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Dynamics is the study of the motion of a body, or more generally evolution of a
system with time, for instance, the motion of two revolving bodies attracted to each
other by the force of gravity. To study such a system, we generally need to only
consider a certain number of parameters, for instance, the positions and velocities
of the bodies. These parameters taken together constitute the phase space X.

Further, the evolution in time is governed by some physical law. We call the
phase space with the given law a dynamical system. These laws may be of dif-
ferent kinds, so we need to distinguish at this point between a variety of different
dynamical systems.

The first distinction is whether we regard time as discrete or continuous. In this
article, we shall take time to be discrete, i.e., we talk of the state of the system at
times t = 0, t = 1, t = 2 etc. For systems with continuous time, we can consider the
state at fixed intervals to obtain a discrete system. For instance, we may observe the
position of a pendulum once every second. Hence most of the methods developed
here work equally well for systems with continuous time. In fact often systems with
continuous time are easier to understand than their discrete counterparts.

We thus have a dynamical system whose state at time t+1 is a point x(t+1) in
X that depends on its state x(t) at time t. We make a further distinction between
a deterministic system where x(t+1) is determined by x(t) and a stochastic system
where x(t + 1) is a random variable whose probability distribution is determined
by x(t). We confine ourselves here to deterministic systems.

Assume moreover that absolute time does not matter. Then x(t+1) is a function
f(x(t)) of the state of the system at time t. Here f is a function from X to itself.
Thus our setup is as follows.

Definition 0.1. A dynamical system is a phase space X together with a function
f : X → X.

Aside. Stochastic systems can also be treated in this framework by considering
in place of the the phase space X the space P (X) of probability distributions
on X, since the probability distribution P (t) of x(t) determines the probability
distribution P (t + 1) of x(t + 1).

1. Topological dynamics on the circle

So far we have said nothing about the nature of the function f or the space X.
We shall take f to be a continuous function. This puts us in the realm of topological
dynamics. We shall take our space X to be the circle S1. Although as a space S1

is simple its dynamics is very rich.
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In this article, we make the major simplifying assumption that our dynamical
system is reversible, i.e., f has an inverse. More general dynamics of a circle is a
complex and actively studied field.

Aside. There are other major branches of dynamics, for instance smooth dynamics
where f is taken to be smooth, conformal dynamics where f is an analytical map
on a complex domain and measurable dynamics where f is a measurable function
on a probability space.

1.1. Reparametrisation. The first step in studying dynamics on the circle is
to realise that we obtain the same dynamics if the circle is reparametrised, i.e.,
we make a change of co-ordinates. A reparametrisation is given by an invertible
function g : S1 → S1. On reparametrising, f is replaced by g ◦ f ◦ g−1. Thus, we
regard the dynamical systems given by f and g◦f ◦g−1 as equivalent. We formalise
this.

Definition 1.1. Functions f, h : X → X are said to be conjugate if there exists an
invertible continuous function g : X → X such that h = g ◦ f ◦ g−1.

To understand dynamical systems on the circle thus amounts to classifying (in-
vertible) continuous functions f : S1 → S1 up to conjugacy. We first need to
understand their structure a little better.

Aside. If we wished to study smooth dynamical systems (as most real life functions
are smooth), we may assume f is smooth but we have to confine ourself to smooth
re-parametrisations g to get a meaningful theory. This is actually harder than the
topological case - what we gain here by allowing any continuous re-parametrisation
exceeds the cost of not assuming smoothness for f .

1.2. Fixed points. A fixed point of f is a point x ∈ S1 such that f(x) = x. We
denote the set of fixed points as Fix(f). This is a closed set of S1.

We shall begin with the case when Fix(f) is non-empty, i.e., there is at least
one fixed point. This is the easier case.

Since the complement of the fixed point set is a non-empty open set of S1, it is a
(possibly infinite) collection of intervals Ik = (ak, bk). The function f is determined
by its restriction to each of these intervals, each of which we identify with the open
interval (0, 1). Further the restriction of f to Ik, with the above identification,
extends to a map f : [0, 1] → [0, 1].

Thus, the dynamics in the case with fixed points reduces to dynamics on the
interval [0, 1].

2. Dynamics on the interval [0, 1]

We have reduced the study of the case with fixed points to considering functions
f : [0, 1] → [0, 1] that are invertible with f(0) = 0 and f(1) = 1. Observe that
if [0, 1] is identified with a subinterval I of the circle, conjugation by an invertible
function g : [0, 1] → [0, 1] that fixes 0 and 1 extends to conjugation by a function on
S1 by the function that is given by g on I and is identity elsewhere. More generally,
if we break the circle into disjoint intervals Ij which are mapped to themselves by
f and we have a function h which fixes Ij with f conjugate to h on each Ij , then
f is conjugate to h on S1.

Further, if f has fixed points in (0, 1), the complement of the fixed point set is a
collection of intervals. By studying f separately on each of these intervals, we can



DYNAMICS ON THE CIRCLE I 3

reduce to the case where f has no fixed points on (0, 1). We shall show that up to
conjugation by g as above, there are only two classes of functions.

We begin with a simple observation.

Lemma 2.1. If f : [0, 1] → [0, 1] has no fixed points on (0, 1), then f is either
strictly increasing or strictly decreasing on (0, 1)

Proof. Consider the function f(x)−x on (0, 1). This is continuous and, as f has no
fixed points, it is never zero. Hence it must be everywhere positive or everywhere
negative, i.e., f(x) > x ∀x ∈ (0, 1) or f(x) < x ∀x ∈ (0, 1). �

We shall show that all increasing functions are conjugate to each other. A
typical example of such a function is f(x) =

√
x. A similar argument shows that

all decreasing functions are also conjugate to each other.

Theorem 2.2. If f, h : [0, 1] → [0, 1] are functions such that f(0) = h(0) = 0 and
f(1) = h(1) = 1, f(x) > x ∀x and h(x) > x ∀x then f and h are conjugate.

Proof. We construct a function g that gives the conjugacy. Pick points x and y in
(0, 1). For n ∈ Z, define xn = fn(x) and yn = hn(x). As f and h are increasing xn

and yn are increasing sequences.

Lemma 2.3. limn→∞xn = limn→∞yn = 1 and limn→−∞xn = limn→−∞yn = 0

Proof. We prove limn→∞xn = 1. First observe that as n goes to infinity, xn is
increasing and bounded above. Hence the limit a = limn→∞xn exists. Now

f(a) = f(limn→∞xn) = limn→∞f(xn) = limn→∞xn = limn→∞xn+1 = a

and hence a is a fixed point of f . As the only fixed points of f are 0 and 1 and
a > x0 ∈ (0, 1), a = limn→∞xn = 1. The other limits are deduced similarly. �

Since xn and yn are increasing sequences, we deduce the following.

Corollary 2.4.
∞⋃

n=−∞
[xn, xn+1] =

∞⋃
n=−∞

[yn, yn+1] = (0, 1)

We now define the map g. First define the restriction of g to [x0, x1] to be any
increasing one-to-one continuous function onto [y0, y1] (for instance a linear map).
We shall see that the condition h = g ◦ f ◦ g−1, or equivalently,

h ◦ g = g ◦ f

now determines g.
Consider first a point z0 ∈ [x0, x1]. Its image under f is a point f(z0) ∈ [x1, x2]

and hence g(f(z0)) has not been previously defined. As g satisfies h ◦ g = g ◦ f , we
must have g(f(z0)) = h(g(z0)). We take this as the definition of g at f(z0). Since f
maps [x0, x1] to [x1, x2], g has now been defined on [x1, x2] and satisfies h◦g = g◦f
on [x0, x2]. Notice that the image under g of [x1, x2] is h([y0, y1]) = [y1, y2].

We extend this process to the whole interval. Observe that by the above corollary,
any point in z ∈ (0, 1) can be expressed as fn(z0) for some n ∈ Z and z0 in [x0, x1]
and this is unique except that fn(x0) = fn−1[x1]. The equation h = g ◦ f ◦ g−1

implies hn = g ◦ fn ◦ g−1 or equivalently g ◦ fn = hn ◦ g. This can once more be
taken as the defining equation, i.e., we define g(z) = hn(f(z0)). One can readily
verify that though fn(x0) = fn−1[x1], we get a well defined function.
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By the above corollary, this determines g on (0, 1) and, as hn(f(z0)) ∈ [yn, yn+1]
for z0 ∈ [x0, x1]. Finally, we define g(0) = 0 and g(1) = 1 to obtain the required
conjugation.

It is now straightforward to verify that g ◦ f = h ◦ g, i.e. g(f(z)) = h(g(z)) ∀z ∈
[0, 1]. For, any z ∈ (0, 1) can be expressed as fn(z0) for some n ∈ Z and z0 in
[x0, x1]. Hence g(f(z)) = g(fn+1(z0)) = hn+1(g(z0)) by the definition of g. Further,
by the definition of g, hn+1(g(z0)) = h(hn(g(z0))) = h(g(fn(z0))) = h(g(z)). Thus,
g(f(z)) = h(g(z)) �

Thus, up to conjugation, there are two classes of fixed point free invertible maps
of [0, 1], namely the class of increasing functions and the class of decreasing func-
tions. Returning to the case of the circle, we see that if Fix(f) is non-empty, then
f is either increasing or decreasing in each interval of S1 \Fix(f). This completely
determines the dynamics of f .

Here is an application of the above.

Exercise. Show that any invertible continuous function f : [0, 1] → [0, 1] has a
square root, i.e. a function g such that f = g ◦ g

3. Rotation numbers

We now turn to the case without fixed points.
The simplest examples of maps from the circle to itself are rotations and these

have no fixed points. Thus it is natural to try to understand when an invertible map
f : S1 → S1 is conjugate to some rotation. As is often the case in mathematics,
half the battle is won if one can recognise to which rotation one expects f to be
conjugate.

In this vein, Poincaré introduced the notion of the rotation number rot(f) of an
invertible map f : S1 → S1. This is well defined modulo 2π (as with angles) and
for a rotation by θ the rotation number is θ. Moreover, if f is conjugate to a map
g, then rot(f) = rot(g). It immediately follows that rotations by different angles
are not conjugate (which can be shown by more elementary means).

Furthermore, it follows that the only rotation to which f can be conjugate is
the one by the angle rot(f), and we have to decide whether f is conjugate to this
rotation, or more generally what are all the maps (up to conjugacy) with a given
rotation number. This turns out to be subtle - for instance it turns out to depend
crucially on whether rot(f) is rational.

Before getting to the definition of the rotation number, we need some prelimi-
naries.

3.1. Orientations. Invertible maps of the circle are of two kinds - those that are
orientation preserving and those that are orientation reversing. We formalise this
notion (in one of the many possible ways).

Given 3 points a, b and c on S1, we shall say c ∈ [a, b] if we pass c while moving
from a to b in the counter-clockwise direction. We shall define f to be orientation-
preserving if for points a, b and c in S1, c ∈ [a, b] =⇒ f(c) ∈ [f(a), f(b)].

3.2. Lifting maps. We can view points on the circle as representing angles. Any
angle θ ∈ R has a unique point associated to it, but to each point on the circle
we have associated infinitely many angles differing by 2π. We formalise this by
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considering the map p : R → S1 given by p(t) = e2πt. This is just the ‘angle map’
rescaled to have periodicity 1 rather than 2π.

Now suppose we have a function F : R → R with the periodicity property
F (t+1) = F (t)+ 1 ∀t. Then we get a corresponding map f : S1 → S1 of the circle
which takes the point p(t) (the point with angle t) to the point p(F (t)) (the point
with angle F (t)). The periodicity property of F means that f is well defined.

In our situation we have an orientation preserving invertible map f : S1 → S1.
We shall see that this comes from a periodic map F : R → R such that F (t + 1) =
F (t) + 1 ∀t as above.

Definition 3.1. A lift of a map f : S1 → S1 is a map F : R → R such that
p(F (t)) = f(p(t)) ∀t ∈ R.

Proposition 3.1. Every orientation preserving invertible map f : S1 → S1 has
a lift F : R → R . Furthermore F is a monotonically increasing function and
F (t + 1) = F (t) + 1 ∀t.
Proof. We will first construct F on [0, 1]. Let a ∈ R be such that p(a) = f(p(0))
and set F (0) = a and F (1) = a + 1. As x increases from 0 to 1, p(x) moves
counterclockwise once around the circle. As f is orientation preserving, f(p(x))
makes a single counterclockwise rotation beginning at f(p(0)). For each x ∈ (0, 1)
define F (x) to be the unique point y in [a, a + 1] such that p(y) = f(p(x)).

We now extend F to R. Any point z ∈ R is of the form x + k with x ∈ [0, 1],
k ∈ Z. We define F (z) = F (x) + k. We leave the verification of the properties of F
as an exercise to the reader. �

The lift is essentially unique.

Proposition 3.2. Suppose F and G are lifts of f : S1 → S1. Then there is an
integer n ∈ Z such that ∀t ∈ R, G(t) = F (t) + n

Proof. For each x ∈ R, p(F (x)) = f(p(x)) = p(G(x)), hence F (x)−G(x) ∈ Z. As
F −G is continuous and takes only integer values, it must be a constant n ∈ Z. �

3.3. Rotation number. Suppose f is the rotation by an angle 2πα, then a lift of
f is given by F (t) = t + α. Thus, each point is translated by α. In general the
lift will not be of such a nice form and each point may be translated by different
amounts. But if we apply iterations Fn of the lift F , we see that the amount of
translations (which in the case of the rotation by α is nα) averages out.

Theorem 3.3. Let F : R → R be an increasing function such that F (t + 1) =
F (t) + 1. Then limt→∞

F n(x)
n exists and is independent of x.

Proof. We shall first consider the case when x = 0 and then show that we obtain
the same limit for arbitrary x. We need the following lemma.

Lemma 3.4. Suppose k ≤ Fm(0) < k + 1. Then for any n ∈ N, nk ≤ Fmn(k) ≤
n(k + 1)

Proof. Note that from the hypothesis we get Fn(x+m) = Fn(x)+m ∀x ∈ R,m ∈ Z.
We prove the lemma in the case when n = 2. The general case follows similarly by
induction.

As k ≤ Fm(0) < k + 1 and F is increasing, by periodicity Fm(k) ≤ F 2m(0) <
Fm(k + 1), i.e. Fm(0) + k ≤ F 2m(0) < Fm(0) + k + 1. Using k ≤ Fm(0) < k + 1
once more, we obtain 2k ≤ F 2m(0) < 2(k + 1) �
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We next show that the sequence Fn(0)/n is Cauchy. This follows from the
following lemma.

Lemma 3.5. Suppose m,n > N for some N ∈ N. Then |F
m(0)
m − F n(0)

n | < 2
N

Proof. We show that |F
m(0)
m − F mn(0)

mn | < 1
m . Note that for some integer k, we

must have k ≤ Fm(0) < k + 1. By the previous lemma, it follows that nk ≤
Fmn(0) < n(k + 1). Hence k

m < F m(0)
m < k+1

m and k
m < F mn(0)

mn < k+1
m , hence

|Fm(0)m− F mn(0)
mn | < 1

m < 1
N . Interchanging the role of m and n we get a similar

inequality. Using the triangle inequality the lemma follows. �

Thus, the limit limt→∞
F n(0)

n exits. Now for any x ∈ R, there is an integer k
such that −k < x < k. By monotonicity of Fn, Fn(−k) < Fn(x) < Fn(k), i.e.
Fn(0) − k < Fn(x) < Fn(0) + k. It follows that limt→∞

F n(x)
n exits and equals

limt→∞
F n(0)

n
�

Any other lift of f is of the form G(t) = F (t)+k for a fixed integer k as we have
seen, and hence Gn(t) = Fn(t) + k. It follows that limt→∞

Gn(x)
n = limt→∞

F n(x)
n .

Hence we can make the following definition.

Definition 3.2. The rotation number rot(f) of f is defined by limt→∞
F n(x)

n where
F is a lift of f .

The importance of the rotation number lies in its being a dynamical invariant,
that is, the rotation number of two conjugate maps are equal.

Theorem 3.6. If f and g are conjugate then rot(f) = rot(g)

Proof. Let g = hfh−1 and let F and G be lifts of F and G. Then H = GFG−1 is
a lift of h and hence we can use H to compute the rotation number of h.

Observe that Hn = GFnG−1. We shall show that there is a fixed M , independent
of n, such that |Fn(x) − Hn(x)| < M ∀x ∈ R. The theorem follows immediately
from this.

Firstly, by the periodicity of G, the function P (x) = G(x)− x is bounded. This
follows as for all integers k, P (x + k) = P (x). As P is continuous it is bounded
on [0, 1]. The periodicity thus implies that P is bounded on R. It follows similarly
that G−1(x)− x is bounded. Thus, we can find k such that |G(x)− x| < k ∀x ∈ R
and |G−1(x)− x| < k ∀x ∈ R.

Next, we claim that if |y−z| < k then |Fn(y)−Fn(z)| < k. For, we may assume
without loss of generality that y ≤ z < y + k. As Fn is an increasing function it
follows that Fn(y) ≤ Fn(z) < Fn(y + k) = Fn(y) + k.

Thus, by what we have seen above, for any real number x, |G−1(x) − x| <
k and hence |Fn(G−1(x)) − Fn(x)| < k. Further, by the above results applied
to Fn(G−1(x)), |Fn(G−1(x)) − G(Fn(G−1(x)))| < k. By the triangle inequality,
|G(Fn(G−1(x)))−x| < 2k. Taking M = 2k we obtain |Fn(x)−Hn(x)| < M ∀x ∈ R.
This completes the proof of the theorem.

�

Corollary 3.7. Rotations by α and β are not conjugate unless α − β is divisible
by 2π (in which case the rotations are equal).
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Thus, we see that (as one would expect) rotations by different angles are not
conjugate. Furthermore, each orientation preserving invertible map f : S1 → S1

has a rotation number rot(f), and if f is conjugate to a rotation, it must be the
rotation by rot(f).

This still leaves us with the problem of classifying orientation preserving invert-
ible maps f : S1 → S1 with a fixed rotation number.

To get an idea of the solution, we consider the case when the rotation number
is zero.

Exercise. Show that orientation preserving invertible map f : S1 → S1 has rota-
tion number zero if and only if f has a fixed point.

The rotation by angle zero is the identity, and we have seen that there are plenty
of maps besides these with fixed points. The case when the rotation number is
rational is similar to this case. The situation for irrational angles is more subtle
in some ways but nicer in other ways. We consider the problem of classifying
orientation preserving invertible maps f : S1 → S1 with a fixed rotation number in
more detail in the sequel.
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