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SIDDHARTHA GADGIL

Abstract. These are notes for the Chennai TMGT conference on δ-hyperbolic

spaces corresponding to chapter III.H in the book of Bridson and Haefliger.

When viewed from a distance, the lattice Z2 ⊂ R2 looks like the plane. This is
a simple instance of a very fruitful philosophy, introduced by Gromov, that viewed
from a distance many groups can be regarded as geometric objects.

A very important class of such groups is those whose large-scale behaviour is
similar to that of negatively curved spaces. The goal of this chapter is to lay the
foundations for the study of these by making sense of the expression large-scale
behaviour is similar to that of negatively curved spaces, and to develop analogues
of many fruitful constructions associated to hyperbolic spaces to this more general
class of spaces (and groups).

1. Introduction

We consider henceforth geodesic metric spaces, i.e., spaces where every pair of
points is connected by a geodesic (a curve every sub-arc of which has length the
distance between its endpoints). Our goal is to study large-scale properties of such
metric spaces in particular those that have negative curvature in the large scale.
Before making precise definitions, let us consider what this should mean.

There are (at least) two useful ways to make sense of this, but we shall mainly
take the first point of view. This is to introduce an equivalence relation between
metric spaces X and Y which corresponds to them being the same in the large
scale.

The right relation to introduce is that of quasi-isometry. We recall below the
definition.

Definition 1.1. Suppose X and Y are metric spaces. A function f : X → Y is
said to be a (λ, ε)-quasi-isometric embedding if

∀p, q ∈ X,
1
λ

dX(p, q)− ε < dY (f(p), f(q)) < λdX(p, q) + ε

. A (λ, ε)-quasi-isometry is a (λ, ε)-quasi-isometric embedding such that the ε-
neighbourhood of f(X) is all of Y .

This is the right relation for several reasons:
• For the universal cover of a compact space X, any two metrics that are

pullbacks of metrics on X are quasi-isometric.
• Such a metric in fact depends up to quasi-isometry only on π1(X) and is

quasi-isometric to the word metric corresponding to any finite system of
generators.
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• In particular a word-metric on a finitely generated group is independent up
to quasi-isometry on the choice of generators.

Thus, we can speak of the large scale behaviour of a group up to quasi-isometry
as an intrinsic property of the group. For instance the statement that in the large-
scale Z2 is the same as R2 now makes sense.

Thus, we are concerned with a category whose objects are equivalence classes
of metric spaces. The appropriate morphisms are coarse Lipschitz maps, with iso-
morphisms being quasi-isometries. All the notions we define henceforth must be
intrinsic to the quasi-isometry class of a metric space.

The second fruitful approach, which we do not take here, is to re-scale the metric
multiplying all the distances by ε and consider the limit as ε goes to zero. This
amounts to looking at the space from a very great distance, so that everything
looks small and the eye cannot distinguish fine features of the landscape. The limit
one considers is the so called Gromov-Hausdorff limit. We do not enter into details
here, but confine ourselves to a warning that this limit is by no means uniquely
defined - one rather requires that every limit of subsequences has an appropriate
property.

Models of negatively-curved spaces are the hyperbolic plane H, CAT (k) spaces
with k < 0 and trees T (which are CAT (−∞) spaces). Thus we seek a characteri-
sation of these examples that is invariant under quasi-isometry. There are several
(equivalent) such characterisations we can use.

Remark 1.1. As we re-scale the metric on a negatively curved space (say a CAT (k)
space or a manifold with pinched negative sectional curvature), the curvature goes
to−∞. Hence the limit described above is always a so-called R-tree, a generalisation
of the notion of a tree. Thus in many ways trees can be regarded as our sole model
spaces.

2. The definition of hyperbolicity

Of the many possible characterisations, we take as our definition of δ-hyperbolicity
the property that triangles are slim.

Definition 2.1. Let δ > 0. A geodesic triangle in a metric space X is said to be
δ-slim if each of its sides is contained in the δ-neighbourhood of the union of the
other two sides. A geodesic space X is said to be δ-hyperbolic if every triangle in
X is δ-slim.

Proposition 2.1. If k < 0 then every CAT (k) space is δ-hyperbolic, where δ
depends only on k.

Proof. This follows immediately from the definition of CAT (k) spaces once we show
that the hyperbolic plane H is δ-hyperbolic for some δ. Suppose that some triangle
in H is not δ-slim, then it contains a semi-circle of radius δ. As any triangle has
area at most π, we can deduce an upper bound on δ. �

We leave the proof of the following proposition as an exercise to the reader.

Proposition 2.2. Any tree T is 0-hyperbolic.
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3. Quasi-geodesics

Geodesics play a central role in Riemannian geometry (as do lines in Euclidean
geometry). However, we are studying spaces only up to quasi-isometry, and a quasi-
isometry does not preserve geodesics. In particular, it is not clear form the above
definition that δ-hyperbolicity depends only on the quasi-isometry class.

Thus, we need to replace geodesics by the more robust notion of a quasi-geodesic.

Definition 3.1. A (λ, ε)-quasi-geodesic in X is a (λ, ε)-quasi-isometric embedding
of an interval or R into X.

Observe that a geodesic is just an isometric embedding of R or an interval. It is
clear from the definition that quasi-isometries preserve the set of quasi-geodesics.

That this is indeed a useful substitute for geodesics is due to deep properties
of negative curvature. One should think of a quasi-geodesic as being a wiggly line
near a geodesic. We shall see that this is indeed the correct picture in δ-hyperbolic
spaces.

Theorem 3.1. For all δ > 0, λ ≥ 1 and ε ≥ 0 there exists a constant R = R(δ, λ, ε)
such that the Hausdorff distance between any (λ, ε)-quasi-geodesic c : [p, q] → X in
a δ-hyperbolic space X and any geodesic α joining its endpoints is at most R.

Before entering into the proof, we consider a couple of examples in Euclidean
space to show that this is by no means true in the absence of negative curvature.

First, observe that a semi-circle is a (λ, ε)- quasi-geodesic with the constants
being the same at all scales. Similarly, a sine-curve is a quasi-geodesic, with the
constants depending only on the ratio of the amplitude to the wave-length. These
are examples where there is no R depending only on the constants λ and ε.

Next, consider an infinite sine-curve whose amplitude and wavelength grow in
the same proportion. This is a quasi-geodesic, but is not close to any geodesic.
Another such example can be constructed using an infinite spiral. We shall see
in contrast, as an easy consequence of the above, that in δ-hyperbolic spaces even
infinite quasi-geodesics are close to geodesics.

Furthermore, in the case of the standard Cayley graph for Z2, not even geodesics
satisfy the above theorem.

There are some immediate consequences of the theorem.

Corollary 3.2. A geodesic metric space is δ-hyperbolic for some δ iff every quasi-
geodesic triangle is slim.

Corollary 3.3. Any space quasi-isometrically embedded in a hyperbolic space is
hyperbolic.

Here and henceforth by a hyperbolic space we mean δ-hyperbolic for some δ,
where different spaces may have differing values of δ.

We shall now prove the above theorem. The proof is intricate and will be accom-
plished in three steps. Firstly, we show that, given a quasi-geodesic and a geodesic
as above, the quasi-geodesic can be replaced by one that is continuous. Next, we
show that every point in the geodesic is close to some point in the quasi-geodesic.
Finally, we prove the result.

Lemma 3.4. Let X be a geodesic metric space. Given any (λ, ε)-quasi-geodesic
c : [p, q] → X, one can find a continuous (λ, ε′ = λ+ε)-quasi-geodesic c′ : [a, b] → X
with the same endpoints such that:
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(1) The Hausdorff distance between the images of c and c′ is at most λ + ε
(2) For all t, t′ ∈ [a, b], l(c′|[t,t′]) ≤ k1d(c(t), c(t′))+k2, where k1 and k2 depend

only on λ and ε

Proof. One takes c′ to consist of geodesic segments joining the points of c(Σ), where
Σ = {a, b} ∪ (Z ∪ [p, q]). The result follows by a straightforward calculation. �

Next we have the following lemma.

Lemma 3.5. Let X be a δ-hyperbolic space. Let c be a continuous rectifiable path
in X. If γ is a geodesic segment connecting the end-points of c, then for every
x ∈ γ,

d(x, im(c)) ≤ |log2(l(c))|+ 1

Proof. Let x ∈ γ. We can assume that c : [0, 1] → X and is parametrised by
arc-length.

Consider a geodesic triangle with vertices c(0), c(1/2) and c(1). By the slim
triangle condition, x is within a distance δ from some point y1 from one of the
other two sides of this triangle. Replacing γ by this side and x by y1, we can
proceed by induction to get a sequence of points yn at distance at most nδ from x.
At each stage l(c) is halved, so that after at most |log2(l(c))| stages it becomes less
than 1. We can now find y within a distance 1 of yn. �

We can apply this to our quasi-geodesic. However it is still less than we need,
as the bound depends on the length, not just the constants of the quasi-geodesic.
Thus, we need a uniform upper bound on D such that some point in x ∈ α has
distance at least D from c. Here and henceforth, we assume that we have replaced
c by c′.

Pick x and D as above that are maximal. Let y and z be points of α at distance
2D from x on the the two sides of x (if there are no such points, pick the end-point
instead. Then there are points y′ and z′ on c that are a distance at most D from
y and z.

Consider the path from y to z consisting of geodesic segments from y to y′ and
z to z′ and a subsegment of c. By hypothesis and the triangle inequality this has
length at most 6Dk1 + k2 + 2D. Thus, by the lemma, as the point x has distance
D from this segment,

D − 1 ≤ δlog2(6Dk1 + k2 + 2D)

from which a universal upper bound D0 follows.
Finally, we show that if R = D0(1 + k1) + k2/2, we show that every point in

c is contained in a R neighbourhood of α. Suppose not, let [a′, b′] be a maximal
interval whose image lies outside this neighbourhood. By connectedness, we can
find w ∈ α, t ∈ [a, a′] and t′ ∈ [b′, b] such that w has distance at most D0 from
c(t) and c(t′), so that the distance between these is at most 2D0. One immediately
deduces a contradiction to the hypothesis that c is a quasi-geodesic. �

3.1. k-local geodesics. We see next that there is a local criterion for recognising
quasi-geodesics in a δ-hyperbolic space.

Definition 3.2. Let X be a geodesic metric space. A path c : [a, b] → X is said
to be a k-local geodesic if d(c(t), c(t′)) = |t− t′| if |t− t′| < k
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Theorem 3.6. Let X be a δ-hyperbolic space and c a k-local geodesic with k > 8δ.
Then:

(1) im(c) is contained in the 2δ-neighbourhood of any geodesic [c(a), c(b)] join-
ing its endpoints.

(2) [c(a), c(b)] is contained in the 3δ-neighbourhood of im(c).
(3) c is a quasi-geodesic (with constants depending on k and δ).

The proof of this is similar to those of the last section. The reader is referred to
Bridson-Haefliger for details.

4. Reformulations of hyperbolicity

We shall now consider two equivalent formulations of hyperbolicity, the second
of which was Gromov’s original definition. These can best be thought of as saying
that δ-hyperbolic spaces are close to trees, or rather that finite polygons in such
spaces can be well-approximated by metric trees.

4.1. Thin triangles. Our first condition says that triangles can be approximated
by tripods, metric trees with at most three edges and at most one vertex of degree
greater than one. Given three non-negative numbers a, b and c there is a unique
such tree with these as edge-lengths.

Now suppose d(x, y), d(y, z) and d(z, x) are the lengths of three sides of a triangle
in a geodesic metric space X (in fact any three numbers satisfying the triangle
inequalities), there exist unique non-negative numbers a, b and c such that d(x, y) =
a + b, d(y, z) = b + c and d(z, x) = c + a.

Given a geodesic triangle ∆ = ∆(x, y, z). Let T∆ = T (a, b, c). There is a natural
isometry χ∆ from the sides of the triangle to the tripod. Denote the vertices of the
tripod by vx, vy and vz and let o∆ denote the central vertex of the tripod. The
points of χ−1(o∆) are called the internal points.

The diameters of the fibres of χ are a natural measure of the thinness of the
triangle. There are two measures of this.

Definition 4.1. A geodesic triangle ∆ is said to be δ-thin if χ(p) = χ(q) ⇒
d(p, q) ≤ δ. The diameter of χ−1(o∆) is called the insize of ∆.

Proposition 4.1. For a geodesic metric space X, the following conditions are
equivalent.

(1) X is δ0-hyperbolic for some δ0

(2) There exists δ1 such that every triangle in X is δ1-thin.
(3) There exists δ2 such that every triangle in X has insize at most δ2.

Proof. It is clear that 2 implies 1. We next show that 1 implies 3. Let ix denote
the internal point on the side opposite x and similarly for iy and iz. By hypothesis,
there is a point p in (say) [x, y] that is a distance at most δ0 from ix. By the triangle
inequality, |d(y, p)−d(y, ix)| ≤ δ0. As d(y, ix) = d(y, iz) it follows that d(p, iz) ≤ δ0.
Thus, d(ix, iz) ≤ 2δ0. A similar argument with the other pairs completes the proof.

Finally, assume 3 holds. Consider a geodesic triangle and let {p, q} be a fibre of
χ. Without loss of generality we assume that χ(p) lies on the branch of the tripod
ending in vy and that p ∈ [x, y]. We show that 1 holds by constructing a geodesic
triangle with p as an internal point. As d(y, p) = d(y, q), it will follow that q is also
an internal point, giving the result.
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To construct the triangle, we look at triangles with vertices z, y and w, where w
moves continuously on [x, y]. By our assumptions, when w = x, the internal vertex
on [x, y] is iz which lies between p and x.

On the other hand, if w is close to y, the internal point lies between p and y.
Using the intermediate value theorem, we get the desired triangle. �

4.2. The Gromov Product. We now turn to Gromov’s original definition of hy-
perbolicity. Like the previous condition, it is best to think of this in terms of
trees.

Definition 4.2. Let X be a geodesic metric space and let x ∈ X. The Gromov
product of y, z ∈ X with respect to x is defined to be

(y · z)x =
1
2
(d(x, y) + d(y, z)− d(z, x))

If X is a tree, this is the distance between x and the segment [y, z]. More
generally, it is the corresponding length in the comparison tripod. As a consequence,
if ∆ is δ-thin then |d(x, [y, z])− (y · z)x| ≤ δ.

Definition 4.3. A metric space is X is said to be (δ)-hyperbolic if

(x · y)w ≥ min((y · z)w, (x · z)w)− δ

for all x, y, z, w ∈ X.

By considering cases, it is an easy (but important) exercise to check that if X is
a tree then the above holds with δ = 0. Note that the above definition does not
require X to be a geodesic metric space.

The condition can be formulated more symmetrically as the following four-point
condition.

d(x,w) + d(y, z) ≤ max(d(x, y) + d(z, w), d(x, z) + d(y, w)) + 2δ

Once more it is useful to think of this in terms of trees and see that it holds
with δ = 0. The extremal case is when we have a six vertex tree with two trivalent
vertices with an edge joining them, so that the pairs of points on the left hand side
of the above inequality are on the opposite sides of this edge. The middle edge gets
counted twice and every other edge once on both sides of the above.

Proposition 4.2. Let X be a geodesic metric space. Then X is hyperbolic iff it is
(δ)-hyperbolic for some δ.

Proof. Suppose X is hyperbolic, that is, every triangle is δ-thin. Then we deduce
(δ′)-hyperbolicity by comparing the points x, y, z and w to points on a tree. This
consists of two triads glued together along a common edge.

By considering cases we see that the tree is (0)-hyperbolic, and passing to X
changes each side of the above inequality by at most 2δ (as our tree is constructed
from two triads).

Conversely, we shall show that the insize of a triangle with vertices x, y and z is
bounded. Consider the four-point for these points together with ix. This implies
that d(x, ix) + d(y, z) < P/2 + δ, where P is the perimeter of the triangle (one
has equality in the case of a tree). Since d(x, ix) + d(y, z) = P/2 it follows that
|d(x, ix)− d(x, iz)| < 2δ. Similarly, |d(z, ix)− d(z, iz)| < 2δ.

Now using the four-point condition for the points x, z, ix and iz gives an upper
bound on the distance between ix and iz.
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�

5. The Linear isoperimetric inequality

An important property of hyperbolic spaces is that they satisfy linear isoperi-
metric inequalities, that is, any curve in a hyperbolic space coarsely bounds a disc
whose area is a linear function of the length of the curve. We begin by defining
coarse notion of the area of a bounding disc.

Definition 5.1. Let X be a metric space and c : S1 → X be a rectifiable loop. A
coarse ε-filling of c is a triangulation of D2 together with a map Φ : D2 → X which
restricts to c such that the diameter of the image of each triangle is at most ε. The
ε-area of the filling is defined to be the number of triangles in the triangulation of
the disc.

Theorem 5.1. Let X be a δ-hyperbolic space. Then there are positive constants ε,
A and B such that every rectifiable loop c : S1 → X admits a coarse ε-filling with
ε-area at most Al(c) + B.

The first step in the proof is to replace X by a quasi-isometric space which is
a metric tree with sides of integral length. To do this find a maximal set S in X
so that the distance between every pair of points is at least 1. Join pairs of points
in S whose distance is at most 3 by an edge whose length is the nearest integer to
their distance. The map that takes each point in X to a point of minimal distance
from it in S gives the desired quasi-isometry.

As quasi-isometries distort distances by a bounded linear amount, one can replace
X in the above by the metric tree just constructed. For such a tree, we construct
an ε-filling satisfying a linear isoperimetric inequality with ε = 16δ.

The heart of the proof is in the following lemma.

Lemma 5.2. Given any locally-injective loop c : [0, 1] → X beginning at a vertex,
one can find s, t ∈ [0, 1] such that c(s) and c(t) are vertices of X, d(c(s), c(t)) ≤
l(c|[s,t])− 1 and d(c(s), c(t)) + l(c|[s,t])− 1 ≤ 16δ

Proof. As X is hyperbolic, c cannot be a k-local geodesic for k = 8δ + 1/2, and
hence we can a sub-arc whose length is less than k = 8δ + 1/2 which is not a
geodesic. Let c(s) and c(t) be the first and last vertices of this sub-arc. Then these
satisfy the conclusion of the lemma, as it is not a geodesic and both the distance
betzeen its endopints and the length of the segment are integers, so must differ by
at least 1. �

Notice that such a statement does not hold in Euclidean space, as can be seen
by considering very large circles.

Now the isoperimetric inequality can be proved by induction. By choosing con-
stants appropriately, we can ensure this is satisfied for curves of length at most
16δ.

Now suppose a loop c is given. If c is not locally injective, we can find cancelling
adjacent segments, and apply induction to the curve with these deleted. Else we use
the lemma to find s and t, and consider the loops with c|[s,t] replaced by a geodesic,
and the loop consisting of c|[s,t] and the geodesic. We can apply the induction
hypothesis to each of these to get an ε-filling, and glue these together to get the
required filling for c. �
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6. The Gromov boundary ∂X

The hyperbolic plane viewed as the interior of the unit disc in C has a natural
boundary, namely the unit circle. This is not an accident of the representation, but
is intrinsically associated to the hyperbolic plane.

To construct the boundary, one considers the set of rays and defines two rays to
be asymptotic if the Hausdorff distance between their boundaries is finite (i.e., they
are parallel). We regard asymptotic rays as equivalent, and the set of equivalence
classes of rays is the boundary ∂X.

This construction associates a set ∂X to any δ-hyperbolic space, in fact to any
geodesic metric space. However, we would like this to be a construction invariant
under quasi-isometries. This allows us, for instance, to associate a boundary to a
group.

To show quasi-isometry invariance for δ-hyperbolic spaces, we make an analogous
construction using quasi-geodesics in place of geodesics. Thus, let ∂qX be the set
of equivalence classes of quasi-geodesic rays, where again quasi-geodesic rays are
equivalent if they are asymptotic, i.e., their images are a bounded Hausdorff distance
apart.

As quasi-geodesics are close to geodesics, it readily follows that ∂qX = ∂X. As
∂qX is obviously invariant under quasi-isometries, so is ∂X

Remark 6.1. As we have seen, in general quasi-geodesics are not necessarily close
to geodesics, so we expect ∂X to be smaller than ∂qX. In fact ∂X is not in general
a quasi-isometry invariant.

We now turn to an alternative construction of the boundary using Gromov prod-
ucts. Fix a base-point p ∈ X. We consider sequences of points in X and define
when such a sequence converges to a point on the boundary. We then impose an
equivalence relation on such sequences corresponding to when two such sequences
converge to the same point.

Definition 6.1. A sequence xn ∈ X is said to admissible if (xi · xj)p → ∞ when
i, j →∞. Two admissible sequences xn ∈ X and yn ∈ X are said to be equivalent
if (xi · xj)p →∞ when i, j →∞

It is easy to see that the equivalence classes of admissible sequences under this
relation correspond to points of ∂X. Furthermore, one can see that the Gromov
product extends to one on X ∪∂X, which is finite except for the product of a point
in ∂X and itself. This is defined by

(x · y)p = sup liminf i,j→∞(xi · yj)p

where the supremum is taken over all sequences with limits x and y.

7. The topology of ∂X

Using the Gromov product defined in the previous section, it is easy to define a
topology on ∂X such that the space X ∪ ∂X is compact. Basic neighbourhoods of
points in X in this topology are the same as those for the topology on X. For a
point z ∈ ∂X, we take basic neighbourhoods to be {x ∈ X ∪ ∂X : (x · z)p > R}.

The topology on the boundary is metrisable. One gets a pseudo-metric by taking
d(x, y) = e−(x·y)p for points x, y in the boundary. The topology does not depend
on p, though the metric does.
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In a 0-hyperbolic space, this is in fact an ultra-metric, but in general it does
not satisfy the triangle inequality, though we can control the extent to which it
fails using the δ-hyperbolicity condition on Gromov products. To make this into a
genuine metric, replace the distance between x and y by the infimum of the sum of
distances betzeen succesive pairs of points for a sequence of points from x to y.

The metrics we have defined are the visual metrics on the boundary.
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