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1. INTRODUCTION

CONTENTS

CO 00 Ut = = W N N = ==

The 3-sphere 52 is the union of its northern hemisphere and its southern hemi-

Heegard splitting.

sphere. Thus, S? is the union of two balls, with their boundaries identified using an

(orientation reversing) diffeomorphism. This is the simplest example of a so called

We cannot get many manifolds by gluing balls in this manner. Indeed S? is all

we get.
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higher dimensions this construction gives exotic spheres.

Exercise 1. Show that the only manifold obtained by gluing a pair of balls as above

is S3.

Remark 1. The above exercise is a little more subtle than it may seem at first. In
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More generally, we shall glue so called handlebodies along their boundaries. We
shall see that all closed 3-manifolds can be obtained in this manner. First, we look

more closely at the simplest of these handlebodies to get our next example.

2. A BASIC EXAMPLE

2.1. The solid torus. The solid torus is the product D? x S*. It is useful to look
at it from a couple of other points of view.

Firstly, one can obtain a solid torus from B? by attaching a 1-handle. Namely,
to a pair of disjoint discs in S? = 9B3, glue the boundary {0, 1} x D? of [0, 1] x D?,
in such a way as to obtain an orientable manifold.

There is another way to obtain the solid torus from B3. Take a diameter « in
the solid torus. Delete the interior of a regular neighbourhood of this arc. It is easy
to see that B3\ int(N(a)) = D? x St.

More generally, we can take any properly-embeddedunknotted arc o« C B3, i.e.,
an arc a such that there exists an arc 8 embedded in S? = 9B? and an embedded
disc E C B? such that OF = aU 3. On deleting the interior of a neighbourhood of
this arc, we get a solid torus.

Both these descriptions play a key role in what follows.

2.2. S3 once more. We now get a more interesting example of a Heegard splitting.
Namely, as before S3 = B; U By, where the B; are 3-balls glued together along
their boundaries. Now let a be an unknotted properly embedded arc in B;. Let
Hy = By \ int(N(a)) and Hy = By UN(a).

Since H; is the result of deleting an open neighbourhood of an unknotted arc
from a 3-ball, it is a solid torus. On the other hand, Hs is obtained by adding a
1-handle to a 3-ball, and is hence also a solid torus.

Thus, S is the union of two solid tori, glued along their boundary. This is
another example of a Heegard splitting of S3. If one thinks of S? as the one-point
compactification of R3, then H; is just the regular neighbourhood of an unknot,
and H, is the closure of its complement.

It is often useful, in 3-manifold topology, to think of S as the unit ball in C2.

One can see the above decomposition form this point of view.

Exercise 2. Let H; C S® C C?,i = 1,2, be given by H; = {(21,22) € S : |zl|2 >
1/2}. Show that this is a decomposition of S into solid tori.

We can also glue solid tori together along other diffeomorphisms of their bound-
aries. One obtains in this manner S? x S' as well as the lens spaces. We shall treat

these in detail later.
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3. HANDLEBODIES

A handlebody of genus ¢ is a manifold obtained by adding g 1-handles to a 3-
ball. In other words, take a 3-ball with 2¢ disjoint discs on it, which we regard as
g pairs of discs. To each pair, attach a copy of [0,1] x D? along its boundary.

The manifold obtained does not depend on the discs chosen. If the attaching
maps are orientation reversing, then the resulting handlebody is oriented. This is
frequently called the handlebody of genus g.

A couple of alternative descriptions of handlebodies are useful. Firstly, as with
the solid torus, one can obtain the orientable handlebody of genus g by deleting
neighbourhoods of arcs from a 3-ball.

Namely, take a collection of properly embedded arcs a;,1 < 4 < ¢ in B? that
are unknotted and unlinked. This means that there are disjoint embedded arcs (;
in $? = 0B3 and disjoint discs E; C B? such that 0F; = a; U 3;. We leave it as an

exercise to see that this is the handlebody of genus g.
Exercise 3. The manifold obtained above is an oriented handlebody of genus g.

Another useful description of handlebodies is that they are 3-manifolds that are
regular neighbourhoods of graphs (contained in the manifold). Namely, the solid
torus D? x S! is a regular neighbourhood of {0} x S'. More generally, we may
construct a graph consisting of the arcs [0, 1] x {0} in each 1-handle [0, 1] x D?, and

arcs joining the endpoints of all these arcs to a common base point in int(B?).

Exercise 4. If M is a 3-manifold and T' C M is a graph such that M is a regular
neighbourhood of T, then M is a handlebody.

Exercise 5. If H is a handlebody of genus g, then mi(H) = F, is the free group

on g generators.

4. HEEGARD SPLITTINGS

Given two orientable handlebodies W7 and Wy of the same genus g, and an
orientation-reversing diffeomorphism f : 9W; — 0Ws, we may construct a manifold
M? as

MiP=wy [ W
AW, =W,

We shall see that every orientable 3-manifold can be constructed in this manner.
The decomposition of M into the handlebodies W7 and W5 is called a Heegard
splitting of M. The surface OW; = Wy C M is called a Heegard surface.

Exercise 6. What happens if f is orientation-preserving?
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To construct non-orientable 3-manifolds, one glues non-orientable handlebodies
of the same genus along their boundaries. A fundamental theorem asserts that

these constructions give all 3-manifolds.

Theorem 2. FEvery triangulated 3-manifold M has a Heegard splitting.

Proof. Let M be a 3-manifold with a given triangulation 7. The two handlebodies
W1 and W5 in the Heegard splitting we construct will be regular neighbourhoods
of the 1-skeleton T" and the 1-skeleton of its dual triangulation T".

Consider a regular neighbourhood of the 1-skeleton I', and call its boundary F.
Then F separates M into two pieces. One of these is a regular neighbourhood
of the 1-skeleton, and hence is a handlebody. By considering the intersection of
F with each tetrahedron, it is easy to see that the other manifold obtained is a
regular neighbourhood of the 1-skeleton of the dual triangulation, and hence is also

a handlebody. Thus we have a Heegard splitting. O

Remark 3. By a theorem of Moise and Bing, all 3-manifolds have triangulations.
Thus the above result holds for all 3-manifolds.

Example 4.1. (Heegard splittings of S3) S? has Heegard splittings of all genera.
Namely, we first express S® = B; U B,. Take g properly embedded arcs a;,1 <
i < g in B; that are unknotted and unlinked. Let Hy; = By \ U_;int(N (o)) and
Hy = Bo UUY_ N (e;). Then H; and Hy are handlebodies.

These Heegard splittings of S® are called the standard Heegard splittings of S3.
It is natural to ask whether there are any Heegard splittings of S3 different from
these.

The natural equivalence on Heegard splittings is #sotopy. We say that two Hee-
gard splittings of S® are isotopic if the corresponding Heegard surfaces are isotopic.
A theorem of Waldhausen classifies Heegard splittings of S3. For the proof, we

refer to 7

Theorem 4 (Waldhausen). Any Heegard splitting of S® is isotopic to a standard

one.

Exercise 7. Show that the standard Heegard splitting does not depend, up to iso-

topy, on the choice of the arcs «;.
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5. HEEGARD DIAGRAMS

So far we do not have many interesting new examples of 3-manifolds. To effi-
ciently construct and study manifolds using Heegard splittings, we shall need to in-
troduce Heegard diagrams. A Heegard diagram is essentially a handle-decomposition

of a 3-manifold.

5.1. Handlebodies once more. We first need yet another way to construct han-
dlebodies. This is the dual decomposition, in the sense of Morse theory, to the
description of a handlebody as obtained by attaching 1-handles to a 0-handle.

For example, we may construct a solid torus from a torus by attaching a disc to
the meridian and then attaching a 3-ball.

More generally, let F' be a surface of genus g. Then W is obtained from F
(thickened) as follows. To a maximal collection of disjoint, simple closed curves on
F' that do not separate F', attach discs. The boundary of the resulting manifold is
a sphere. Attach a 3-ball to this. The result is a handlebody.

Thus, a handlebody may be specified by a surface together with a system of

curves to which discs are to be attached.

5.2. Heegard diagrams. Given a Heegard splitting M = Wy U W5, we can repre-
sent Wy as obtained from 0W, = 0W; by attaching discs along a system of curves.
Thus, a Heegard splitting for M is obtained if we are given a handlebody Wj of
genus g together with g disjoint simple curves on W that do not separate OW. As

we shall see, this is a very useful way of constructing examples.

Remark 5. Note that the system of curves specified above is not uniquely deter-
mined by a handlebody. The curves can be boundary curves of any Complete Disc
System in the handlebody, i.e., a maximal family of properly embedded disjoint
discs that do not separate.

Two complete disc systems are equivalent under the so-called disc slides, which

are simply handle-slides of the discs, regarded as 2-handles.

Ezample 5.1 (Genus 1 Heegard splittings). By the above, a Heegard splitting of
genus 1 is specified by a non-trivial simple closed curve on the boundary of a solid
torus D? x S'. The manifold M is obtained by attaching a 2-disc to this curve and
then a 3-ball.

The curves g = dD? x {1} and A = {1} x St in 9D? x S are called the meridian
and the longitude. Taking the curve to which a disc is attached to be the longitude
gives S% while taking it to be the meridian gives S? x S*.

The other simple curves are homotopic to pA + qu, with p and g relatively prime.

The corresponding manifolds are the lens spaces L(p, q).
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Note that if F : W7 — Wj is a homeomorphism of the handlebody, then the
image of a Heegard diagram under F' gives another Heegard diagram for the same
manifold. A particularly useful such homeomorphism is the so-called Dehn twist.
If D is a properly embedded disc in a handlebody W, then this is the map which
is equal to the identity outside a neighbourhood of D, and consists of a full twist

in a neighbourhood of D.

Definition 5.1. Suppose D is a properly embedded disc in a handlebody W.
Then a Dehn twist about W is a homeomorphism that is the identity outside a
neighborhood D? x [~1,1] of D? and is isotopic to (z,t) +— (ze™*+1) t) on this
neighborhood.

Example 5.2. In the case of the solid torus D? x S', a Dehn twist about the properly
embedded disc D? x {1} fixes the meridian and maps A\ — X\ & 1.

Now consider the genus 1 Heegard diagram for S®, with a curve bounding a disc
given by A. By applying Dehn twists, we see that other Heegard diagrams of the
sphere are given by attaching a disc to the curve A + ku, k € Z.

Similarly, many of the Heegard diagrams constructed above correspond to the

same lens space.
Exercise 8. Show that L(p,q) = L(p,q + kp)

So far, we have not even shown that the lens spaces are not all S3. To do this,
we compute the fundamental group in terms of a Heegard diagram. Recall that the
fundamental group of a handlebody of genus g is a free group on g generators ;.
Each of the curves in a Heegard diagram represent a word r; in these generators,

well defined up to conjugation.
Proposition 6. A presentation of mi (M) is given by (ou,...,qg;71,...,7g).

Proof. By the Seifert-Van Kampen theorem, attaching a 3-ball does not alter the
fundamental group. Thus, it suffices to consider the manifold M=M \ B3.

The manifold M is obtained by attaching to a ball g 1-handles and g 2-handles.
It is easy to see that M deformation retracts into a 2-complex, with a unique vertex
corresponding to the ball, and edge for each 1-handle and a 2-cell for each disc. The
vertex and edges form a wedge of g circles, and thus have as fundamental group
the free group on g generators. Each 2-cell gives a relation. it is easy to see that

the relations are as above. [

The following immediate corollary implies, for instance, that Z* is not a 3-

manifold group (see [3] or [1]).
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Corollary 7. m (M) has a presentation with an equal number of generators and

relations.
We now return to the lens spaces.
Exercise 9. m1(L(p,q)) = Z/pZ

Heegard diagrams enable us to construct interesting examples, for instance ho-

mology 3-spheres. See Rolfsen [5] for more details and more examples.

Ezample 5.3. The Poincare homology sphere is the manifold with a Heegard split-
ting of genus 2 corresponding to the Heegard diagram in the figure (draw later).
Using the above proposition, one can see explicitly that its fundamental group is

the binary icosahedral group.
We now consider homeomorphisms of handlebodies in more detail.

Exercise 10. Show that any orientation-preserving homeomorphism of D? x S' is

isotopic to the composition of Dehn twists.

Remark 8. In the case of handlebodies of higher genus, we also need two other

moves, so-called Dehn twists about annuli and handle-flips (for details, see [4]).

Thus, associated to a Heegard splitting are Heegard diagrams. Two such Heegard
diagrams are equivalent under handle-slides and handlebody homeomorphisms.
The more interesting question is to what extent the Heegard splitting itself is
unique.

We have seen that S® has many Heegard splittings, but these are in some sense all

derived from the simplest one. This generalises to a construction called stabilisation.

Definition 5.2. Let M = W; UW, be a Heegard splitting, and o C W5 a properly
embedded unknotted arc. Let W| = W7 UN (a) and W5 = Wa \ int(N («)). Then
we say that the Heegard splitting M = W, U W is obtained from M = W; U W,
by stabilisation.

The following fundamental theorem of Reidemeister and Singer relates two Hee-

gard splittings of a manifold.

Theorem 9 (Reidemeister-Singer). Any two Heegard splittings of a 3-manifold M

are isotopic after finitely many stabilisations.

One would wish for more, in particular, an a priori bound on the number of

stabilisations needed. In the case of the 3-sphere, any Heegard splitting is obtained
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from a unique minimal Heegard splitting, i.e., one that cannot be obtained by
stabilising a Heegard splitting of lower genus.
It was unknown till fairly recently whether every manifold has a unique such

Heegard splitting. This was shown not to be so by Casson and Gordon.

Theorem 10 (Casson-Gordon). There is a 3-manifold M which has non-isotopic,

mintmal Heegard splittings.

It turns out that these Heegard splittings become isotopic after a single stabili-
sation. Indeed, there is no known case where more than one stabilisation is needed.
This should not be regarded as an indication of what is true, but rather of our
ignorance.

In the case of so called non-Haken manifolds, there is a bound on the number of
stabilisations required, linear in the genera of the Heegard splittings, by a theorem
of Rubinstein and Scharlemann.

Another interesting question is the minimum genus among Heegard splittings
of a given manifold M. Since a Heegard diagram gives a presentation of (M),
we see that this must be at least the rank of 71 (M). Boileau and Zieschang have

shown that there are manifolds whose Heegard genus is greater than the rank of
™1 (M)

6. MORE ON LENS SPACES

We conclude by taking another look at lens spaces.

Exercise 11. A more succinct description of the lens space L(p, q) is as the quotient
of 8% € C? by the action generated by (21, 20) +— (21€*™/P, 2e?™4/P). Show that
the solid tori H; = {(z1, ) € 52 : |z|* > 1/2} are invariant under this action, and

their images give a Heegard splitting for L(p, q).

Exercise 12. Show that (z1,22) +— (22,21) is a homeomorphism between L(p,q)

and L(p,q~ '), where qg~! = 1(mod p)

Exercise 13. As with S3, lens spaces have unique minimal Heegard splittings.
Thus, if f : L(p,q) — L(p',q') is a homeomorphism, then the image of a Heegard
surface under f is isotopic to a Heegard surface. Use this to show that as oriented

manifolds, L(p,q) = L(p',¢') iff p=p' and ¢’ = q*(mod p).
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