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Abstract. These are notes for lectures given at the Chennai TMGT confer-

ence on Bowditch’s paper ‘A topological characterisation of hyperbolic groups’.
These are meant as a supplement to the original paper, mainly to explain the

origin of the various concepts to those not very familiar with the theory of

Kleinian groups.
I also hope that in the process some of the deeper structure associated to

the boundary of word-hyperbolic groups is revealed.

In the beautiful paper [1], Bowditch showed how word-hyperbolic groups G can
be characterised purely in terms of their action on their boundary ∂G. It was
well known that for a word-hyperbolic group, the induced action on triples of dis-
tinct points in ∂G is properly discontinuous and co-compact. This is explained in
Section 1

Bowditch showed that a converse of this is also true. This had earlier been
conjectured by Gromov.

Theorem 0.1 (Bowditch). Suppose a group acts G acts on a perfect metrisable
compactum M by homeomorphisms such that the induced action on the set of dis-
tinct triples Θ3(M) in M is properly discontinuous and co-compact. Then G is
δ-hyperbolic and ∂G = M equivariantly with respect to the action of G.

To prove this result, Bowditch starts with M with the given action of G, and uses
the action to construct a succession of structures on M , all of which are motivated
by constructions for Kleinian groups. My goal here is to explain what the origin of
these structures is in their original contexts. The aim is to both make Bowditch’s
constructions less mysterious as well as to give a glimpse into (though not formally
define) some of the deeper structure on the boundary of a word-hyperbolic group.

1. Barycentres and actions on triples

We begin by showing that the action of a word-hyperbolic group on triples of
distinct points is properly discontinuous and co-compact. Henceforth, let

Θ3(M) = {(p, q, r) ∈ M : p, qandrdistinct}

denote the set of disjoint triples of points in a set M .
Suppose a group G acts on M , then the action of G on ∂G induces an action on

Θ3(M). In particular, if G is δ-hyperbolic, we have an action on Θ3(∂G).

Proposition 1.1. The action of G on Θ3(∂G) is properly discontinuous and co-
compact.
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Proof. Let X be the Cayley graph of G with respect to some finite set of generators.
Then ∂X can be naturally identified with ∂G and the action of G on X is properly
discontinuous and co-compact. We relate the action on Θ3(∂G) with the action on
X to obtain the result.

To do this, observe that if (p, q, r) ∈ Θ3(M), then p, q and r can be regarded
as distinct points on ∂X and hence, by δ-hyperbolicity, there is a geodesic triangle
with these as vertices which is thin. Hence, there is a point b(p, q, r) that is in a
δ-neighbourhood of each of the sides of this triangle.

The point b(p, q, r) is not well defined. However there is a uniform bound on any
two choices. Thus, by making choices, we get a ‘coarsely continuous’ and ‘coarsely
equivariant’ map

b : Θ3(∂G) → X

We shall show that both b and b−1 take pre-compact sets to pre-compact sets.
In the case of b, this follows from the coarse continuity (whose precise definition
and the above statement are left as an exercise).

On the other hand, the property for b−1 is equivalent to the statement that if
a sequence of triples (pi, qi, ri) ∈ Θ3(∂G) does not lie in any compact set, then
the sequence b(pi, qi, ri) also does not. But, as ∂G is compact, by passing to a
subsequence, it follows without loss of generality that pi and pi converge to the
same point x in ∂G. From this it is easy to conclude that b(pi, qi, ri) also converges
to x.

The proposition follows as a consequence of the properties of b as the action of G
on X is properly discontinuous and co-compact. This is because both proper dis-
continuity and co-compactness of an action can be defined in terms of pre-compact
sets. Details are left as an exercise. �

Bowditch’s proof of Theorem 0.1 proceeds by constructing a space X on which
G acts properly discontinuously and co-compactly and which has an equivariant δ-
hyperbolic metric. For this, we take X to be Θ3(M). The heart of the proof consists
of constructing a suitable metric on X and showing that this is δ-hyperbolic. This
metric is constructed by first associating various structures to the boundary.

2. The model ∂H3 = CP 2

The prototype for the structures on the boundary ∂X of a δ-hyperbolic space X
is the boundary of H3. Viewed in the Poincaré ball model, one can identify ∂H3

with S2 (though not canonically).
The isometries of ∂H3 are generated by reflections about a hyperplane. The

action of these on the boundary is by circle inversions about the boundary of the
hyperplane (which is a circle).

Thus, the maps of the boundary induced by orientation preserving isometries
are precisely the Möbius transformations on S2 = CP 1 given by

z 7→ az + b

cz + d

The group of Möbius transformations is the set of biholomorphic maps from CP 1

to itself. It follows that H3 = ∂S2 has a complex structure that is preserved under
isometries of H3, i.e., a natural complex structure. Many aspects of this complex
structure generalise to boundaries ∂X of δ-hyperbolic spaces.
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3. Conformal and quasi-conformal structures

It is an accident of dimension that we have a complex structure on the bound-
ary of H3. The right structure in general is not the complex structure, which in
higher dimensions is too restrictive, but rather a variant of the associated conformal
structure, i.e., a notion of angles.

One way of making the notion of a conformal structure precise is to say that two
Riemannian metrics g1 and g2 are conformally equivalent if g2 = f · g1 for some
function f . This is just saying that the angles induced by the metrics are the same.
A conformal isomorphism f : M → N between manifolds with conformal structures
is a diffeomorphism such that the pull back of a Riemannian metric on N in the
given class is in the conformal class of metrics on M .

In the case of surfaces, given a conformal structure, we can define an almost
complex structure J : TM → TM as rotation by π/2. This is automatically
integrable, i.e., a complex structure. Conversely, given a complex structure, we
consider Hermitian metrics on TM . All such metrics are conformally equivalent.
Thus, for surfaces, complex and conformal structures are equivalent.

As usual, we need a quasified version of this. To do this, we take another point
of view of conformal maps - namely they are maps whose derivatives take spheres
in TM to spheres in TN . In general, we define k-quasiconformal maps to be ones
that take spheres to ellipsoids whose eccentricity is bounded above by k. It is easy
to generalise these notions to metric spaces. As we shall not need any of these
concepts formally, we shall not go into details.

4. The modulus of an annulus

By the Riemann uniformisation theorem, the interior of any closed disc is con-
formally equivalent to the unit disc in the complex plane. In the case of annuli, we
have a corresponding result.

Theorem 4.1. Any annulus A is conformally equivalent to a right circular annulus
with some height H and circumference W .

By rescaling the metric on the cylinder, we can change H and W . However their
ratio M = H/W remains the same. An important result in complex analysis says
much more.

Theorem 4.2. Suppose two right circular cylinders with heights H1 and H2 and
widths W1 and W2 are conformally equivalent. Then H1/W1 = H2/W2.

Using this, one can introduce the notion of the modulus of an annulus.

Definition 4.1. Let A is an annulus and let B be a right circular annulus that is
conformally equivalent to A. The modulus µ(A) is the ratio H/W of the height to
the circumference of B.

By the above, two annuli are conformally equivalent if and only if they have
the same modulus. Moduli of annuli contained in a Riemann surface suffice to
recover the conformal structure (or more generally a quasi-conformal structure)
of the surface. It is in this guise that the quasi-conformal structure appears in
Bowditch’s paper, i.e., one associates a modulus to every annulus.

Remark 4.3. In the case of an annulus in C enclosed between two concentric circles
of radius r1 and r2 with r1 > r2, the modulus is log(r1/r2).
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The modulus is constructed based on properties of moduli of annuli in CP 1. The
two principal properties used are conformal invariance and monotonicity.

Proposition 4.4. Given a sequence of disjoint annuli A1,. . . , An contained in
an annulus A such that each Ai separates the two boundary components of A,
µ(A) ≥ Σiµ(Ai).

5. The modulus on M

We next consider the construction of a modulus on annuli in M . This need only
correspond to a quasi-conformal, rather than a conformal structure, and hence two
moduli whose ratio is uniformly bounded away from zero and infinity are equivalent.
First, we define what we mean by annuli.

Definition 5.1. An annulus A in M is a pair of disjoint closed sets A = (A−, A+)
such that A± are closed sets whose union is not all of M .

In the classical case, an annulus corresponds to a pair of disjoint closed discs in
CP 2.

To define a modulus, we begin with a finite collection of annuli each of whom one
expects to have modulus different from 0 and infinity. To ensure this, we choose
annuli A such that A± have non-empty interior as does their complement. We
consider all translates of this collection under the group action on M to get an
annulus system A. We shall assume that our collection A is symmetric in the sense
that if A = (A−, A+) is in A, so is −A = (A+, A−).

Thus, all annuli in A have moduli between two positive real numbers p and q. Up
to equivalence, we may regard all these as having modulus 1. Further, monotonicity
gives a lower bound on the modulus of any annulus A, namely (p times) the length
of the longest sequence of annuli A that are nested in A.

We take the above lower bound as the definition of the modulus of an annulus.
For this to be reasonable, our initial collection of finite annuli has to be large enough.
To choose such a collection, we use the action of G on Θ3(M). By co-compactness
of this region, we can find a compact fundamental domain K. This is covered by a
finite collection of sets of the form int(Ai) × int(Bi) × int(Ci), where Ai, Bi and
Ci are disjoint closed sets. We take (Ai, Bi) to be our annulus system.

6. Cross-ratios

The cross-ratio (xy|zw) of four distinct points in ∂H3 is the distance between
the geodesics joining the pairs of points {x, y} and {z, w}. This is the absolute
value of the usual cross-ratio in complex analysis.

In terms of moduli, the cross-ratio in the classical context is the supremum of the
moduli of annuli which separate {x, y} from {z, w}. In our situation, observe that
{x, y} and {z, w} are disjoint closed sets, so ({x, y}, {z, w}) is an annulus. Thus,
we can define the cross-ratio to be the modulus of this annulus.

7. Construction of the metric

Using the cross-ratio, it is straightforward to define the function that turns out
to be a δ-hyperbolic quasi-metric on X = Θ3(M). A quasi-metric is a distance
function d(x, y) : X × X → [0,∞] that is symmetric and satisfies the triangle
inequality up to an additive constant, i.e., there is a k ∈ R such that d(x, y) ≤
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d(x, z) + d(y, z)− k∀x, y, z. Gromov’s four-point condition defining δ-hyperbolicity
generalises to this situation.

Recall that our aim is to define a δ-hyperbolic metric. In a δ-hyperbolic space,
any finite set of points can be approximated by a metric tree. If some points are at
infinity, as it is in our case, the tree has some infinite segments.

Guided by this, we define the distance between triples of points x = {x1, x2, x3}
and y = {y1, y2, y3}, which we recall is to be the distance between their barycentres,
by

d(x, y) = min(xixj |yiyj)

It is easy to see that if xi’s and yi’s were points on a tree, so that the subtrees
that they span are disjoint, this is indeed the correct definition, i.e., the distance
between the barycentres is given in terms of cross-ratios as above. Thus, purely
from the group action, we have recovered a distance function.

To complete the proof, one needs to show that this distance is a quasi-metric,
that it is δ-hyperbolic, and that the induced metric gives the correct topology on
M . The induced metric is constructed from a quasi-metic d in much the same way
as a path-metric is constructed from a metric, namely, we take the length of a path
c : [0, 1] → X to be

sup{Σn
i=1d(xi−1, xi) : 0 = i0 < i1 < · · · < in = 1}

and take the distance between two points to be the infimum of the lengths of the
paths joining them.

In the next section, we shall outline the proof that we have a quasi-metric that is
δ-hyperbolic on X. The proof that this induces the correct topology involves some
further ideas, into which we shall not enter.

8. Hyperbolicty of the moduli, cross-ratios and metrics

We now sketch the proof of δ-hyperbolicity of the metric on X. We have con-
structed the metric via moduli of annuli and a cross-ratio on M , hence the proof
proceeds by proving corresponding properties for these.

Annuli. We first consider moduli of annuli. Here let (A|B) = µ(A|B). Then the
following three axioms, that are satisfied by the modulus, correspond to hyperbol-
icity.

• (A1): If (xy|zw) = ∞, then x = y or z = w.
• (A2): There exists a number k such that for all x, y, z and w, either

(xy|zw) < k or (xw|yz) < k.
• (A3): (xy|z) = k

For annuli in CP 2, the first and third axioms are obvious, the axiom (A2) is more
subtle, it says that two annuli with large modulus cannot intersect transversely. It
is worthwhile to convince oneself of this by taking an annulus with a large modulus
and considering annuli that intersect this transversely.

The proof that the modulus we have constructed depends on the fact that the
G acting on M is a convergence group. For basic properties of convergence groups
see [2]. I will not go into further details in this note.
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Hyperbolicity and metric trees. There are various equivalent definitions of
δ-hyperbolic spaces, but for our purposes the most useful (and intuitive) is the
following statement that quadruples of points can be approximated by points in a
metric tree.

Definition 8.1. A space X is δ-hyperbolic if given four points xi ∈ X, 1 ≤
i ≤ 4, there is a metric tree T and four points yi ∈ T , 1 ≤ i ≤ 4 such that
|d(xi, xj)− d(yi, yj)| < δ.

As a consequence, any finite collection of points can be approximated by points
on a metric tree. More precisely, we have the following proposition.

Proposition 8.1. Let X be a δ-hyperbolic space. There is a function f(n) of n ∈ N
such that given n points xi ∈ X, 1 ≤ i ≤ n, there is a metric tree T and n points
yi ∈ T , 1 ≤ i ≤ n such that |d(xi, xj)− d(yi, yj)| < δ.

Remark 8.2. Given three points in a metric space X, we can find corresponding
points in a metric tree T so that the pairwise distances between points in X are
equal to those of the corresponding points in T . However, given a distance not
necessarily satisfying the triangle inequality, the above condition is equivalent to
the distance being a quasi-metric.

Cross-ratios. The above-mentioned properties of annnuli in turn give hyperbolicity
of the cross-ratio. Hyperbolicity of cross-ratios is defined in a manner similar to the
above definition of δ-hyperbolicity. For a metric tree T , we define the cross-ratio
(xy|zw) of four points to be the distance between the segments [x, y] and [z, w].

Definition 8.2. A cross-ratio (. . . | . . . ) on a space X is k-hyperbolic if given n
points, n = 4 or 5, xi ∈ X, 1 ≤ i ≤ n, there is a metric tree T and four points
yi ∈ T , 1 ≤ i ≤ n such that |(xixj |xkxl)− (yiyj |ykyl)| < k.

In fact there are unique configurations of four points and of five points on metric
trees. Thus Bowditch gives a more elegant definition of k-hyperbolicity.

Once more it is a consequence that for any finite collection of points, there is an
approximating metric tree for the cross-ratios.

Proposition 8.3. Let X be a space with a k-hyperbolic cross-ratio. There is a
function g(n) of n ∈ N such that given n points xi ∈ X, 1 ≤ i ≤ n, there is a metric
tree T and n points yi ∈ T , 1 ≤ i ≤ n such that |(xixj |xkxl)− (yiyj |ykyl)| < g(n)k.

The proof that the cross-ratio constructed is k-hyperbolic is a straigtforward
consequence of the properties (A1)-(A3) of the annulus system. As usual, for details
we refer to Bowdirch’s paper.

δ-hyperbolicity of the quasi-metric on X. We finally sketch the proof that
the distance constructed on X = Θ3(M) is a δ-hyperbolic quasi-metric. By the
above quasi-metricity and δ-hyperbolicity are conditions that triples (respectively
quadruples) of points in M can be approximated by metric trees. The proofs are
similar, so for definiteness we consider δ-hyperbolicity.

Consider four points xi, 1 ≤ i ≤ 4 in X. Each such point is a triple of distinct
points xi = (x1

i , x
2
i , x

3
i ) in M , giving twelve points in M . By k-hyperbolicity of the

cross-ratio, there are twelve corresponding points yj
i on a metric tree T such that

all cross-ratio’s among the xj
i ’s differ from the corresponding cross-ratios among

the yj
i ’s by g(12)k. Let yi denote the barycentre of the triple (y1

i , y2
i , y3

i ).
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The distance between the pair of points yi and yj is given in terms of the cross-
ratios by d(yi, yj) = min(yk

i yl
i|yk

j yl
j). Since replacing yj

i ’s by xj
i ’s in this equation

gives the definition of d(xi, xj), |d(xi, xj)− d(yi, yj)| < g(12)k. Thus the distances
between quadruples of points in X can be approximated by distances in a met-
ric tree. This shows δ-hyperbolicity, with the quasi-metric property being proved
similarly by using triples of points. �
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