ω).

Now consider a (1,0)-vector field, that, restricted to Image(γ), is given by

L|γ(x) =
n−1∑
j=1

{
m∑

k=1

∂γj

∂xk
(x)vk

}
∂

∂wj

∣∣∣∣∣∣
γ(x)

+


n−1∑
j=1

m∑
k=1

∂γj

∂xk
(x)Fj [γ(x)]vk

 ∂

∂wn

∣∣∣∣∣∣
γ(x)

,

where (v1, ..., vm) ∈ Cm.

[L , L] (mod HC(∂Ω)) ≡ a(v;x)
∂

∂w̄n

∣∣∣∣
γ(x)

− a(v;x)
∂

∂wn

∣∣∣∣
γ(x)

= 0.

The last equality follows from the hypothesis (2) of the lemma. Using (2.2), we get

a(v;x) =
n−1∑

j,µ=1

m∑
k,ν=1

∂γj

∂xk
(x)vk

∂Fµ

∂wj
[γ(x)]

∂γµ

∂xν
(x)vν+

n−1∑
j,µ=1

m∑
k,ν=1

∂γj

∂xk
(x)Fj [γ(x)]vk

∂Fµ

∂wn
[γ(x)]

∂γµ

∂xν
(x)vν

In particular, observe that (εk0 below being the unit vector along the “vk0-axis”)

a(εk0 ;x) =
n−1∑

µ,j=1

∂Fµ

∂wj
[γ(x)]

∂γj

∂xk0

(x)
∂γµ

∂xk0

(x) +
n−1∑

µ,j=1

∂γj

∂xk0

(x)Fj [γ(x)]
∂Fµ

∂wn
[γ(x)]

∂γµ

∂xk0

(x)

=
n−1∑
µ=1

∂(Fµ ◦ γ)
∂xk0

(x)
∂γµ

∂xk0

(x)

since, by complex tangency,
∂γn

∂xk0

(x) =
∑n−1

j=1 Fj [γ(x)]
∂γj

∂xk0

(x).

Therefore

a(v;x) =
m∑

k,ν=1

n−1∑
µ=1

∂(Fµ ◦ γ)
∂xk

(x)
∂γµ

∂xν
(x)vkvν = 〈v|[Mjk(x)][Djk(x)]|v〉,
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where

Mjk =
∂(Fk ◦ γ)
∂xj

(x); j = 1, ...,m; k = 1, ..., n− 1

Djk =
∂γj

∂xk
(x); j = 1, ..., n− 1; k = 1, ...,m

〈v|[Ajk]|v〉 =
m∑

j,k=1

vjAjkvk.

Consider the sesqui-linear forms

Sx : (u, v) 7→ 〈u|[Mjk(x)][Djk(x)]|v〉; x ∈ D.

Since a(v;x) = 0, Sx(v, v) = 0 ∈ R for each v ∈ Cm and for each x ∈ D. Thus, Sx are all Hermitian
forms that are identically zero. Consequently, [Mjk(x)][Djk(x)] = 0 for every x. Since dγ(x) has
maximal rank for each x ∈ D, we conclude that

∂(Fµ ◦ γ)
∂xk

≡ 0; ∀µ ≤ n− 1, ∀k ≤ m.

This implies that, as Fµ[γ(0)] = 0, Fµ ◦ γ ≡ 0, ∀µ ≤ n− 1. So,

∇γn(x) � v =
n−1∑
j=1

m∑
k=1

∂γj

∂xk
(x)Fj [γ(x)]vk = 0 ∀x ∈ D, ∀v ∈ Rm.

This implies that ∇γn ≡ 0, whence γn ≡ 0 (since γn(0) = 0). �

3. Proof of theorem 1.4

. Without loss of generality, we may assume that ∂Ω is defined by a global defining function ρ

that is defined in a neighbourhood U ⊇ ∂Ω. Recall that ∂Ω is of type M along M and that
Tp(M) ⊆ Hp(∂Ω) for each p ∈ M. Pick a p ∈ M. There exist a V (p) 3 p open in ∂Ω and a
real-analytic imbedding γ : Rm ⊇ (D, 0) → (M∩ V (p), p). It must be noted that γ(�) ≡ γ(� ; p),
i.e. γ depends on p, but for purposes of notational convenience, we will suppress the dependence
on p. It can easily be shown, using standard compactness and homogeneity arguments, that by our
hypothesis on type along M,

(3.1) L
(M−1)
∂Ω (γ(x); i(dγ(x)v)) ≥ C|v|M ∀v ∈ Rm,

and for each p ∈ M, there exists a neighbourhood V ∗(p) b V (p) such that (3.1) is true uniformly
for all γ(x) ∈ Image(γ) ∩ V ∗(p) with a uniform constant C ≡ C(p).

By Proposition 2.1, there exist an open subset of ∂Ω, W (p) b V ∗(p) and a smooth family of
biholomorphisms, {(Φq, ωq)}q∈W (p)∩Image(γ), having the effect that for each q ∈ W (p) ∩ Image(γ),
Φq(ωq ∩ ∂Ω) is defined by a %q as given in (2.1). Adopting coordinates w = Φq(z), write

%q(w, w̄) = Pq(w∗, w̄∗) + Eq(im(wn), w∗)− re(wn),
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where Pq is the polynomial occuring in (2.1). Let xq = γ−1(q), consider the ball B(xq; εq) ⊆ γ−1(ωq),
and let τq : x 7→ (x+ xq). Define ψq = Φq ◦ γ ◦ τq. Note that ψq : (B(0; εq), 0) → (Φq(ωq ∩ ∂Ω), 0).
Also dψq(x) = dΦq(γ(x+ xq)) ◦ dγ(x+ xq).

Pq(i(dψq(0)v),−i(dψq(0)v)) = L
(M−1)
∂Ω (q; i(dγ(xq)v))(3.2)

= L
(M−1)
∂Ω (γ(xq); i(dγ(xq)v))

≥ C|v|M ∀v ∈ Rm,

and from (3.1), we can infer that the above inequality is true uniformly for q ∈ W (p) ∩ Image(γ).
Note that the first equality in (3.2) follows from Definition 2.2.

Let Ψq be the complexification of ψq (i.e. Ψq is defined, wherever the resultant power-series
converges, by replacing the real variable x by the complex variable ζ in the power-series of ψq). Since
{(Φq;ωq)}q∈W (p)∩Image(γ) is a smooth family, choosing W (p) appropriately, we can find a σ ≡ σ(p)
such that Ψq are all defined as holomorphic maps on B(0; εq)+iB(0;σ) for each q ∈W (p)∩Image(γ).
Shrinking σ if necessary, we define uq : B(0; εq) + iB(0;σ) → R by

uq(ζ) = ρ ◦ (Γ|B(xq ;εq)+iB(0;σ))(ζ + xq)

= %q ◦Ψq(ζ)

where Γ is the complexification of γ in an appropriately small neighbourhood of xq.
In what follows, we will write ζ = ξ + iη, and Ψq ≡ (Ψq

∗,Ψq
n). By Lemma 2.4, which says that

Ψq
n ≡ 0 when M > 2, or by the normal form (2.1) in case M = 2, uq has the series expansion

uq(ζ) =
∑

|α|+|β|=M
1≤|β|<M

A
(q)
αβΨq

∗(ζ)
α Ψq

∗(ζ)
β

+O(|ζ|(M+1))

=
∑

|α|+|β|=M
1≤|β|<M

A
(q)
αβ

n−1∏
k=1

(
m∑

l=1

∂Ψq
k

∂ζl
(0)ζl

)αk n−1∏
k=1

(
m∑

l=1

∂Ψq
k

∂ζl
(0)ζl

)βk

+O(|ζ|(M+1)).

Thus,

uq(iη) = Pq(i(dψq(0)η),−i(dψq(0)η)) +O(|η|(M+1))

≥ C|η|M +O(|η|(M+1)) (by (3.2))

Since the above is true uniformly for all q ∈ W (p) ∩ Image(γ) with a uniform constant C ≡ C(p),
there is a δp > 0 such that

uq(iη) > 0; 0 < |η| < δp, ∀q ∈W (p) ∩ Image(γ).

Another way of saying this is that the complex analytic set Γ(γ−1(W (p)) + iB(0; δp)) meets Ω
precisely along W (p) ∩M.

We can, therefore, find an open neighbourhood U(p) of p in Cn and a complex submanifold M̃p

of U(p) which is the complexification of M near p. {U(p)}p∈M is an open cover of M. As M is
compact, there exist p1, ..., pN ∈M and a tubular neighbourhood U of M such that

(1) M⊆ ∪N
k=1U(pk) and U ⊆ ∪N

k=1U(pk).
(2) M̃ = ∪N

k=1(M̃pk
∩U) is a complexification of M, and a complex submanifold of U such that

M̃ ∩ Ω = M.
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Let f be the real-analytic function prescribed on M. Shrinking U if necessary, we may assume that
f extends to a holomorphic function f̃ on M̃.

Ω has a basis of Stein neighbourhoods. This follows from results by Diederich and Fornaess
[4], [5], and this is where the assumption about ∂Ω being real-analytic gets used. Choose a Stein
domain D ⊃ Ω such that f̃ is holomorphic on the complex submanifold (M̃∩D) of D. By standard
techniques, we can show that f̃ extends to a F ∈ O(D). We remark that this last step reflects a
technique used in [3] (which follows from theorems A and B of Cartan). Thus, M is an analytic
interpolation manifold. �

4. Examples

Before we present our examples, we would like to prove the following proposition. It can be
inferred from [3, Theorem 1], but for the sake of completeness, we provide a proof.

Proposition 4.1. Let Ω be as in Theorem 1.4. Let M be a real-analytic submanifold of ∂Ω, let M̃
be its complexification, and let p ∈ M. Suppose there is a curve γ ⊂ M̃ passing through p and an
ε0 > 0 such that [γ ∩B(p; ε)]∩Ω 6= ∅ ∀ε ∈ (0, ε0], then M is not an analytic interpolation manifold.

Proof. We assume that M is an analytic interpolation manifold. By hypothesis, there exists a real-
analytic imbedding ψ : (S1, 1) → (M, p) onto a simple closed curve C ⊆ M, so that the following
happens :

For r > 0 sufficiently small, ψ extends to a regular, injective, holomorphic map Ψ on Ann(0; 1−
r, 1 + r). There is a small disc 4, centered at 1, such that (defining 4− = (4 ∩ {ζ : |ζ| < 1})),
without loss of generality, we have

Ψ(4−) ∩ Ω 6= ∅,

Ψ−1(Ψ(4−) ∩ Ω) contains a curve L tending to 1.

Now choose some ζ0 in L. Define

g(z) =
1

(ψ−1(z)− ζ0)

which is real-analytic on C, and so extends real-analytically to M. This last conclusion follows from
a result by Serre [7, Secn.19(b)]. By assumption, there exists a G holomorphic in a neighbourhood,
call it D, of Ω, with G|C = g. We can choose 4 above to be so small that Ψ(4) ⊂ D. We can then
define

H(ζ) = G ◦Ψ(ζ)− 1
ζ − ζ0

.

Clearly H ∈ O(4 \ {ζ0}) and H|4∩S1 ≡ 0. The latter implies that H ≡ 0. Yet, G ◦ Ψ ∈ O(4)
whereas 1/(ζ − ζ0) has a pole at ζ0. This is a contradiction. Our assumption that M is an analytic
interpolation manifold must, therefore, be false. �

We can now show that the assumptions on type and positivity in the statement of the Theorem
1.4 cannot be relaxed. We will do this by constructing real-analytic submanifolds M in ∂Ω such that
[M̃] ∩ Ω !M (here, the notation [M̃] denotes the germ of the complexification M̃ along M). In
view of Proposition 4.1, M would not, therefore, be an analytic interpolation manifold. We remark
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here that if at some p ∈ M, Tp(M) * Hp(∂Ω), then [M̃] ∩ Ω 6= ∅ near p. Complex-tangency is,
thus, a necessary condition for M to be an analytic interpolation manifold.

Example 4.2. An example of a domain Ω and a complex-tangential, totally real submanifold M
where ∂Ω is of varying type along M.

Let Ω = {(w1, w2) ∈ C2| |w1|2 + |w2|4 < 1}.
Ω is a bounded, pseudoconvex domain with real-analytic boundary. M will be a real analytic

curve passing through (−1, 0) ∈ C2, and we will analyze M near (−1, 0). To simplify calculations,
we will work with a biholomorph of Ω. Define ω = {(z1, z2) ∈ C2| re(z1) > |z2|4}. The two domains
are related by a biholomorphism

Φ(z1, z2) = (w1, w2) =

(
z1 − 1
z1 + 1

,

√
2z2√
z1 + 1

)
,

where Φ : (ω, ∂ω) → (Ω, (∂Ω \ {(1, 0)})) (Note : Since re(z1) > 0 when (z1, z2) ∈ ω, we can choose
an appropriate analytic branch of z1 7→

√
z1 + 1.). Consider the real-analytic, complex-tangential

curve γ : R→ ∂ω (and write m = Image(γ))

γ(t) = (t4, t).

Define M = Φ(m). It is easy to check that M ⊆ ∂Ω is a real-analytic, complex-tangential sub-
manifold. Notice that at t = 0, Image(γ) passes through a point of type 4, whereas it is of type 2
elsewhere. Consequently, the Bloom-Graham type of ∂Ω varies along M.

Let Γ denote the complexification of γ. Writing ζ = Reiθ

re[Γ1(ζ)] = R4 cos 4θ,

|Γ2(ζ)|4 = R4.

Observe that re[Γ1(Reiθ)] = |Γ2(Reiθ)|4 for θ = 0, π/2, π and 3π/2. Thus [m̃] ∩ ω ! m. Since
the notion of type is invariant under biholomorphic transformations, we have found a real-analytic,
complex-tangential M⊆ ∂Ω such that ∂Ω is of varying type along M and such that [M̃]∩Ω !M.

We comment on the notation used in the next three examples. In all of the equations involving
Levi-forms, we will use the identification between H1,0

p (∂Ω) and Hp(∂Ω) that was introduced in
Definition 1.3(2).

Example 4.3. An example of a domain Ω and a complex-tangential, totally real submanifold M
where ∂Ω is of constant type along M, but where the positivity condition fails.

Let Ω = {(w1, w2, w3, w4) ∈ C4| |w1|2 +
∑4

k=2 |wk|4 < 1}.
Ω is a bounded, pseudoconvex domain with real-analytic boundary. As in Example 4.2, we will

work with a biholomorph of Ω. Define ω = {(z1, z2, z3, z4) ∈ C4| re(z1) >
∑4

k=2 |zk|4}. The two
domains are related by a biholomorphism

Φ(z1, z2, z3, z4) = (w1, w2, w3, w4) =

(
z1 − 1
z1 + 1

,

√
2z2√
z1 + 1

,

√
2z3√
z1 + 1

,

√
2z4√
z1 + 1

)
,
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where Φ : (ω, ∂ω) → (Ω, (∂Ω \ {(1, 0, 0, 0)})). Consider the real-analytic, complex-tangential curve
γ : [−π, π] → ∂ω (and write Image(γ) = m)

γ(θ) = (sin4θ + cos4θ + 1, 1, sin θ, cos θ).

Let M = Φ(m). M⊆ ∂Ω is clearly a real-analytic, complex-tangential submanifold.
Notice that H(∂ω) is spanned at every point by the vector fields

L1|(z1,z2,z3,z4) = (4z2|z2|2, 1, 0, 0), L2|(z1,z2,z3,z4) = (4z3|z3|2, 0, 1, 0),

L3|(z1,z2,z3,z4) = (4z4|z4|2, 0, 0, 1).

Observe further that the complex Hessian of ρ (where ρ is the defining function of ∂ω) is given by

(HCρ)(z1, z2, z3, z4) =


0 0 0 0
0 4|z2|2 0 0
0 0 4|z3|2 0
0 0 0 4|z4|2

 .

Let L
(1)
∂ω(p ; �) denote the Levi-form at p ∈ ∂ω. Notice that L

(1)
∂ω(� ;L1) 6= 0 along m. Thus ∂ω is of

constant Bloom-Graham type 2 along m. This implies that ∂Ω is of constant Bloom-Graham type
2 along M. But

L
(1)
∂ω(γ(θ); iγ′(θ)) = 8cos2θ sin2θ

which vanishes at γ(0), whence the positivity condition along m fails.
Let Γ denote the complexification of γ. Writing ζ = ξ + iη, we observe

re[Γ1(iη)] = cosh4η + sinh4η + 1,

|Γ2(iη)|4 + |Γ3(iη)|4 + |Γ4(iη)|4 = cosh4η + sinh4η + 1.

Thus [m̃]∩ω ! m, whence, arguing exactly as in Example 4.2 above, we have a real-analytic, complex-
tangential M ⊆ ∂Ω such that ∂Ω is of constant type along M, that the positivity condition fails
and such that [M̃] ∩ Ω !M.

We would now like to give examples of analytic interpolation manifolds. In Example 4.4, our
manifold M passes through weakly pseudoconvex points. In Example 4.5, M runs through points
of Bloom-Graham type 4, although L

(3)
∂Ω(p ; �) is not strictly positive definite on H1,0

p (∂Ω) for any
p ∈M.

Example 4.4. An example of a weakly pseudoconvex domain and an analytic interpolation manifold.

Let Ω be exactly as in Example 4.3. All the notation used below will have the same meanings as
in Example 4.3. As in that example, we will work with

ω = {(z1, z2, z3, z4) ∈ C4| re(z1) >
4∑

k=2

|zk|4},

a biholomorph of Ω. Consider the real-analytic, complex-tangential curve γ : [−π, π] → ∂ω (and
write Image(γ) = m)

γ(θ) = ((2 + cos θ)4 + (2 + sin θ)4, 0, 2 + sin θ, 2 + cos θ).
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As before, define M = Φ(m), which is a complex-tangential, real-analytic submanifold of ∂Ω.
As in Example 4.3 let L

(1)
∂ω(p ; �) denote the Levi-form at p ∈ ∂ω.

L
(1)
∂ω(γ(θ); L3|γ(θ)) = 4(2 + cos θ)2 6= 0,

whence ∂ω is of constant type 2 along m. Consequently, ∂Ω is of type 2 along M, although every
point on M is a weakly pseudoconvex point. To see this, observe that L

(1)
∂ω(� ;L1) = 0 along m. But

L
(1)
∂ω(γ(θ); iγ′(θ)) = 4cos2θ(2 + sin θ)2 + 4sin2θ(2 + cos θ)2 > 0.

Since biholomorphisms preserve the positivity of the Levi-form and since Φ is biholomorphic in
a neighbourhood of m, our positivity condition is preserved for M. So M ⊆ ∂Ω is a complex-
tangential, real-analytic submanifold of ∂Ω that satisfies our positivity condition. By Theorem 1.4,
therefore, M is an analytic interpolation manifold.

Example 4.5. Another example of a weakly pseudoconvex domain and an analytic interpolation
manifold M. In this example, each point of p ∈ M is a point of type 4 and, in fact, L

(3)
∂Ω(p ; �) is

negative in certain directions in H1,0(∂Ω).

Let Ω = {(z, w) ∈ C2| |w + ei log(zz̄)|2 + C[log(zz̄)]4 < 1}.
This example is taken from [6]. For an appropriate C > 0, Ω is a pseudoconvex domain. We

define

M = {(z, w) ∈ ∂Ω| |z| = 1, w = 0}.

M has a real-analytic parametrization γ : [−π, π] → ∂Ω given by γ(θ) = (eiθ, 0). As in [6], we can
show that each point of M is of type > 2.

In what follows, we will write A(z) = ei log(zz̄), B(z) = e−i log(zz̄). H1,0(∂Ω) is spanned by the
vector field

L|(z,w) = z[w̄ +B(z)]
∂

∂z
− [iw̄A(z)− iwB(z) + 4C{log(zz̄)}3] ∂

∂w
.

We can now see that γ′(θ) ∈ H(eiθ,0)(∂Ω). In fact, by the identification introduced in Definition
1.3(2)

iγ′(θ) 
 −L|(eiθ,0).

We get the equation

(4.1) L
(3)
∂Ω((eiθ, 0); iγ′(θ))

= −

{
(−1)3(−1)

L2

3!
+ (−1)2(−1)2

LL
2! 2!

+ (−1)(−1)3
L2

3!

}
〈[L,L] , ∂ρ〉(eiθ, 0).

We compute to find that

(4.2) −〈[L,L] , ∂ρ〉(z, w) = 12C[log(zz̄)]2 +O([log(zz̄)]3, wB(z), w̄A(z), |w|2, |w|[log(zz̄)]2).

It can easily be shown from (4.1) and (4.2) that

L
(3)
∂Ω((eiθ, 0); iγ′(θ)) = 14C > 0.
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Similarly, we can show that L
(3)
∂Ω((eiθ, 0); iL) = −2C < 0. So, L

(3)
∂Ω((eiθ, 0) ; �) is actually negative

in certain directions in H1,0
(eiθ,0)

(∂Ω). Yet, by Theorem 1.4, M is an analytic interpolation manifold

(in this case, we can also check very easily that [M̃] ∩ Ω = M).

Acknowledgement. The author wishes to thank Alexander Nagel for his encouragement and for
the many useful discussions during the course of this work.

References

[1] T. Bloom, Remarks on type conditions for real hypersurfaces in Cn, Several Complex Variables - Proceedings of

International Conferences, Cortona, Italy 1976-1977, Scuola Norm. Sup. Pisa, 1978, pp. 14-24.

[2] T. Bloom and I. Graham, On type conditions for generic real submanifolds in Cn, Invent. Math. 40 (1984) 217-243.

[3] D. Burns and E.L. Stout, Extending functions from submanifolds of the boundary, Duke Math. J. 43 (1976),

391-404.

[4] K. Diederich and J.E. Fornaess, Pseudoconvex domains : existence of Stein neighbourhoods, Duke Math. J. 44

(1977), 641-662.

[5] K. Diederich and J.E. Fornaess Complex submanifolds in real-analytic pseudoconvex hypersurfaces, Proc. Nat.

Acad. Sci. 74 (1977), 3126-3127.

[6] A. Noell Properties of peak sets in weakly pseudoconvex domains in C2, Math. Z. 186 (1984), 99-116.
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