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Bounding Lévy distance in terms of Stieltjes transform . . . . . . . . . . . . 111
Method of moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendix 2: Some linear algebra facts 114
Bounds on eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Perturbations of eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Block matrix inversion formula . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Shooting description of eigenvectors and eigenvalues of a Jacobi matrix . . 118

Appendix 3: Gaussian random variables 120
Basics of Gaussians, moments, cumulants . . . . . . . . . . . . . . . . . . . . 120
Comparison inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Gaussian isoperimetric inequality . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix 4: Some combinatorics facts 131
The Mobius function of a lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Acknowledgments: Lecture notes from a course on random matrix theory in the fall of 2017 at IISc,

Bangalore. An earlier version was made during a course in the spring of 2011 at IISc, Bangalore. Thanks to

those who attended the course (Rajesh Sundaresan, Tulasi Ram Reddy, Kartick Adhikari, Indrajit Jana and

Subhamay Saha first time). Thanks to Anirban Dasgupta for pointing out some errors in the notes.

6



Chapter 1

The simplest non-trivial matrices

Random matrix theory is largely the study of eigenvalues and eigenvectors of matrices
whose entries are random variables. In this chapter, we shall motivate the kinds of ques-
tions studied in random matrix theory, but using deterministic matrices. That will also
help us to set up the language in which to phrase the questions and answers.

Spectral quantities have more geometric meaning for symmetric (and Hermitian and
normal) matrices than for general matrices. Since there is not much to say about diagonal
matrices, we are led to real symmetric tridiagonal matrices as the simplest non-trivial
matrices.

Jacobi matrices

Given real numbers a1, . . . ,an and strictly positive numbers b1, . . . ,bn−1, let

T = Tn(a,b) =



a1 b1 0 0 0 0

b1 a2 b2
. . . 0 0

0 b2
. . . . . . . . . 0

0 . . . . . . . . . bn−2 0

0 0 . . . bn−2 an−1 bn−1

0 0 0 0 bn−1 an


. (1)

This is the real real symmetric n×n tridiagonal matrix with diagonal entries Tk,k = ak for
1≤ k ≤ n and Tk,k+1 = Tk+1,k = bk for 1≤ k ≤ n−1.

Why did we assume strict positivity of b js? If bk = 0, the matrix breaks into a direct
sum of two matrices, hence we impose the condition bk 6= 0 for all k. By conjugating
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Figure 1.1: Line graph on 8 vertices. For f :V 7→R, define ∆ f (k) = 2 f (k)− f (k−1)− f (k+1)
where f (0) and f (n + 1) are interpreted as 0. The matrix of ∆ in standard basis is 2In−Tn

where Tn has a· = 0 and b· = 1.

with an appropriate diagonal matrix having ±1 entries on the diagonal, any real sym-
metric tridiagonal matrix can be transformed into a (unique) Jacobi matrix. Indeed, if
D = diag(ε1, . . . ,εn) where εi =±1, then DTn(a,b)D−1 = Tn(a,c) where ck = εkεk+1bk. From
this it is clear how to choose εis so that ck > 0 for all k. As we are interested in eigenvalues
and they don’t change under conjugation (and eigenvectors transform in a simple way),
we may as well start with the assumption that bk are positive.

The 1-dimensional discrete Laplacian matrix

The single most important example is the case ak = 0 and bk = 1. In this case,

Tn(a,b) =



0 1 0 0 0 0

1 0 1 . . . 0 0

0 1 . . . . . . . . . 0

0 . . . . . . . . . 1 0

0 0 . . . 1 0 1

0 0 0 0 1 0


n×n

.

This matrix arises in innumerable contexts. For example, 2In−Tn is the discrete second
derivative operator. It is also the Laplacian on the to the line graph with n vertices, 1

provided we add a loop at 1 and at n. It can also be considered as the generator of the
simple random walk on this graph.

The eigenvalue equation T v = λv can be written out explicitly as

vk−1 + vk+1 = λvk for 1≤ k ≤ n,

1In general, for a graph G = (V,E), the laplacian is the linear operator ∆ : RV 7→ RV defined by ∆ f (u) =
deg(u)−∑v:v∼u f (v). In standard basis its matrix is D−A where A is the adjacency matrix and D is the V ×V

diagonal matrix whose (u,u) entry is deg(u).
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where vt = (v1, . . . ,vn) and we adopt the convention that v0 = vn+1 = 0. We try vk = sin(kθ)
since

sin((k−1)θ)+ sin((k +1)θ) = 2cosθsin(kθ).

To satisfy the boundary conditions v0 = vn+1 = 0, we take θ = θ` = π`
n+1 for some 1≤ `≤ n.

This gives us the eigenvalues λ` = 2cos(θ`) with the corresponding eigenvectors (caution:
they are not normalized) vt

` = (sin(θ`),sin(2θ`), . . . ,sin(nθ`)). Then by the spectral theorem

Tn = λ1v1vt
1 + . . .+λnvnvt

n.

Strictly speaking, we should put the subscript n in λ`, v` etc., but for simplicity of notation
we don’t.

Histogram of the eigenvalues: The eigenvalues are all between −2 and +2. What pro-
portion are inside an interval [a,b]⊆ [−2,2]? A calculation free way to find this is to note
that the points 2eiθ` , 1 ≤ ` ≤ n, are equispaced points on the top half of the circle of ra-
dius 2 centered at the origin in the complex plane. Our eigenvalues are just the real parts
of these points. Thus the proportion of eigenvalues in [a,b] must converge to the nor-
malized length of the circular arc between the lines x = a and x = b. This we calculate
as 1

π
(arcsin(b/2)− arcsin(a/2)). In other words, as n→ ∞, the histogram of eigenvalues

approximates the arcsine measure whose distribution function is 1
π
(arcsin(x/2)+ π

2 ) with
arcsin taking values in (−π/2,π/2). By differentiating, we get the density ρ(x) = 1

π
√

4−x2 .

Spacing between eigenvalues in the bulk: Observe that

λ`−λ`+1 = 2cos
(

2π`

n+1

)
−2cos

(
2π(`+1)

n+1

)
=

4π

n+1
sin(θ∗`)

for some θ∗` ∈ (θ`,θ`+1). This is of order at most 1/n, which makes sense because if n

eigenvalues are packed into an interval of length 4, many of the successive differences
must be below 1/n.

More precisely, suppose ` is such that λ` is close to a point x ∈ (−2,2). This means that
cos(θ∗`) is close to x/2 and hence sin(θ∗`) is close to 1

2

√
4− x2. Hence,

λ`+1−λ` ≈
2π

(n+1)

√
4− x2.
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In words, the eigenvalues near x look like 2
nρ(x)Z, the integer lattice with spacing 2

nρ(x) .
The factor 1/n makes sense as n eigenvalues are packed into an interval of length

4. The factor 1/ρ(x) makes sense because the lower the density, farther apart are the
eigenvalues. But interestingly, other than the scaling which depends on ρ(x), the structure
of the eigenvalues is the same everywhere, namely like Z.

Spacing of eigenvalues at the edge: The previous calculations are not right if x =±2 (for
example, ρ(2) is not defined). To see how eigenvalues are spaced at the right edge, let us
consider a fixed `, say ` = 1. Using the Taylor expansion cos t = 1− 1

2t2 +o(t2) as t→ 0, we
get

λ1−λ2 = 2cos
(

2π

n+1

)
−2cos

(
4π

n+1

)
≈ 12π2

(n+1)2 .

Thus, consecutive eigenvalues are only 1/n2 distance apart. This too makes sense because
the the arcsine density blows up near 2, hence the eigenvalues must be crowded more
than in the interior (−2,2). More generally, if ` is fixed, then

λ`−λ`+1 ≈
4π2(2`+1)

(n+1)2 .

This holds for ` = 0 too, if we set λ0 = 2. These conclusions may also be written as

n2(2−λ1,2−λ2,2−λ3, . . .)→ 4π
2(1,4,9,16, . . .).

Empirical spectral distribution and related notions

Much of this course will be asking the same three questions for eigenvalues of various
random matrices. For this we introduce some terms.

Empirical distribution of eigenvalues: The empirical spectral distribution of an n×n matrix
A which is the probability measure (on R or C) defined as

LA =
1
n

n

∑
k=1

δλk ,

where λ1, . . . ,λn are the eigenvalues of A counted with multiplicity. If An is a sequence of

n×n matrices and it so happens that LAn
d→ µ for some probability measure µ, then we say

that µ is the limiting spectral distribution of the given sequence.
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Figure 1.2: . Histogram of the eigenvalues of the 400× 400 matrix. We almost see the
arcsine density. The density is higher at the edges.

Figure 1.3: . The top picture shows the 12 largest eigenvalues. The bottom picture shows
12 eigenvalues close to 0. The top picture spans a length of 0.01 while the bottom pic-
ture spans a length of 0.18. The crowding of eigenvalues at the edge can also be seen in
the varying length of spacings in the top picture (in fact the spacings are in arithmetic
progression). In the bottom picture, the eigenvalues appear equispaced like a lattice.

These notions are applicable to random matrices too. If A is random, LA will be a
random probability measure. Define L̄n(A) = E[Ln(A)] for any Borel set A. Then L̄n is a
(non-random) probability measure. We call it the expected empiricial distribution of A.

More discussion of the notion of convergence in distribution will come later. For now,
we simply note that the empirical distribution is a very reasonable way to talk about the
eigenvalue of a matrix. Other possible ways to talk about eigenvalues are

1. As a vector (λ1, . . . ,λn) ∈ Rn. This has the drawback that we must label the eigen-
values to say which is first, which is second etc., while the eigenvalues themselves
come as a set (or multi-set) without any ordering.
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2. As a set or a multi-set. Equivalently, as an element of Rn/Sn, the quotient of Rn under
the action of permutations of co-ordinates. This avoids the question of labeling
eigenvalues. However, when we want to consider a sequence of matrices An, the
spaces in which we view the eigenvalues change with n. This is not convenient if
we want to talk of limits.

By putting together all the information about the eigenvalues in the measure LA, we avoid
labeling individual eigenvalues and further, irrespective of the size of the matrix, the
empirical measure is in the same space P (R) or P (C) (space of probability measures on R
or C). These spaces are complete, separable metric spaces, which is the standard setting in
probability theory when one wants to study weak convergence of probability measures.

Point process limits: The empirical distribution puts mass 1/n at each eigenvalue, and
hence it is not the right object to consider when we are studying the largest eigenvalues
or the spacings. In such cases, we go back to writing the eigenvalues as a vector in RN or
RZ and talk about convergence of any finite number of co-ordinates. For example, when
studying the edge, we considered the vector

n2(2−λ1,2−λ2, . . .).

In the limit, we get only the largest eigenvalues remain and the rest fly off to infinity. As
we saw, we got 4π2(1,2,3, . . .) in the special case above.

When studying in the bulk, we consider

n(λ1− x,λ2− x, . . . ,λn− x)

but shift this vector so that the 0th co-ordinate is n(λ`−x) with ` such that λ` is the closest
eigenvalue to x. In the limit we get the doubly infinite sequence Z (with a scale factor and
a shift).

An equivalent way to state these results are to consider the counting measure L̃A =
nLA = ∑

n
k=1 δλk . Then the above statement can be written as L̃(x + 1

nA)→ δσZ+b(A) for any
compact A ⊆ R and δσZ+b is the counting measure on the set σZ+ b. When we deal with
random matrices, we shall be considering counting measure of a random discrete set of
points, which is what is called a point process in probability.
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Figure 1.4: Histogram of the eigenvalues of the 400×400 matrix. We see that it is approx-
imately a semi-circle density. In contrast with arc-sine, it vanishes at the edge.

The oscillator matrix

Let ak = 0 and bk =
√

k. Thus,

Tn =



0 1 0 0 0 0

1 0
√

2 . . . 0 0

0
√

2 . . . . . . . . . 0

0 . . . . . . . . .
√

n−2 0

0 0 . . .
√

n−2 0
√

n−1

0 0 0 0
√

n−1 0


n×n

. (2)

In this case, the eigenvalues do not have a simple formula like for the discrete Laplacian
matrix, but they may be described as the zeros of the nth Hermite polynomial. Recall that
Hermite polynomials are got by orthogonalizing monomials 1,x,x2, . . . in the L2 space
with respect to the Gaussian measure on the line. In general, Jacobi matrices are closely
related to orthogonal polynomials. See Exercise 2.

Returning to the oscillator matrix (2), figures 1.4 and 1.5 show that there are interesting
things to prove.

In contrast with the earlier example, observe that the range of eigenvalues is about
[−40,40]. In fact, drawing the histograms for other sizes of the matrix shows that the
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Figure 1.5: The top picture shows the 12 largest eigenvalues. The bottom picture shows
12 eigenvalues close to 0. The top picture spans a length of 5 while the bottom picture
spans a length of 2. Eigenvalues are more crowded in the center than at the edge. This
can also be seen in the varying length of spacings in the top picture. In the bottom picture,
they appear equispaced.

range is [−2
√

n,2
√

n]. Hence, the more appropriate thing to consider is the matrix

1√
n

Tn =



0 1√
n 0 0 0 0

1√
n 0

√
2√
n

. . . 0 0

0
√

2√
n

. . . . . . . . . 0

0 . . . . . . . . .
√

n−2√
n 0

0 0 . . .
√

n−2√
n 0

√
n−1√

n

0 0 0 0
√

n−1√
n 0


n×n

. (3)

Then the histogram of eigenvalues of Tn/
√

n appears to converge to a density on [−2,2].
We shall show that this is indeed the case, and that the limiting spectral density of Tn/

√
n

is the semi-circle density ρ(x) = 1
2π

√
4− x2.

The spacing of eigenvalues in the bulk is again like the integer lattice. Indeed, we
should expect that near a point x ∈ (−2,2), the eigenvalues of Tn/

√
n look like the lattice

1
nρ(x)Z.

The edge is quite interesting. A heuristic calculation may be made as follows. The
number of eigenvalues in [b,2] in approximately n

R 2
b ρ(x)dx, for fixed b < 2, by the def-

inition of the limiting spectral distribution. Without justification, we hope that the first
eigenvalue will be at bn, where n

R 2
bn

ρ(x)dx = 1. Writing ρ(x)≈ 1
π

√
2− x for x close to 2, we

see that 2−bn ≈ 3π

2 n−2/3. Similarly for 2−λ2, 2−λ3, etc. and we expect to get

2
3π

n2/3(2−λ1,2−λ2, . . .) → (1,22/3,32/3, . . .).

Let us emphasize again that we have not actually proved anything about the eigenvalues

14



Figure 1.6: Histogram of the eigenvalues of Tn( f ) for (a) f (x) = x, (b) f (x) =
√

x(1− x)
(c) f (x) = (1− x) log(1− x).

of the oscillator matrix. We just have gathered reasonable evidence, from the pictures and
heuristics.

A class of Jacobi matrices

Motivated by the previous two examples (particularly the scaling that was required in the
second), we define a class of Jacobi matrices as follows. Let f : [0,1] 7→ R be a function.
Define Tn( f ) as the n×n Jacobi matrix with ak = 0 and bk = f (k/n). The discrete Laplacian
matrix is the case f = 1 and the matrix (3) is the case f (x) =

√
x. We shall later show that

all such matrices have a limiting spectral distribution.

Limiting spectral distributions: In Figure 1.6 are a few pictures to show that the his-
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Figure 1.7: Eigenvalues at the edge for several different f with 400× 400 matrices. In all
three cases, the limiting spectral density has square-root vanishing at the edge. In the
picture it appears plausible that the spacings might be exactly the same in the limit (a
scaling has been done to match the first spacing length though).

tograms do have limits for many different f . We shall prove later that this is indeed the
case, and in fact give an explicit formula to calculate the limiting density in terms of f . For
example, when f (x) =

√
x, the limiting spectral density does turn out to be the semi-circle

density 1
2π

√
4− x2 (on [−2,2]) and when f (x) =

√
x(1− x), the limiting spectral density is

uniform on [−1,1].
A new idea is required for the proof, since unlike for the discrete Laplacian, in most

cases we do not have explicit exact formulas for the eigenvalues of Tn.

Spacings in the bulk: If we zoom in at any point x where the limiting density ρ(x) is
strictly positive, it appears that we just see equispaced points with spacings of 1/nρ(x).

Spacings at the edge: Look at Figure 1.7. It appears that when we zoom in at the right
end of the support, then the the points are not equispaced, and further, the inter-point
spacings are not always the same. However, the inter-point spacing appear to be depend
only on the behaviour of the density ρ near the edge of the support. This is partly justified
by the heuristic we gave for the n−2/3 in case of the oscillator matrix eigenvalues. If ρ looks
like C(E− x)α at the edge E, then E−λ1 � n−1/(1+α).

Universality: The observations about the spacings in the edge and bulk look reasonable.
But at the moment I don’t know if they are entirely correct or if they are proved in the
(very likely a full answer is in the papers of Bálint Virág). But the lesson here motivates a
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discussion of universality, a notion driving a good part of recent research in probability.
As an analogy, let us return to the best understood situation in probability, sums of

random variables, Sn = X1 + . . . + Xn. If Xi are i.i.d. with mean µ and variance σ2, then
Sn is - (A) constant on the scale of n, i.e., n−1Sn converges to a constant µ, (B) a N(µ,σ2)
random variable on the scale of

√
n and (C) dependent of the full distribution on unit

scale. The most interesting behaviour is the intermediate one, where there is randomness
in the limit (in this case Gaussian), but it is universal, remembering nothing of the details
of the distribution of X1 except for the two parameters µ and σ2.

In a similar way, the limiting spectral distribution for Tn( f ) is like the law of large
numbers, the observation that the spacings in the bulk and at the edge do not depend
on f (or only on a small number of parameters such as the behaviour of ρ near the edge)
are like the central limit theorem. When we go to random matrices, the limiting spectral
distribution will be non-random usually, while the spacings in the bulk and edge have
universal distributions described by only a few parameters of the original model. The
exact eigenvalue distribution of course depends on the precise model (like the unit scale
behaviour for sums).

Exercises

Exercise 1. Let Tn = Tn(a,b) and denote by Tk the top-left k× k principal submatrix of Tn. Let

ϕk(z) = det(zIk−Tk) denote the characteristic polynomial of Tk. Define ϕ0(z) = 1 and ϕ−1 = 0. Show

that

ϕk(z) = (z−ak)ϕk−1(z)−b2
k−1ϕk−2(z), for 1≤ k ≤ n.

Define ψk(z) = 1
b1...bk−1

ϕk(z) for 0≤ k ≤ n−1. If λ is any eigenvalue of Tn, show that

(ψ0(λ),ψ1(λ), . . . ,ψn−1(λ))t

is a corresponding eigenvector. [Note: We shall show later that all eigenvalues of a Jacobi matrix

are simple, hence this is the unique eigenvector, up to scaling].

Exercise 2. In the following exercises, use the recursion obtained in the previous exercise.

1. If Tn is the modification of the discrete Laplacian matrix by setting a1 = 1 (and ak = 0 for

k ≥ 2, bk = 1 for all k), then show that ϕk(cosθ) = 2−k+1 cos(kθ).

2. If Tn is the oscillator matrix from (2), show that ϕk(x) = (−1)kex2/2 dk

dxk e−x2/2.
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[Remark: The polynomial defined by pn(cosθ) = cos(nθ) is called the nth Chebyshev polynomial of the
first kind. The polynomial (−1)kex2/2 dk

dxk e−x2/2 is called the kth Hermite polynomial.]

Exercise 3. Using the notation of Exercise 1, show that the eigenvalues of Tk are k distinct real num-

bers and strictly interlace with those of Tk−1. That is, if λ
(k)
1 > λ

(k)
2 > .. . > λ

(k)
k , are the eigenvalues

of Tk, then show that

λ
(1)
k > λ

(k−1)
1 > λ

(2)
k > .. . > λ

(k−1)
k−1 > λ

(k)
k .

[Hint: Put z to be a zero of ϕk−1 in the three term recurrence for ϕk in terms of ϕk−1 and ϕk−2.]

Exercise 4. Let Gn be the subgraph of Z2 with vertex set [m]× [n]. Let ∆m,n be its discrete Laplacian.

Show that the limiting spectral distribution of ∆bnac,bnbc as n→ ∞ is µa ? µb where µa is the arcsine

measure on [−2a,2a].
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Chapter 2

The simplest non-trivial random matrix

We asserted that Jacobi matrices are the simplest non-trivial matrices. Now we inject
randomness into the picture.

Question 5. If aks and bks are random variables with some joint distribution, what will
be the distribution of eigenvalues of Tn(a,b)?

If we find a matrix for which the joint distribution of eigenvalues is explicit (and
tractable!), that would be the closest analogue to the deterministic situation of the dis-
crete Laplacian matrix where we could compute the eigenvalues exactly. Just as the exact
formulas for eigenvalues allowed us to find the limiting spectral distribution, spacings
in the edge and the bulk, etc., one hopes that having explicit density for the eigenvalues
would help to answer the same questions for a random matrix. In this chapter we shall
find one such random Jacobi matrix. However, answering the three questions is far from
trivial even after we have the exact density and it will be done gradually over the course.

Given a distribution of aks and bks, how to find the joint density of eigenvalues? In
principle, it is just a matter of change of variables, but the execution requires work.

Parameterizing a Jacobi matrix by its spectral measure at e1

Let λ1 ≤ λ2 ≤ . . . ≤ λn denote the eigenvalues of Tn. We shall see shortly that they are
distinct. Since Tn has 2n−1 variables, we need n−1 additional auxiliary variables to com-
plete the change of variables exercise. These are chosen as follows. Let Tn = λ1v1vt

1 + . . .+
λnvnvt

n be the spectral decomposition of Tn with some choice of orthonormal eigenvectors
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v1, . . . ,vn. Then for any integer m≥ 0

〈T m
n e1,e1〉=

n

∑
k=1

λ
m
k pk, where pk = |〈vk,e1〉|2. (1)

As the eigenvectors form an orthonormal basis, and ‖e1‖= 1, we get that p1 + . . .+ pn = 1.
Thus, we may take p = (p1, . . . , pn−1) is as the auxiliary variables.

The concept behind this choice: If we write Tn = WDW t where W is orthogonal and D =
diag(λ1, . . . ,λn), then pks are just the squares of the entires in the first row of W . More
conceptually, the identity (1) can be written as

〈 f (T )e1,e1〉=
Z

f (x)dνT (x)

where νT = ∑
n
k=1 pkδλk is called the spectral measure of Tn at the vector e1. And f is any

polynomial, but by the usual symbolic calculus (wherein f (T ) is defined to be W f (D)W t),
the identity continues to hold for arbitrary functions f . In particular, for any z ∈ H, we
have

(zIn−Tn)1,1 =
n

∑
k=1

pk

z−λk

where B1,1 = 〈B−1e1,e1〉 denotes the (1,1) entry of B−1. The condition z ∈ H ensures that
the inverse on the left exists.

The Jacobian determinant

The key point is the computation of the Jacobian determinant of the transformation that
maps (a,b) to (λ, p). Let us be more precise about the spaces involved.

The set of all n×n Jacobi matrices is naturally identified, via the parameters (a,b), with
Jn := Rn×Rn−1

+ where R+ = (0,∞). Next, define

∆n = {p ∈ Rn−1 : p1 + . . .+ pn−1 < 1, pi > 0}, and Rn
↑ = {x ∈ Rn : x1 > x2 > .. . > xn}.

The set of all probability measures on R whose support has exactly n points is naturally
identified with Mn := Rn

↑×∆n by identifying ∑
n
k=1 pkδλk with (λ, p). Here and everywhere

below, wherever pn appears, it is to be regarded as a short form for 1− (p1 + . . .+ pn−1).

Lemma 6. Fix n≥ 1 and let G : Jn 7→Mn be defined as G(T ) = νT .
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(a) G is a bijection from Jn onto Mn.

(b) If T = Tn(a,b) and νT = ∑
n
k=1 pkδλk , then

n−1

∏
k=1

b2(n−k)
k =

n

∏
k=1

pk · ∏
i< j
|λi−λ j|2. (2)

(c) The Jacobian determinant of G−1 is equal to (up to a sign that depends on the ordering of
variables)

JG−1(λ, p) =

n
∏

k=1
pk ∏

i< j
|λi−λ j|4

2n−1
n−1
∏

k=1
b4(n−k)−1

k

=

n−1
∏

k=1
bk

2n−1
n
∏

k=1
pk

. (3)

We postpone the proof of this Lemma and first talk about some consequences.

A class of random Jacobi matrices

If (a,b) has joint density f (a,b) with respect to Lebesgue emasure on Rn×Rn
+, then by

the change of variable formula, the density of (λ, p) with respect to Lebesgue measure on
Rn
↑×∆n is given by

g(λ, p) = f (a,b)

n−1
∏

k=1
bk

2n−1
n
∏

k=1
pk

.

On the right, (a,b) is written as a short form for the image of (λ, p) under the bijection from
Mn to Tn. We would like to choose a density f that has a nice form and for which g(λ, p)
also has a nice form. Or at least so that the marginal density of λ given by

R
∆n

g(λ, p)d p is
nice. Here is such a choice:

f (a,b) =
1

Zβ,n
exp

{
−1

4

[
n

∑
k=1

a2
k +2

n−1

∑
k=1

b2
k

]}
n−1

∏
k=1

bβ(n−k)−1
k (4)

where β > 0 and Zβ,n is the normalizing constant. The logic behind this choice is as follows:

The factors ∏
n−1
k=1 bβ(n−k)−1

k partly cancels the similar factor in the Jacobian determinant,
and the remaining expression can be written in terms of (λ, p) by (2). The choice of the
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exponent (something is required to make it integrable) is because it can be written nicely
in terms of the eigenvalues:

n

∑
k=1

a2
k +2

n−1

∑
k=1

b2
k = tr(T 2) =

n

∑
k=1

λ
2
k .

Thus, we arrive at

g(λ, p) =
1

Z′n,β

exp

{
−1

4

n

∑
k=1

λ
2
k

}
∏
i< j
|λi−λ j|β ·

n

∏
k=1

p
β

2−1
k . (5)

Here Z′n,β is the normalization constant so that g is a probability density. Both the densities
f (a,b) and g(λ, p) are remarkably nice.

• Writing

f (a,b) =
1

Zβ,n

n

∏
k=1

e−
1
4 a2

k

n−1

∏
k=1

e−
1
2 b2

k bβ(n−k)−1
k ,

we see that aks and bks are independent, ak ∼ N(0,2) and b2
k ∼ χ2

β(n−k). Recall that

χ2
m is the distribution of the sum of squares of m independent standard normal vari-

ables. It is the same as Gamma(m/2,1/2) distribution and the density is

1
Γ(m/2)2m e−x/2xm−1 for x > 0.

• Under g(λ, p), the vector λ is independent of the vector p. The density of λ is pro-
portional to

exp

{
−1

4

n

∑
k=1

λ
2
k

}
∏
i< j
|λi−λ j|β

and the density of p is proportional to ∏
n
k=1 p

β

2−1
k for p ∈ ∆n. The latter is the well-

known Dirichlet distribution1 with parameters n and (β/2, . . . ,β/2).

We summarize the main conclusion in the following theorem.

1The Dirichlet distribution with parameters n and β1, . . . ,βn−1 is the density on ∆n equal to
Cn pβ1−1

1 . . . pβn−1
n . When n = 2, this is just the Beta distribution with parameters β1,β2. Similar to that case,

the normalizing constant for the Dirichlet density is given by Cn = Γ(β1+...+βn)
Γ(β1)...Γ(βn) .
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Theorem 7. Let aks be independent N(0,2) random variables and let b2
ks be independent χ2

β(n−k)

variables also independent of the aks. Then the eigenvalues of the Jacobi matrix Tn(a,b) have
density

1
Z′′

β,n
exp

{
−1

4

n

∑
k=1

λ
2
k

}
∏
i< j
|λi−λ j|β. (6)

with respect to Lebesgue measure on Rn
↑.

Owing to the appearance of the Gaussian factor, the density (6) is called the beta Her-
mite ensemble.

Remark 8. In summary, we have found a one-parameter family of random Jacobi matrices
whose eigenvalue denisities are that of the beta-log gas on the real line. Can we answer
the questions about the limiting spectral distribution or the spacings of eigenvalues in
the bulk and at the edge? While the joint density does, in principle, contain the answers
to these questions, it is not a trivial task to pry that kind of information from it (but it
has been done). Pleasantly, the Jacobi matrix actually helps in finding answers to these
questions about the eigenvalues. In the next chapter, we shall show two such applications
of the Jacobi matrix.

Computation of the Jacobian determinant

It only remains to prove Lemma 6. We will present the proof with minimal digressions.
But what is embedded here is a deep connection between Jacobi matrices, probability
measures and orthogonal polynomials. This remark is explained briefly after the proof.

Proof of the second part (2). Let Tn = Tn(a,b) be a Jacobi matrix. Let Tk (respectively T̃k) de-
note the top-left (respectively bottom-right) k× k principal submatrix of T . Let ϕk (re-

specitvely ϕ̃k) denote the characteristic polynomial of Tk, i.e., ϕk(z) = det(zIk−Tk). Let λ
(k)
j ,

1≤ j ≤ k denote the zeros of ϕk, or in other words, the eigenvalues of Tk.
Expanding w.r.t. the last row, we get the recursion

ϕk(z) = (z−ak)ϕk−1(z)−b2
k−1ϕk−2(z). (7)

which is valid also for k = 1 and k = 0 provided we set ϕ0 = 1 and ϕ−1 = 0. From Exercise 3
we know that the eigenvalues of Tk are distinct and strictly interlace with those of Tk−1. If
you did not do that exercise, you may see it by observing that ϕk and ϕk−2 have opposing
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signs at the zeros of ϕk−1. Inductively, if the interlacing is assumed for ϕk−1 and ϕk−2, then
the interlacing follows for ϕk and ϕk−1.

Now put z = λ
(k−1)
j in (7) and multiply over j ≤ k−1 to get

k−1

∏
j=1

ϕk(λ
(k−1)
j ) = (−1)k−1b2(k−1)

k−1

k−1

∏
j=1

ϕk−2(λ
(k−1)
j ).

Now, for any two monic polynomials P(z) = ∏
p
j=1(z−α j) and Q(z) = ∏

q
j=1(z−β j),

q

∏
j=1

P(β j) =±
p

∏
j=1

Q(α j)

since both are equal (up to sign) to ∏i ∏ j(αi−β j). Use this for ϕk and ϕk−1 to get

k

∏
j=1

ϕk−1(λ
(k)
j ) =± b2(k−1)

k−1

k−1

∏
j=1

ϕk−2(λ
(k−1)
j ).

Take product over k and telescope to get (we write λ j for λ
(n)
j )

n

∏
j=1

ϕn−1(λ j) =±
n−1

∏
j=1

b2 j
j .

Clearly this can be done in reverse for the ϕ̃ks to get

n

∏
j=1

ϕ̃n−1(λ j) =±
n−1

∏
j=1

b2(n− j)
j . (8)

The spectral measure is related to ϕ̃n−1 as follows.

n

∑
k=1

pk

z−λk
= (zI−T )1,1 =

ϕ̃n−1(z)
ϕn(z)

.

Multiply by z−λ j and let z→ λ j to get p j = ϕ̃n−1(λ j)/ϕ′n(λ j). Multiply and use (8) to get

n−1

∏
j=1

b2(n− j)
j =±

n

∏
j=1

p j

n

∏
j=1

ϕ
′
n(λ j)

=
n

∏
j=1

p j ∏
i< j
|λi−λ j|2

since ϕ′n(λ j) = ∏i6= j(λ j − λi). In the end, both sides are positive, so we did not have to
follow the sign. This proves (2). �
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Proof of the first part. On the way, we have proved one side of the first part of Lemma 6
too. Indeed, if T ∈ Jn, then we have noted the distinctness of eigenvalues. Further, p j =
ϕ̃n−1(λ j)/ϕ′n(λ j) which cannot be zero because of the strict interlacing of eigenvalues of Tn

and T̃n−1. Thus, νT belongs to Mn. This shows that G maps Jn into Mn.
To prove the converse, start with a measure ν = ∑

n
j=1 p jδλ j ∈Mn. Observe that L2(ν)

has dimension exactly equal to n and that 1,x, . . . ,xn−1 are linear independent in L2(ν).
Therefore, we may apply Gram-Schmidt procedure to get ψ0, . . . ,ψn−1, where ψ j is a poly-
nomial with degree j. Fix some k and expand xψk(x) in this orthonormal basis to write
(note that there is no ψn)

xψk(x) = ck,k+1ψk+1(x)+ . . .ck,0ψ0(x) for k ≤ n−2,

xψn−1(x) = cn,n−1ψn−1(x)+ . . .+ cn,0ψ0(x).

For k ≤ n− 2, observe that ck,k+1 is strictly positive, since ψk and ψk+1 both have strictly
positive leading coefficients. Further, observe that 〈xψk(x),ψ j(x)〉 = 〈ψk(x),xψ j(x)〉 which
is zero if j < k−1 as ψk is orthogonal to all polynomials of degree lower than k. That leave

ck,k+1 =
Z

xψk(x)ψk+1(x)dν(x), ck,k =
Z

xψ
2
k(x)dν(x).

From this it is clear that ck,k+1 = ck+1,k for k ≤ n− 1. Set ak = ck−1,k−1, 1 ≤ k ≤ n and bk =
ck−1,k, 1≤ k≤ n−1. We have already shown that bk > 0 for all k≤ n−1. Thus, if we define
H(ν) to be the Jacobi matrix T = Tn(a,b), then H maps Mn into Jn.

With all this, the recursions are now written as

xψk(x) = bk−1ψk−1(x)+akψk(x)+bkψk+1(x), for k ≤ n−2,

xψn−1(x) = bn−1ψn−2(x)+anψn(x).

The equalities are in L2(ν), meaning that it holds for x ∈ {λ1, . . . ,λn} (the first line of iden-
tities then extends to all x by considering the degree, but the last one cannot possibly!). In
short, the above equations are saying that Tn has eigenvalues λ j with eigenvector

v j =
√

p j(ψ0(λ j), . . . ,ψn−1(λ j))t .

We have introduced the factor √p j because then the rows of the matrix [v1 v2 . . . vn] be-
come orthonormal. As ψ0 = 1, we get |v j(1)|2 = p j and hence the spectral measure at e1 is

∑
n
j=1 p jδλ j = ν. Thus, G ◦H is the identity map from Mn into itself. In particular, G maps

Jn onto Mn.
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The proof will be complete if we show that G is one-one, which can be done in many
ways. We simply refer to the equations (9) from which it is clear that if we know (λ, p),
then we can successively recover a1,b1,a2,b2, . . ..

This completes the proof that the map G from Jn to Mn is a bijection. �

Proof of the third part (3). It remains to prove the formula for the Jacobian determinant.
Let Tn = Tn(a,b) ∈ Jn correspond to ν = ∑

n
j=1 p jδλ j ∈Mn. We write the identities (T m

n )1,1 =

∑
n
j=1 p jλ

m
j for m = 1,2 . . . ,2n−1.

∑ p jλ j = T1,1 = a1 ∑ p jλ
2
j = (T 2)1,1 = b2

1 +[. . .]

∑ p jλ
3
j = (T 3)1,1 = a2b2

1 +[. . .] ∑ p jλ
4
j = (T 4)1,1 = b2

2b2
1 +[. . .] (9)

∑ p jλ
5
j = (T 5)1,1 = a3b2

2b2
1 +[. . .] ∑ p jλ

6
j = (T 6)1,1 = b2

3b2
2b2

1 +[. . .]

. . . . . . . . . . . .

Here the [. . .] include many terms, but all the ak,bk that appear there have appeared in
previous equations. For example, (T 2)1,1 = b2

1 +a2
1 and as a1 appeared in the first equation,

we have brushed it under [. . .] as they will not matter.
Let u = (u1, . . . ,u2n−1) where u j = (T j)1,1. The right hand sides of the above equations

express u as F(a,b) while the left hand sides as u = H(λ, p). We find the Jacobian determi-
nants of F and H as follows.

Jacobian determinant of F : Note that u2k is a function of ai, i≤ k and b j, j≤ k while u2k−1 is
a function of ai, i≤ k and b j, j≤ k−1. Thus, ordering (a,b) as (a1,b1,a2,b2, . . . ,bn−1,an) and
u as u1, . . . ,u2n−1, the derivative matrix of u with respect to a,b becomes upper triangular
with determinant

JF(a,b) = 2n−1
n−1

∏
k=1

b4(n−k)−1
k . (10)

Jacobian determinant of H: The equations above give the derivative of H to be

DH(λ, p) =


p1 . . . pn λ1−λn . . . λn−1−λn

2p1λ1 . . . 2pnλn λ2
1−λ2

n . . . λ2
n−1−λ2

n
...

...
...

...
...

...
(2n−1)p1λ

2n−2
1 . . . (2n−1)pnλ2n−2

n λ
2n−1
1 −λ2n−1

n . . . λ
2n−1
n−1 −λ2n−1

n

 .

Let Ci denote the ith column of this matrix. Factor out pi from the Ci. The resulting matrix
is of the same form (as if pi = 1 for all i) and its determinant is clearly a polynomial in
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λ1, . . . ,λn. It must also symmetric in λks, because the original problem we started with
was symmetric in λks (although in the matrix λn appears superficially to have a different
role).

If h := λ1−λn→ 0, then Cn+1 = O(h), C1−Cn = O(h). Further, it is easy to check that
Cn+1−h(C1 +C2)/2 = O(h2). Thus for fixed λk, k ≥ 2, the polynomial in λ1 has (at least) a
four fold zero at λn. By symmetry, the determinant has a factor ∆(λ)4. However, the deter-
minant above and ∆(λ)4 = ∏i< j(λi−λ j)4 are both polynomials of degree 4(n−1). Further,
the coefficient of λ

4n−4
1 in both is the same. Therefore we get the Jacobian determinant

JH(λ, p) =±|∆(λ)|4
n

∏
i=1

pi. (11)

From (10) and (11) we deduce that

|JG−1(λ, p))|= JH(λ, p)
JF(a,b)

=

n
∏
i=1

pi ∏
i< j
|λi−λ j|4

2n−1
n−1
∏

k=1
b4(n−k)−1

k

.

This proves the first equality in (3). The second equality follows by using (2). �

Remarks on the moment problem and Jacobi matrices

Consider the following four objects.

1. Mn, the set of probability measures on R with support of cardinality n.

2. Pn, the space of positive definite sequences α = (α0,α1, . . .) of rank n. This just means
that the infinite Hankel matrix H = (αi+ j)i, j≥0 is positive semi-definite and has rank
n. To be even more explicit, this just means that every principal submatrix of H is
positive semi-definite and the maximal rank of a principal submatrix is n.

3. OPn, the set of sequence of polynomials (ψ0,ψ1, . . . ,ψn−1) such that ϕ j has degree j

and has positive leading coefficient and such that if an inner product is defined on
the space of polynomials of degree at most n− 1 by declaring ψ j to be orthogonal,
then we have 〈xϕ j,ϕk〉= 〈ϕ j,xϕk〉 for 0≤ j,k≤ n−2 (in short, multiplication operator
by x is self-adjoint. However, xϕn−1 has degree n, that is why the condition j,k ≤
n−2).
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4. Jn, the set of n×n Jacobi matrices.

The fact is that these four sets are in natural bijections with each other. We briefly explain
how.

• Given µ ∈Mn, let αk =
R

xkdµ(x) be its kth moment. Then α ∈ Pn.

• Given α∈Pn, use H to define an inner product on the space of polynomials of degree
at most n− 1 polynomials. Then apply Gram-Schmidt procedure to 1,x, . . . ,xn−1 to
get (ψ0, . . . ,ψn−1) ∈ OPn.

• Given (ψ0, . . . ,ψn−1) ∈ OPn, prove that they satisfy a three term recurrence

xψk(x) = bk−1ψk−1(x)+akψk(x)+bkψk+1(x),

as in the proof of Lemma 6 (the self-adjointness of multiplication by x is required to
see that ck,k+1 = ck+1,k which we then define to be ak). Thus we get a Jacobi matrix
T (a,b) ∈ Jn.

• Given T ∈ Jn, define µ to be its spectral measure at e1. Then µ ∈Mn. This completes
the cycle.

The classical moment problem is analogous, except that the probability measure need not
have support of finite cardinality, moment sequences need not have finite rank, polyno-
mial sequences need not end, Jacobi matrices need not be finite. A cycle similar to the
above exists, except for the last link, from infinite Jacobi matrices to measures. In fact,
an infinite Jacobi matrix defines a symmetric (unbounded) operator on `2(N) (say defined
on the dense subspace of sequences that vanish eventually). It will always have a self-
adjoint extension, but it may have several such extensions. Each self-adjoint extension
has a possibly different spectral measure at e1. When the extension is unique, the mea-
sure is uniquely defined.

Thus the solution to the classical moment problem is this. Given a positive semi-
definite sequence α, the question is if it is the moment sequence of a unique measure on
R. Construct the corresponding orthogonal polynomial sequence and then the (infinite)
Jacobi matrix. At this point, there is either uniqueness (of the spectral measure at e1)
or not, depending on the uniqueness of the self-adjoint extension of the Jacobi matrix.
Existence is assured because there is always a self-adjoint extension (but the existence
of a measure is easy to prove, by standard Riesz-like representation theorems or Helly’s
selection principle. It is uniqueness that is subtle).
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Laguerre Beta ensembles: Another random tridiagonal matrix

Now consider a bidiagonal matrix

Sn =



A1 0 0 0 0 0

B1 A2 0 . . . 0 0

0 B2 A3
. . . . . . 0

0 . . . . . . . . . 0 0

0 0 . . . Bn−2 An−1 0

0 0 0 0 Bn−1 An


. (12)

Then Tn = Tn(a,b) = SnSt
n is a tridiagonal matrix with

ak = A2
k +B2

k−1, 1≤ k ≤ n, and bk = AkBk, 1≤ k ≤ n−1, (13)

with the convention that B0 = 0.
The goal is to find a nice distribution on (A,B) so that the eigenvalues of Tn have a nice

density (these are also the same as the squared singular values of Sn). Let (λ, p) be the
variables associated to Tn(a,b) as before. We already know how to change variables from
(a,b) to (λ, p) by Lemma 6. To change from (A,B) to (a,b), we have from (13),

da1 = 2A1dA1, db1 = A1dB1, da2 = 2A2dA2 +[. . .], . . .

. . . ,dbn−1 = An−1dBn−1 +[. . .], dan = 2AndAn +[. . .].

Therefore, we get the Jacobian determinant

det
[

∂(a1,b1, . . . ,bn−1,an)
∂(A1,B1, . . . ,Bn−1,An)

]
= 2nAn

n−1

∏
j=1

A2
j .

Thus, if (A,B) has joint density f (A,B), then (λ, p) has joint density

g(λ, p) = f (A,B)

n−1
∏

k=1
bk

2n−1
n
∏

k=1
pk

1

2nAn
n−1
∏

k=1
A2

k

=
1

22n−1 f (A,B)
n−1

∏
k=1

Bk

n

∏
k=1

1
Ak

n

∏
k=1

1
pk

by using the relations bk = AkBk.
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Now let A2
k ∼ χ2

pk
and B2

k ∼ χ2
qk

. Then,

f (A,B) =
1
Z

e−
1
2 [∑n

k=1 A2
k+∑

n−1
k=1 B2

k]
n

∏
k=1

Apk−1
k

n−1

∏
k=1

Bqk−1
k .

The normalizing constant Z is easy to compute explicitly. Now we note the relations,

n

∑
k=1

A2
k +

n−1

∑
k=1

B2
k = tr(SnSt

n) = tr(Tn) =
n

∑
k=1

λk,

n

∏
k=1

A2
k = det(Sn)2 = det(Tn) =

n

∏
k=1

λk.

Thus, we get

g(λ, p) =
1
Z′

e−
1
2 ∑

n
k=1 λk

n

∏
k=1

Apk−2
k

n−1

∏
k=1

Bqk
k

n

∏
k=1

1
pk

=
1
Z′

e−
1
2 ∑

n
k=1 λk

n

∏
k=1

Apk−qk−2
k

n−1

∏
k=1

(AkBk)qk
n

∏
k=1

1
pk

if we adopt the convention that qn = 0. Now we make the choice qk = β(n− k) so that

n−1

∏
k=1

(AkBk)qk =
n−1

∏
k=1

b2(n−k)
k =

n

∏
k=1

p
1
2 β

k · ∏
i< j
|λi−λ j|β

where the last equality follows from (2). In fact this identity motivates the choice of qks.
We are left with ∏Apk−qk−2

k and this can be written in terms of eigenvalues if the exponents
are equal. Hence we take pk = 2α+β(n− k) so that

n

∏
k=1

Apk−qk−2
k =

n

∏
k=1

A2(α−1)
k =

n

∏
k=1

λ
α−1
k .

Putting everything together, we have

g(λ, p) =
1

Z′′
e−

1
2 ∑

n
k=1 λk

n

∏
k=1

λ
α−1
k ∏

i< j
|λi−λ j|β ·

n

∏
k=1

p
1
2 β−1
k

Again, we see that λ and p are independent, p has Dirichlet distribution, and λ has joint
density

1
Zn,α,β

∏
i< j
|λi−λ j|β

n

∏
k=1

h(λk), for λk ∈ R+, (14)
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where h(x) = xα−1e−
1
2 x is the Gamma density. This is very similar to the earlier case, except

that eigenvalues are now restricted to R+ and the Gaussian factor e−x2/2 is replaced by the
Gamma factor h(x). For this reason, this joint density is called the Laguerre beta ensemble
in contrast to (6) which is called Hermite beta ensemble. Of course, now we have an extra
parametr α, but that features in the product factor h and not in the interaction |λi−λ j|β

(hence, β is the “more important parameter”).

Exercises

Exercise 9. Let A be an n× n real symmetric (or Hermitian or normal) matrix. Let e1, . . . ,e j be an

orthonormal basis. If ν j is the spectral measure of A at e j, show that LA = 1
n(ν1 + . . .+νn).

Exercise 10. For the discrete Laplacian matrix Tn with ak = 0 and bk = 1, and e = e1 (the first co-

ordinate vector), find the spectral measure explicitly and draw its histogram. What shape do you

see? What about the spectral measure at em where m = bn/2c?

Exercise 11. Let ξ1, . . . ,ξn be independent random variables with ξ j ∼ Gamma(α j,1). Let S =

ξ1 + . . .+ξn and let pi = ξi/S.

1. Make a change of variables to show that the density of (S, p1, . . . , pn−1) on (0,∞)×∆n is

1
∏

n
j=1 Γ(α j)

e−SSα1+...+αn−1
n

∏
j=1

pα j−1
j .

2. Deduce that the normalizing constant in the Dirichlet density 1
Dn(α1,...,αn)

pα1−1
1 . . . pαn−1

n is

Dn(α1, . . . ,αn) =
Γ(α1 + . . .+αn)
Γ(α1) . . .Γ(αn)

.

Exercise 12. With ak ∼ N(0,2), b2
k ∼ χ2

β(n−k), all independent, follow the constants to deduce the

following normalization constants.

1. For (a,b) the density is given by (4) with Zβ,n = 21+ 1
2 βn(n−1)π

1
2 n

n−1
∏

k=1
Γ(1

2 βk).

2. For (λ, p), the density is given by (5) with Z′
β,n = 2n+ 1

2 βn(n−1)π
1
2 n

n−1
∏

k=1
Γ(1

2 βk).

3. For λ, the density is given by (6) with

Z′′
β,n = 2n+ 1

2 βn(n−1)
π

1
2 n

n
∏

k=1
Γ(1

2 βk)

Γ(1
2 β)n

.
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Exercise 13. Similarly to the previous exercise, work out the normalization constant in (14)

Zn,α,β = 2β(n−1)n+nα
Γ(α)Γ

(1
2 βn
)

Γ
(1

2 β
)n

n−1

∏
k=1

Γ

(
1
2

βk
)

Γ

(
α+

1
2

βk
)

.

possibly wrong, check!

Notes
Trotter was the first to consider random tridiagonal matrices. He derived the limiting spectral distribution
of Tn( f ), and deduces the semi-circle law for the GUE matrix (to be introduced later) by reducing it to a
tridiagonal matrix (we shall see this in Chapter ??). The beta development is due to Dumitriu and Edelman.
This led to many developments, including an approach to the study of spacing in the bulk and edge, even
for the classical eigenvalue ensembles. The proof of Lemma 6 is taken from Forrester’s book. I was not able
to find a shorter or more conceptual argument for the identity (2).
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Chapter 3

The beta log-gas

The beta log-gas is the joint density on Rn given by

pV
n,β(x) =

1
ZV

β,n
∏
i< j
|xi− x j|β

n

∏
k=1

e−βnV (xk).

This can also be written as

pV
n,β(x) =

1
ZV

β,n
exp{−βHV

n (x)}, HV
n (x) = n

n

∑
k=1

V (xk)−∑
i< j

log |xi− x j|. (1)

This is in accordance with the general prescription in statistical mechanics wherein any
system (here Rn or the space of configurations of n particles) is defined by an energy
function H (here HV

n ) and the probability or probability density of a configuration is pro-
portional to exp{−βH(x)}, where β is a tunable parameter. At β = 0 all configurations are
equally likely, while as β→ +∞, the probability concentrates on configurations with the
lowest possible energy. Its reciprocal 1/β is what is called temperature in physics.

A simpler example is the probability density exp{−∑
n
k=1V (xk)}, which corresponds to

independent random variables with density e−V (x). Physically it describes n non-interacting
charges in an electric potential well given by V (i.e., a particle at x has energy V (x)) so that
the total energy is just V (x1)+ . . .+V (xn).

In the same way, the log-gas has the physical interpretation of n unit charges in an
electric potential V and with interaction energy log(1/|x− y|). Then the total energy is
given by HV

n . Actual charges in space have the same form of the energy, except that the
interaction energy is 1/|x−y|, which blows up to +∞ when x and y get close. Hence, such
configurations are highly unlikely, indicating that under this probability distribution the
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points tend to stay away from each other. This repulsion is one of the key features of the
log-gas.

Mathematically and physically, if we study charges in d-dimensional space, the right
choice of the interaction energy is

Gd(x,y) =


1

|x−y|d−2 if d ≥ 3,

log 1
|x−y| if d = 2,

|x− y| if d = 1.

The key point which dictates this choice is that ∆xGd(x,y) = cdδy(x), where ∆x = ∑
d
i=1

∂2

∂x2
i

is

the Laplacian and cd is a constant (easy to find but irrelevant now). The equation should
be interpreted in weak sense1.

Any probability density can be written as p(x) = exp{log p(x)}. What makes these
situations “physical” is that log p is made of individual and pairwise contributions.

The three questions discussed in the first chapter (limit of the histogram, spacings in
the bulk, spacings at the edge) are of great interest for the beta log-gas. A good fraction
of this course will be devoted to these questions. The answers have been found recently
by several methods, none too easy. The quadratic potential case V (x) = x2 turns out to be
relatively easier. One reason is the representation of the log-gas as the eigenvalues of the
Jacobi matrix as in Theorem 7.

The quadratic beta log-gas

A particularly important case is when V (x) = x2/4, which we refer to as the quadratic beta
log-gas. The density is

pn,β(x) =
1

ZV
β,n

∏
i< j
|xi− x j|β

n

∏
k=1

e−βnx2
k/4

=
1

ZV
β,n

exp

{
−β

[
n
4

n

∑
k=1

x2
k−∑

j<k
log |x j− xk|

]}
.

By Theorem 7, this is exactly the same as the density of eigenvalues of Tn/
√

βn, where
Tn = Tn(a,b) is the Jacobi matrix with independent entries, ak ∼ N(0,2) and b2

k ∼ χ2
β(n−k).

1Meaning: For any smooth, compactly supported function ϕ : Rd 7→ R, we have
R

Rd Gd(x,y) ∆ϕ(x)dx =
cdϕ(y). If Gd was smooth, the left hand side could be written after integrating by parts twice asR

Rd ϕ(x)∆xGd(x,y)dx. But the right side is cd
R

ϕ(x)δy(dx), hence the identity “∆xGd(x,y) = cdδy(x)”.
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The density of the log-gas itself has complicated dependent variables, which make
it hard to analyse. But since we understand independent random variables better, the
tridiagonal matrix helps. In particular, here are three features of the quadratic beta log-
gas.

1. An explicit formula for the normalization constant.

2. The empirical distribution of the points converges to the semicircle density on [−2,2].

3. With high probability, the largest point is close to 2.

We shall prove the first and the third statement in this chapter, and the second statement
in the next chapter.

Mehta integral

We did not explicitly give the normalization constant for the quadratic beta log-gas. It
can be found explicitly, as given in the following identity (conjecture by Mehta, proved
by Selberg 20 years earlier!).Z

Rn
∏
i< j
|xi− x j|β

n

∏
k=1

e−
1
2 x2

k dx = (2π)n/2
n

∏
k=1

Γ(1+ βk
2 )

Γ(1+ β

2 )
. (2)

Working out the integral on the left is not a trivial task. Mehta and Dyson were unable to
do it in the 1960s, although they conjectured an exact answer. It later turned out to be a
consequence of a more general integral identity proved by Selberg in the 1940s:

Theorem 14 (Selberg). If α,β,γ ∈ C with Re(α) > 0, Re(β) > 0, Re(γ) >−min{1
n , α

n−1 , β

n−1}.Z
[0,1]n

∏
j<k
|x j− xk|2γ

n

∏
k=1

xα−1
k (1− xk)β−1 dx1 . . .dxn =

n−1

∏
k=0

Γ(α+ jγ)Γ(β+ jγ)Γ(1+( j +1)γ)
Γ(1+ γ)Γ(α+β+(n+ j−1)γ)

.

Selberg’s integral is a famous identity now, with developments in many directions.
Mehta’s integral integral can be obtained as a limiting case of Selberg’s integral for special
values of parameters, see Exercise 21.

The Jacobi matrix approach has already given us a direct proof of (2). Indeed, in (6),
put λk =

√
2xk and use Exercise 12 to get

Z
Rn
↑

∏
i< j
|xi− x j|β

n

∏
k=1

e−
1
2 x2

k dx =
1

(2π)n/2

n
∏

k=1
Γ(1

2kβ)

Γ(1
2β)n

.
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If the integral is extended to Rn, the result will by n! times the expression on the right,
which equal to the right hand side of (2) by writing Γ(1+ 1

2βk) = 1
2βk Γ(1

2βk).

The range of the log-gas

Let x = (x1, . . . ,xn) be the quadratic beta log-gas. We now show that all the points are
essentially inside the interval [−2,2]. The precise statement is as follows.

Theorem 15. There exist δn and εn converging to 0 such that ,

−2−δn ≤min
i

xi ≤max
i

xi ≤ 2+δn with probability more than 1− εn.

I do not know any simple deduction of it from the log-gas density itself. But the
tridiagonal matrix makes it almost trivial! We start with a fact in linear algebra2.

Fact 16. Let An = (ai, j)i, j≤n be any real (or complex) matrix. Let sk = ∑
n
j=1 |a j,k| for 1≤ k≤ n

and let s = max{s1, . . . ,sn}. Then all eigenvalues of An are bounded in absolute value by s.

To see this, suppose Av = λv, v 6= 0. Pick a k such that |vk|= max{|v1|, . . . , |vn|}. Then

|λvk|=
∣∣∣ n

∑
j=1

ak, jv j

∣∣∣≤ n

∑
j=1
|a j,k||v j| ≤ |vk|sk

showing that |λ| ≤ sk for some k. Thus all eigenvalues are of absolute value at most s. �

Let us return to the log-gas. We know that the quadratic beta log-gas is the joint
density of eigenvalues of 1√

βn
Tn(a,b) where Tn is as in Theorem 7. If we apply the fact

proved above to this random matrix, we see that the points of the quadratic beta log-gas
all lie in the interval [−Bn,Bn] where

Bn =
1√
βn

{
max
k≤n
|ak|+2 max

k≤n−1
bk

}
.

Theorem 15 is proved if we show that limsupBn ≤ 2 a.s. We shall be more quantitative and
get some explicit (but not optimal!) δn and εn. Clearly, what we need are tail bounds on
Gaussian and chi-squared random variables.

2It is a good place to recall a more powerful and beautiful theorem in linear algebra. The Gershgorin
circles theorem states that all the eigenvalues of An are contained in the union of the closed disks D(ak,k,rk)
where rk = sk−|ak,k|. This of course implies the fact we stated.
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Fact 17. Let Z ∼ N(0,1) and W ∼ χ2
m.

1. P{Z > t} ≤ e−t2/2 for any t > 1.

2. P{W > mt} ≤ exp{−mc(t)} for t > 1 where c(t) = 1
2(t−1− log t).

Proof of Fact 17. The key idea is (as often in probability) Chebyshev’s inequality.

1. P(Z > t) = 1√
2π

R
∞

t e−x2/2dx ≤ 1√
2π

R
∞

t
x
t e−x2/2dx = 1√

2π

1
t e−t2/2. For t > 1 just drop the

denominator to get the desired inequality.

2. We may write W = Z2
1 + . . .+Z2

m where Zi are i.i.d. standard Gaussian random vari-

ables. For 0 < θ < 1
2 (so that E[eθZ2

1 ] is finite), we write

P{W > mt} ≤ e−θmtE
[
eθZ2

1

]m
= e−θmt

(
1√

1−2θ

)m

= exp
{
−1

2
m[2θt + log(1−2θ)]

}
.

Using the optimal value θ = 1
2 −

1
2t , the exponent on the right hand side becomes

1
2m[t−1− log t]. �

Using these tail bounds, we now find the asymptotics of Bn. For h > 0 observe that

P
{

max
k≤n
|ak| ≥

√
2(1+h) logn

}
≤ nP{|a1| ≥

√
2(1+h) logn} ≤ ne−(1+h) logn =

1
nh .

Next, recall that b2
k ∼ χ2

β(n−k) and that χ2
m is stochastically smaller than χ2

` if m < ` (by
writing as sums of squares of Gaussians for example). Hence,

P{b2
k ≥ βnt} ≤ P{χ2

βn ≥ βnt} ≤ exp{−c(t)βn}.

Therefore, by the union bound

P
{

max
k≤n−1

bk ≥
√

βn
√

t
}
≤ ne−c(t)βn.

Put
√

t = 1 + h and take h small enough so that c(t) ≥ 1
4h2. Then, outside an event of

probability 1
nh +ne−h2n/4, we have

Bn ≤
√

2logn(1+h)√
βn

+2
√

1+h≤ 2+O(h)+O
(√

logn√
n

)
.

If we take h = hn→ 0 so that nh→∞ (eg., h = n−1/4), we get the conclusion of the theorem.
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Exercises

Exercise 18. Carry out the computations suggested in the text and prove the identity (2).

Exercise 19. If Z1, . . . ,Zn are i.i.d N(0,1) and Z∗n = max{Z1, . . . ,Zn}, show that Z∗n√
2logn

P→ 1 as n→ ∞.

Exercise 20. If Wn ∼ χn, show that Wn −
√

n converges (without normalization) to a mean zero

normal distribution and find the limiting variance.

Exercise 21. Make the substitution xk = 1
2 −

yk
2L in the Selberg integral formula, choose α,β appro-

priately and deduce the Mehta integral formula.

Exercise 22. Similarly, make an appropriate substitution in the Selberg integral and choose the

parameters to deduce the value of

Z
Rn

+

∏
j<k
|x j− xk|β

n

∏
k=1

xα−1
k e−

1
2 xk dx1 . . .dxn.

as given in Exercise 13.
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Chapter 4

The method of moments applied to
Jacobi matrices, deterministic and
random

A class of deterministic Jacobi matrices

Fix a continuous function f : [0,1] 7→ R and recall the Jacobi matrix with ak = 0 and bk =
f (k/n).

Tn( f ) =



0 f (1
n) 0 0 0 0

f (1
n) 0 f (2

n) . . . 0 0

0 f (2
n) . . . . . . . . . 0

0 . . . . . . . . . f (n−2
n ) 0

0 0 . . . f (n−2
n ) 0 f (n−1

n )
0 0 0 0 f (n−1

n ) 0


. (1)

We shall find the limiting spectral distribution of Tn in terms of f . We do this to illustrate
the method of moments and the method of Stieltjes’ transform.

The method of moments

The key point is that the eigenvalues (unknown) are related to the entries (known) by the
remarkable identity

n

∑
k=1

ak,k = tr(A) =
n

∑
k=1

λk.

39



valid for any matrix An = (ai, j)i, j≤n with eigenvalues λ1, . . . ,λn. Applying the identity to
Ap whose eigenvalues are λ

p
k , we get

Z
xpdLAn(x) =

1
n

n

∑
k=1

λ
n
k =

1
n

tr(Ap
n) =

1
n ∑

i1,...,ip≤n
ai1,i2ai2,i3 . . .aip,i1 .

This identity allows us to apply the method of moments to the empirical spectral distri-
butions LAn . For the particular case of the Jacobi matrix Tn = Tn( f ), we getZ

xpdLTn(x) =
1
n ∑

1≤i1,...,ip≤n
Tn(i1, i2) . . .Tn(ip, i1).

Since Tn(i, j) is zero unless |i− j| = 1, the sum is over lattice paths (or “simple random
walk paths” if that makes it more clear) in Z, constrained to be inside {1, . . . ,n}. From this
or otherwise, one may see that tr(T p

n ) = 0 whenever p is odd. If p = 2q, then we split the
sum based on the starting point as follows.

1
n

n

∑
`=1

∑
i2,...,i2q

Tn(`, i2)Tn(i2, i3) . . .Tn(i2q−1, i2q)Tn(i2q, `).

For a given starting point q < ` < n− q, the full set of
(2q

q

)
paths appear in the sum (the

constraint to stay inside {1, . . . ,n} is irrelevant for them). And for a given `, all the indices
i2, . . . i2q are within `− q and `+ q (ignoring the zero terms, of course). Therefore, by the
continuity of f , we may write1

|Tn(i1, i2) . . .Tn(i2q, i1)− f (`/n)2q| ≤ δn

where δn→ 0 as n→ 0. The entire contribution of paths starting within q distance of 1 or
n is bounded from above by 1

n

(2q
q

)
2q‖ f‖2q

sup which also goes to zero as n→ ∞. Thus

∣∣∣1
n

tr(T 2q
n )− 1

n

n

∑
`=1

(
2q
q

)
f (`/n)2q

∣∣∣→ 0.

The Riemann sum approaches the corresponding integral and hence we get

Z
x2qdLTn(x)→

(
2q
q

)Z 1

0
f (x)2qdx.

1If |xi− yi| ≤ ε and |xi|, |yi| ≤M, then |x1 . . .xk− y1 . . .yk| ≤ kεMk−1. In our case, M = ‖ f‖sup and ε = ω f (q/n)
where ω f (h) = sup{| f (x)− f (y) : |x− y| ≤ h}.
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In other words, the moments of the empirical spectral distribution of Tn converge to αp,
where αp = 0 if p is odd and α2q :=

(2q
q

)R 1
0 f (x)2qdx. Since f is bounded, we see that

|α2q| ≤ 22q‖ f‖2q
sup,

which shows that (αq)q≥1 are the moments of a unique compactly supported probability

measure µ f and that LTn
d→ µ f .

Alternately, from the fact that ‖ f‖sup < ∞, we see that the eigenvalues of Tn must be
bounded by 2‖ f‖sup (maximum of the row sums of absolute values of the entries is an
upper bound for the largest eigenvalue) and hence LTn and the limiting measure must all
be supported in [−‖ f‖sup,‖ f‖sup].

As it happens, it is easy to write down the measure µ f . We say it in terms of random
variables.

Exercise 23. Let V ∼unif[0,1] and X ∼ arcsine[−2,2] (the density is 1
π
√

4−x2 ) be independent

random variables and let Y = X f (V ). Then

E[Y p] =


(2q

q

)R 1
0 f (x)2qdx if p = 2q is even,

0 if p is odd.

As a special case, if f is the constant function 1, we get the discrete Laplacian matrix
that we considered earlier. The limiting distribution is arcsine measure on [−2,2], which
agrees with our derivation in Chapter 1. .

Another special case is of the (scaled) oscillator matrix for which f (x) =
√

x (the func-
tion

√
1− x will give the same results). The even moments are the Catalan numbers

1
q+1

(2q
q

)
. We know that the semi-circle on [−2,2] is the only such measure. Thus we have

justified the theorem suggested in Figure 1.4 and Figure 1.6.

Remark 24. A shortcoming of the method of moments is seen in this class of examples.
From the moments (even when it determines the measure), it is hard to see whether the
measure is absolutely continuous, whether the density is smooth or bounded, etc. The
cases where the density can be guessed are essentially the only cases where one is able to
answer these questions. We shall see some open questions of this type later.

In the case at hand we get the absolute continuity of the limiting spectral distribution
from the representation Z = X f (V ). If we condition on V , the distribution is arcsine on
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[−2 f (V ),2 f (V )] which has density

1−2 f (V )<x<2 f (V )

π
√

4 f (V )2− x2
.

Integrate over V to get the density of the limiting spectral distribution to be

ρ(x) =
1
π

Z 1

0

1−2 f (v)<x<2 f (V )√
4 f (v)2− x2

dv

To cross check the answer, take the case f (v) =
√

v to get

ρ(x) =
1
π

Z 1

0

1−2
√

v<x<2
√

v√
4v− x2

dv =
1

2π

Z 1

x2/4

1√
v− 1

4x2
dv

=
1

2π

1
2

√
v− 1

4
x2
∣∣∣v=1

v= 1
4 x2

=
1

2π

√
4− x2.

which agrees with our earlier derivation.

Remark 25. The method of moments is quite effective and robust. In Exercise 27, you
are asked to follow the same idea as above to find the limit of the spectral distribution of
Tn( f ) at e1. It is worth noting that the limit is always a semi-circle distribution provided
f (0) is strictly positive.

Another example where the method of moments is effective is the one-dimensional
Anderson model, see Exercise 28. However, that exercise shows one limitation of the
method of moments. It is difficult to determine absolute continuity of the limiting spec-
tral distribution or the extent to which the density is smooth from a knowledge of the
moments.

A more general Jacobi matrix

Let f : [0,1] 7→ R and g : [0,1] 7→ R+ be continuous functions. Let Tn( f ,g) = Tn(a,b) where
ak = f (k/n) and bk = g(k/n). Then we want to find the limiting spectral distribution of Tn.
Instead of going over the moments as before, let us put forth another way to think of the
situation. When we are focusing on indices k such that k/n is close to x ∈ (0,1), we have
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before us a matrix of the form

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 g(x) f (x) g(x) 0 . . . . . . . . .

. . . . . . 0 g(x) f (x) g(x) 0 . . . . . .

. . . . . . . . . 0 g(x) f (x) g(x) 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .


which is really f (x)I +g(x)L where L is the discrete Laplacian matrix. Hence its eigenvalue
distribution is like the arcsine law on [ f (x)− 2g(x), f (x)+ 2g(x)] (since the eigenvalues of
L are like arcsine on [−2,2]).

Overall, we have a superposition of these arcsine densities as x varies over [0,1]. A
linear change of variables gives us the arcsine density on an interval [a−2b,a+2b] to be

1|y−a|≤2b

π
√

4b2− (y−a)2
.

Superposing such densities, we conclude that the limiting spectral distribution of Tn( f ,g)
must have density

ρ(t) =
1
π

Z 1

0

1|t− f (x)|≤2g(x)√
4g(x)2− (t− f (x))2

dx

When f = 0, we recover the result obtained earlier.
If this derivation does not satisfy your demands of rigour, then complete the following

steps to get a full proof:

1. Show that for k ≈ nx with 0 < x < 1 and fixed p≥ 1,

(T p)k,k ≈
p/2

∑
`=0

(
p
2`

)(
2`

`

)
f (x)p−2`g(x)2`.

2. Show that Z
xp dLTn(x) =

1
n

tr(T p
n )→

p/2

∑
`=0

(
p
2`

)(
2`

`

)Z 1

0
f (x)p−2`g(x)2`dx.

3. Use the Fourier identity
R 1

0 e2πimθdθ = δm,0 (for integer m), to prove the identity

Z 1

0

(
a+be2πiθ +be−2πiθ

)p
dθ =

p/2

∑
`=0

(
p
2`

)(
2`

`

)
ap−2`b2`.
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4. Put the previous three steps together to show that

lim
n→∞

Z
xpdLTn(x) = E[Zp]

where Z = f (U)+2g(U)cos(2πV ) where U,V are independent uniform[0,1] random
variables.

5. As Z is a bounded random variable, convergence of moments of LTn to the moments
of Z implies the convergence in distribution of LTn to the distribution of Z.

Observe that cos(2πV ) has arcsine distribution on [−1,1]. Therefore, by conditioning on
U , we see that the distribution of Z is a mixture of arcsine distributions (not necessarily
symmetric about zero). This is the density formula we wrote earlier as ρ(t).

The limiting distribution of beta log-gases

If ak ∼ N(0,1) and b2
k ∼ χ2

β(n−k) are independent, then we know that the eigenvalues of
Tn(a,b) form the beta log-gas. Finding the limiting distribution of the latter is thus equiv-
alent to finding the limiting spectral distribution of Tn. We shall do this by the method
of moments, for which there is hope since the entries of Tn are independent random vari-
ables with well-understood distributions while the log-gas is a joint density of highly
dependent random variables.

First and foremost, we must figure out the scaling. The second moment of the em-
pirical spectral distribution is given by 1

n ∑
n
k=1 λ2

k = 1
n tr(T 2

n ). If we scale the eigenvalues
(or equivalently the matrix Tn) down by a factor of sn, then the second moment becomes

1
ns2

n
∑

n
k=1 λ2

k = 1
ns2

n
tr(T 2

n ). We would like to choose sn so that this quantity stays bounded

away from 0 or ∞ (why?). Taking expectations, we see that

E[tr(T 2
n )] = E

[
n

∑
k=1

a2
k +2

n−1

∑
k=1

b2
k

]
= n+2β

n−1

∑
k=1

(n− k)∼ βn2.

Thus we take sn =
√

n so that E[ 1
ns2

n
tr(T 2

n )]∼ β. With this scaling, we are working with the

matrix 1√
nTn and its empirical distribution Ln = LTn/

√
n.

A back of the envelope calculation: The diagonal entries of Tn/
√

n are ak/
√

n which has
N(0,1/n) distribution. The super-diagonal entries are bk/

√
n. Exercise 31 tells us the be-

haviour of the square-root of a chi-sqared random variable as the number of degrees of
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freedom grows large:
√

Yn−
√

n d→ N(0,
1
2
).

Thus, 1√
nbk ≈

√
β

√
1− k

n + ck√
2n

where ck ∼ N(0,1) (except when n− k is small).

Now we ignore the terms ak/
√

n and ck/
√

n, as they look small. Then Tn/
√

n becomes
precisely a matrix of the form (1) with f (x) =

√
β
√

1− x. Now it is clear that the parameter
β only affects an overall scaling (it would have been wiser to take sn =

√
βn). Taking β = 1

for simplicity, we have the scaled oscillator matrix whose limiting spectral distribution is
the the semi-circle distribution on [−2,2].

Fixing the loose parts in the argument: In the heuristic above, we must justify ignoring
the terms ak/

√
n and ck/

√
n as well as the normal approximation for bk. All this can be

done in one step. Let An be the matrix in (1) with f (x) =
√

1− x and let Tn be the matrix as
before but with β = 1. We compare T̂n := Tn/

√
n and An.

tr(T̂n−An)2 =
1
n

n

∑
k=1

a2
k +

2
n

n−1

∑
k=1

(
bk−
√

n− k
)2

.

We take expectations next. To avoid long calculations, we bound the second term as
follows. Let Y 2

m ∼ χ2
m. Then2,

E[(Ym−
√

m)2] = E
[

(Y 2
m−m)2

(Ym +
√

m)2

]
≤ 1

m
E[(Y 2

m−m)2] =
Var(Y 2

m)
m

= 2.

This is true for every m. Hence we get E
[
tr(T̂n−An)2] ≤ 5. By the Hoffman-Wielandt

inequality, if λi and µi are the eigenvalues of T̂n and An (in increasing order), then

E

[
n

∑
k=1

(λk−µk)2

]
≤ 5.

From Lemma 26, it follows that

E
[
D(LAn,LT̂n

)3
]
≤ 5

n

which converges to 0 as n→ ∞. Hence we also get D(LAn,LT̂n
) P→ 0. Since LAn → µs.c., the

semi-circle measure on [−2,2], it follows that D(LTn,µsc)
P→ 0.

2Note that
√

m is not equal to E[χm]. The latter is in fact
√

2Γ((m+1)/2)/Γ(m/2), which is asymptotically
the same as

√
m. By the trick of writing (Ym−

√
m)2 ≤ (Y 2

m−m)/(Ym +
√

m), we avoided having to use any
facts about the Gamma function.
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Lemma 26. Suppose λ1 ≥ λ2 ≥ . . . ≥ λn and µ1 ≥ µ2 ≥ . . . ≥ µn. Let Lλ = 1
n ∑

n
k=1 δλk and Lµ =

1
n ∑

n
k=1 δµk be the corresponding empirical measures. Then,

D(Lλ,Lµ)≤

(
1
n

n

∑
k=1

(λk−µk)2

) 1
3

.

Proof. Now, for any x ∈ R, it is clear that

#{k : λk ≤ x, µk ≥ x+δ} ≤ 1
δ2

n

∑
k=1

(λk−µk)2,

#{k : µk ≤ x, λk ≥ x+δ} ≤ 1
δ2

n

∑
k=1

(λk−µk)2.

If D(Lλ,Lµ) ≥ δ, then, by the definition of the Lévy metric, there is an x ∈ R such that the
left hand sides of one of these inequalities exceeds nδ. Therefore,

nδ
3 ≤

n

∑
k=1

(λk−µk)2,

implying the statement of the lemma. �

Exercises

Exercise 27. Let f : [0,1] 7→ R be as before. Assume that f (0) > 0. Let νTn be the spectral distri-

bution of Tn( f ) at e1. Then, show that νTn converges to the semi-circle distribution on the interval

[−2 f (0),2 f (0)].

Exercise 28. (One dimensional Anderson model). Let Xi be i.i.d. random variables from a distri-

bution determined by its moments. Let Tn = Tn(a,b) where ai = Xi and bi = 1. Show that Tn has a

limiting spectral distribution.

Exercise 29. If Z = X f (V ), where X ∼ arcsine[−2,2] and V ∼ uniform[0,1] are independent, then

show that Z has density

ρZ(t) =
1
π

Z 1

0

1|t|≤2 f (v)√
4 f (v)2− t2

dv.

Exercise 30. Let X ,V be as in the previous exercise. If f ,g : [0,1] 7→R are two continuous functions

such that f (V )X d= g(V )X , then show that there is a measure-preserving transformation ϕ : [0,1] 7→
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[0,1] such that f = g ◦ϕ. Conclude that for any f , there is a g that is decreasing on [0,1] and such

that Tn(g) has the same limiting spectral distribution as Tn( f ).

[Note: It is obvious that if f = g ◦ϕ, then f (V )X and g(V )X have the same distribution. What

we are saying here shows precisely the equivalence classes of f ∈ C[0,1] for which the limiting

spectral distributions of Tn( f ) are the same.]

Exercise 31. The following probability facts relate to the tail estimates we used in bounding the

range of the log-gas.

1. If Z1,Z2, . . . are i.i.d. standard Normal random variables and Z∗n = max{Z1, . . . ,Zn}, then show

that 1√
2logn Z∗n

P→ 1 as n→ ∞.

2. If Yn ∼ χn, then Yn−
√

n d→ N(0, 1
2) as n→ ∞.
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Chapter 5

Stieltjes’ transform method for Jacobi
matrices

We now show how to get limiting spectral distributions for deterministic and random
Jacobi matrices using the method of Stieltjes’ transform. First we start with the Jacobi
matrix Tn( f ) where f : [0,1] 7→ R+ is continuous. Before going to the empirical spectral
distribution, we find the limit of the spectral measure at e1. In other words, we solve
Exercise 27 by this method.

Spectral measure of Tn( f ) at e1

Without loss of generality (since f (0) > 0) scale and assume that f (0) = 1. Let νn = νTn( f )

be the spectral measure of Tn at e1. Then,

Gνn(z) :=
Z 1

z− x
dνn(x) = (zI−Tn)1,1.

Let T̃ be the matrix got from T by deleting the first row and first column. We know that1

(zI−T )1,1 =
1

z−a1−b2
1(zI− T̃ )1,1

. (1)

Let us write Gn(z) = (zI−T )1,1 and G̃n(z) = (zI− T̃ )1,1. From Lemma 108, we get Argu-
ments shaky here. Need to fix

1Let M =

[
a ut

v B

]
where a ∈ C, u,v ∈ Cn−1 and B is and (n− 1)× (n− 1) complex matrix. If M is non-

singular, then the M1,1 = 1
a−ut B−1v . This can be seen in many ways, for example, first writing the entry in the

inverse as det(B)/det(A) and then expanding the determinant of A with respect to the first row.

48



The eigenvalues of T and eigenvalues of T̃ interlace and hence, (see Lemma 105) we
have dKS(LT ,LT̃ )≤ 1

n . From this and the properties of Stieltjes’ transform, we get |Gn(z)−
G̃n(z)| ≤ 1

nv where z = u+ iv. From (1) we get

Gn(z) =
1

z− (1+δn)(Gn(z)+ εn)

where δn = f (1/n)− 1 and |εn| ≤ 1
nv . Thus, any subsequential limit w of Gn(z) satisfies

w(z−w) = 1. As Gn(z), n ≥ 1, are contained in the closed disk D(0,1/v), a compact set, it
follows that G(z) := lim

n→∞
Gn(z) exists and satisfies

G(z)(z−G(z)) = 1.

Solving the quadratic equation for G(z) we get

G(z) =
z−
√

z2−4
2

.

where
√
· is defined on C \ [0,∞) by reiθ 7→

√
reiθ/2 with 0 < θ < 2π. The other root of the

quadratic equation is discarded because it does not satisfy G(z) ∼ 1
z as z→ ∞ (why must

this condition be satisfied?). We have already seen that this is the Stieltjes’ transform of
the semi-circle distribution on [−2,2]. Thus, νTn converge to this measure.

Limiting spectral distribution of Tn( f )

The Stieltjes’ transform of the empirical spectral distribution of Tn( f ) is given by

Hn(z) =
1
n

tr(zI−Tn)−1 =
1
n

n

∑
k=1

(zI−T )k,k.

Fix k, let u be the kth row of Tn after deleting the kth term in it, let S be the matrix got from
Tk by deleting the kth row and the kth column. Then, by the same formula as previously,

(zI−T )k,k =
1

z−utS−1u
.

But u = (0 . . .0 bk−1 0 bk 0 . . .0)t and

S =

[
zI−T[k] 0

0 zI− T̃[n−k]

]
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where T[k] is the top (k− 1)× (k− 1) principal submatrix of Tn and Tn−k is the bottom
(n− k)× (n− k) principal submatrix of Tn. Hence

utS−1u = (zI−T[k])
k−1,k−1 +(zI− T̃[n−k])

1,1.

Observe that the two terms are the Stieltjes’ transforms of the spectral measures of T[k] and
T̃ [n− k] at ek−1 and e1, respectively. Denoting them by Gk and G̃k, we have,

Hn(z) =
1
n

n

∑
k=1

1
z−b2

k−1Gk(z)−b2
k−1G̃k(z)

(2)

From Exercise 27, we see that if k and n− k are both large, then

Gk(z)≈
1

bk−1
G
(

z
bk−1

)
,

G̃k(z)≈
1

bk−1
G
(

z
bk−1

)
.

where G is the Stieltjes’ transform on the semi-circle distribution on [−2,2]. Recall that
G(z) = (z−

√
z2−4)/2 to see that

z−b2
k−1Gk(z)G̃k(z)≈ z−2bk−1G(z/bk−1) =

√
z2−4b2.

Plugging these approximations back into (2) and then using the integral approximation
to the Riemann sum, we conclude that

Hn(z)→ H(z) :=
Z 1

0

1√
z2−4 f (t)2

dt.

We had computed that the arcsine measure on [−2,2] has Stieltjes’ transform 1/
√

z2−4.
Therefore, H(z) is a superposition of arcsine measures on [−2 f (t),2 f (t)]. This directly tells
us that H is the Stieltjes transform of the distribution of f (V )X where V ∼Uniform[−1,1]
and X ∼ arcsine[−2,2] (when we fix V , we get arcsine on [−2 f (V ),2 f (V )]).

We have left out a couple of steps in the above proof. One is approximating Gk and G̃k

by the scaled semi-circle Stieltjes’ transforms. The second is approximating the Riemann
sum by the integral. Both are standard and we omit the justification.

Relative advantages of the method of moments and the method of Stieltjes’ transforms:
Clearly, method of moments requires the underlying measures to have all moments. Not
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entirely true, because it is possible to truncate a measure and work with it. It works, but
is often tedious. The Stieljes’ transform does not require moments to exist. More interest-
ingly, if you consider f such that the limiting moments do not determine a measure, then
the method of moments does not have a conclusion. But the Stieltjes’ transform finds the
limiting measure (as the superposition of arcsine laws on [−2 f (V ),2 f (V )]) even in such
cases! The virtue of the method of moments is that it is quite flexible.

Let us give another example where Stiteltjes’ transform gives more information about
a measure than the moments do.

One dimensional Anderson model and the method of spectral averaging

Let Tn = Tn(a,b) where ak = Xk are i.i.d. random variables with distribution θ and bk = 1 for
all k. We introduced this model in Exercise 28. if you did that exercise, you would have
shown that if θ has moments αp, p≥ 0, then the limiting expected spectral distribution of
Tn exists (call it µ) and has nth moment

βn = ∑
P∈Πn

∏
k∈Z

αnk(P)

where the sum is over lazy-paths in Z of length n starting and ending at 0 (i.e., P =
(x0,x1, . . . ,xn−1,xn) with x0 = xn = 0 and xi− xi−1 ∈ {0,1,−1}) and where nk(P) denotes the
number of steps in P from k to itself (i.e., #{i : xi = xi+1 = k).

As we have said before, it is hard to say anything about the continuity properties of µ

from these moments. We shall use Stieltjes’ transforms to prove the following theorem.

The method of spectral averaging: Fix a real symmetric (or Hermitian) matrix A and a
vector v. For λ ∈ R (or C), define Aλ = A+λvv∗. Then, for any z ∈H, we have

(zI−Aλ)
−1− (zI−A)−1 = (zI−A)−1 {(zI−A)− (zI−Aλ)}(zI−Aλ)

−1

= λ(zI−A)−1vv∗(zI−Aλ)
−1.

Multiply on the left by v∗ and on the right by v and write q(λ) := v∗(zI−Aλ)−1v to get
q(λ)−q(0) = λq(0)q(λ), which gives

q(λ) =
−1

λ− 1
q(0)

.
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Now suppose A is fixed and λ is a random variable with bounded density g. Then, the
Stieltjes’ transform of λ is bounded by π‖g‖sup on H. Since 1

q(0) ∈H, we get

|E[q(λ)]|= |Gλ(1/q(0))| ≤ π‖g‖sup.

But q(λ) is the Stieltjes transform of the spectral measure of Aλ at z. Invoking Lemma 97,
we conclude that the expected spectral measure of Aλ at v is absolutely continuous and its
density is bounded by ‖g‖sup. This is what is called spectral averaging.

Theorem 32. In the one dimensional Anderson model, assume that θ has bounded density g.
Then µ also has bounded density (with the same bound).

Proof. Let Ln be the discrete Laplacian matrix. Then we write Tn as L+∑
n
k=1 Xkvkvt

k. Condi-
tion on all random variables except Xk and use the spectral averaging as above to conclude
that

E[et
k(zI−Tn)ek

∣∣∣∣∣∣ Xi, i 6= k]≤ π‖g‖sup.

Take another expectation over the conditioned variables and sum over k to get

1
n

n

∑
k=1

E[et
k(zI−Tn)ek]≤ π‖g‖sup.

But the left hand side is equal to 1
nE[tr(zI−Tn)−1], the Stieltjes’ transform of the expected

empirical distribution of eigenvalues. As the bound is uniform over n, and convergence in
distribution implies pointwise convergence of Stieltjes’ transforms, it follows that |Gµ(z)| ≤
π‖g‖sup. Invoking Lemma 97 we get the absolute continuity of µ and that its density is
bounded by ‖g‖sup. �

Remark 33. [TO CHECK!] It is not that the absolute continuity of θ is necessary. Even if
it is a Bernoulli distribution, the limiting distribution is absolutely continuous, but this is
harder to prove.
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Chapter 6

Gaussian random matrices

GOE and GUE

We now introduce the most well-studied of all random matrices (most courses in the
subject start with these matrices!). We shall say that a complex valued random variable
Z has CN(0,1) distribution if its real and imaginary parts have independent N(0,1/2)
distribution. Equivalently, the density in the complex plane is 1

π
e−|z|

2
. Then σZ is said to

have CN(0,σ2) distribution for σ > 0.

Definition 34. Let A = (ai, j)i, j≤n and B = (bi, j)i, j≤n where ai, j are i.i.d CN(0,1) random
variables and bi, j are i.i.d N(0,1) random variables. The matrix X := A+A∗√

2
is called a GUE

matrix and Y := H+Ht
√

2
is called a GOE matrix.

Equivalently, we could have said that X is a random Hermitian matrix whose entries
on and above the diagonal are independent, the diagonal entries have N(0,2) distribution
and the off-diagonal entries have CN(0,1) distribution. Similarly Y is a real symmetric
random matrix whose entries on and above the diagonal are independent, the diagonal
entries have N(0,2) distribution and the off-diagonal entries have N(0,1) distribution.

The names stand for Gaussian unitary ensemble and Gaussian orthogonal ensemble, stem-
ming from the following invariance property under unitary or orthogonal conjugation.

Lemma 35. Let X be a GOE (or GUE) matrix. Let P be a non-random orthogonal (respectively,

unitary) n×n matrix. Then P∗XP d= X .

Proof. Let X be GOE. Then the join density of Xi, j, i, j ≤ n can be written as
n

∏
k=1

1√
2π
√

2
e−

1
4 X2

i,i ∏
i< j

1√
2π

e−
1
2 X2

i, j =
1

2n/2(2π)n(n+1)/2
e−

1
4 tr(X2).
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This density is with respect to Lebesgue measure on Rn(n+1)/2. Equivalently, we may say
that X has standard Gaussian distribution on the Hilbert space Hn of n×n real symmetric
matrices endowed with the inner product 〈A,B〉= tr(AB).

Now if P is an n× n orthogonal matrix and TP : Hn 7→ Hn is defined by TP(A) = PtAP,
then

〈TP(A),TP(B)〉= tr(PtAP.PtBP) = tr(AB) = 〈A,B〉

showing that TP is an orthogonal transformation on Hn. Since standard Gaussian measure
is invariant under orthogonal transformations, we get the orthogonal invariance of GOE.
The proof is almost identical for GUE. �

Reduction to a Jacobi matrix

Given a symmetric matrix, there is a standard way to reduce it to a Jacobi matrix by a se-
quence of similarity transformations.Then, the resulting Jacobi matrix will have the same
eigenvalues as the original matrix. As Jacobi matrices are easier to deal with, this is ap-
parently quite useful in numerical algorithms for finding eigenvalues of a real symmetric
matrix. For us it will be useful in a different way.

Given a real symmetric matrix An×n, write it in block form as

A =

[
a vt

v B

]
.

Find an orthogonal matrix P ∈ O(n− 1) such that Pv = re1 with r = ‖v‖ and where e1 is
the first co-ordinate vector in Rn−1. There are many such orthogonal matrices. An explicit
one is reflection on the affine hyperplane that bisects the line joining re1 and v given by

Hu := I−2uut , where u =
v− re1

‖v− re1‖
.

In general, Hu reflects about the hyperplane u⊥. It is called a Householder reflection. Extend
P to an n×n orthogonal matrix as

P̂ =

[
1 0t

0 P

]

and set A1 = P̂AP̂t which is equal to[
a vtPt

Pv PBPt

]
=

[
a ret

1

re1 C

]
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where C = PBPt is an (n−1)× (n−1) matrix.
Repeat the whole procedure for C and find an (n− 1)× (n− 1) orthogonal matrix Q

such that

QCQt =

[
b set

1

re1 D

]
where b = C1,1, s2 = C2

1,2 + . . .+C2
1,n−1, and D is conjugate by an orthogonal matrix to the

(n−2)× (n−2) matrix got from C by removing the first row and first column. Extending
Q to an n×n orthogonal matrix Q̂ just as we did P to P̂, we get A1 = Q̂A1Q̂ which is equal
to 

a r 0 0 . . . 0

r b s 0 . . . 0

0 s

0 0
...

... D

0 0


.

Now the procedure is clear. Continuing it, one ends with a Jacobi matrix Tn(a,b) (eg.,
a1 = a and b1 = r). It is got by conjugating with orthogonal matrices at each step, hence
must have the same eigenvalues as A.

The exact same procedure can be carried out for a Hermitian matrix, except that the
conjugation is by unitary matrices. In the end we get a Jacobi matrix (the entries are real,
even though the original matrix may be complex).

Eigenvalue distribution of GOE and GUE

Let A be an n× n GOE matrix, and apply the procedure outlined above to reduce it to a
Jacobi matrix. First of all, note that a,v,B are independent. At the first step, A is reduced
to [

a ret
1

re1 C

]
where r = ‖v‖ and C = PBPt . Observe that P is obtained as a function of v, and v is in-
dependent of B and a. Further, B is just a GOE matrix of order n− 1. Hence, it follows
that a,r,C are independent, a∼ N(0,2), r2 ∼ χ2

n−1, and C is an (n−1)× (n−1) GOE matrix.
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Writing a1 = a and b1 = r, we have got[
a1 b1et

1

b1e1 C

]
.

Now apply the same procedure to C. The only difference is that the length of the vector v

is reduced by 1, hence, after two steps we end up with

a1 b1 0 0 . . . 0

b1 a2 b2 0 . . . 0

0 b2

0 0
...

... D

0 0


.

Here a1,a2,b1,b2,D are independent, a1,a2 are i.i.d. N(0,2) random variables, b2
1χ2

n−1 and
b2

2 ∼ χ2
n−2 and D is an (n−2)× (n−2) GOE matrix.

Thus, the end result of the procedure is a random Jacobi matrix Tn(a,b) where all the
entries are independent, ak ∼ N(0,2) for k ≤ n, and b2

k ∼ χ2
n−k for k ≤ n−1.

But this is precisely the matrix corresponding to β = 1 in Theorem 7, whose eigenvalue
density is the β = 1 log-gas. Hence, the eigenvalue density of GOE is precisely the same.
In a similar manner, show that the GUE matrix eigenvalues form the β = 2 log-gas. We
summarize the results.

Theorem 36. The GOE and GUE random matrices have eigenvalue densities proportional to

exp

{
−1

4

n

∑
k=1

λ
2
k

}
∏
i< j
|λi−λ j|β

for β = 1 and β = 2, respectively.

There is another one, called the GSE (Gaussian symplectic ensemble) whose eigen-
value density corresponds to β = 4. However, there are no corresponding matrices for
general β. The random Jacobi matrices are better in this respect - there is nothing special
about β = 1 or β = 2 in Theorem 7.

It is then clear that whatever we have proved for the log-gases in general, apply also
to the GOE and GUE eigenvalue densities. In particular, we have

Theorem 37. Let Xn be the GOE or GUE random matrix. Then, the limiting spectral distribution
of 1√

βn
Xn (with β = 1 for GOE and β = 2 for GUE) is the semicircle law on [−2,2].
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A direct proof by change of variable? Some remarks

It is natural to ask if we could have obtained the eigenvalue density of GOE and GUE
directly, by a change of variables from the matrix entries to eigenvalues (and suitably
chosen auxiliary variables). Historically that was how it was done, and the proof is pre-
sented in many books on random matrices (Mehta ?, ?, ? etc.). Hence we give only a brief
account of it and refer you to these books.

As expected, the idea is to make a change of variables from the entries to eigenvalues
and some auxiliary variables. These auxiliary variables will come from the eigenvectors.
For definiteness, we consider the case of GOE, i.e., real symmetric matrices. We recall,

1. Rn
↑ = {λ ∈ Rn : λ1 > λ2 > .. . > λn}. This is an open subset of Rn.

2. O(n), the group of n× n orthogonal matrices. This is a subset of Mn(R) = Rn2
, de-

fined by n(n + 1)/2 equations, namely PtP = I (as PtP is symmetric, we only con-
sider (PtP)i, j = δi, j for i≤ j). Thus, O(n) is a manifold of dimension n2− 1

2n(n+1) =
1
2n(n−1).

3. Hn, the space of n×n real symmetric matrices. This is identified with Rn(n+1)/2 as we
have already seen.

4. Define the map T : Rn
↑×O(n) 7→ Hn by T (λ,P) = PΛPt , where Λ = diag(λ1, . . . ,λn).

This map is neither one-one nor onto, but nearly both.

Injectivity fails because if Q = PD where D is a diagonal matrix with ±1 on the
diagonal, then QΛQt = PΛPt (as D and Λ commute, both being diagonal matrices).
But this just means that every point in the image of T has exactly 2n pre-images.
This is just as good as injectivity when making change of variables.

Surjectivity fails because the image consists precisely of symmetric matrices having
distinct eigenvalues. But the complement inside Hn has zero Lebesgue measure (in
fact a lower dimensional manifold). Hence we may ignore that part of the space.

We now want the Jacobian determinant of T . We write X = T (λ,P). Then Xi, j : Rn
↑×O(n) 7→

R are smooth functions. We write their differentials as

dX = PdΛPt +(dP)ΛPt +PΛ(dPt).

Here dX = (dXi, j) is the matrix of differentials. Since P 7→ Pi, j are smooth functions on
O(n), the elements dPi, j are also differentials (one-forms) on O(n). The matrix equation
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is just a short form of writing n2 different equations (actually n(n + 1)/2 equations as the
matrices are symmetric). From the identity PPt = I, we have dPt = −Pt(dP)Pt . Define
Ω = PtdP. This is a skew symmetric matrix of differentials. That is, if ωi, j is the (i, j) entry
of Ω, then ωi, j =−ω j,i (in particular ωi,i = 0 for all i). Then, the earlier equation becomes

Pt(dX)P = dΛ+ΩΛ−ΛΩ.

Now we take the wedge product of all the differentials on the upper-triangular part. We
get ^

i≤ j

(PtdXP)i, j =
^

i

dλi
^
i< j

(λi−λ j)ωi, j.

In wedge products, the order is important. In the above equation, we are unclear about
it, as a change in order only make a difference of change in sign, which we can recover
in the end. Now, the forms (PtdXP)i, j = ∑k,` Pk,iP̀ , jdXk,` is a linear combination of dXi, j.
Whenever we have a set of equations like dui = ∑

n
j=1 Bi, jdx j for 1≤ i≤ n, it is clear that

du1∧ . . .∧dun = det(B) dx1∧ . . .∧dxn.

This is simply a consequence of the alternating property dx∧dy =−dy∧dx which is also
the key property of determinant (changes sign upon exchange of rows). In our situation,
we have n(n+1)/2 equations,

(PtdXP)i, j = ∑
k

Pk,iPk, jdXk,k + ∑
k<`

(Pk,iP̀ , j + P̀ ,iPk, j)dXk,`.

Show that the determinant of the linear transformation here is ±1. Hence^
i≤ j

(PtdXP)i, j =±
^
i≤ j

dXi, j.

Putting everything together, we have arrived at the Jacobian determinant formula^
i≤ j

dXi, j =±∏
i< j
|λi−λ j|

^
i

dλi
^
i< j

ωi, j. (1)

Locally this is fine, but when done globally we must include a factor of 2n to account for
the multiplicity of the map T .

Lastly, writing tr(X2) = ∑
n
k=1 λ2

k , we arrive at

e−
1
4 tr(X2)dX = e−

1
2 ∑

n
k=1 λ2

k ∏
i< j
|λi−λ j|dλdµ(P)
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where dX is Lebesgue measure on Hn and µ is a measure on O(n). Integrating out with
respect to µ, we get the density of eigenvalues of the GOE matrix. In a similar manner,
one may derive the density of eigenvalues of the GUE matrix.

Just as the Jacobi matrix was useful in studying the quadratic log-gas, the GOE and
GUE matrices can also be used to study the same (but only for β = 1 and β = 2). For
example, the method of moments can be applied directly to the GOE or GUE matrix to
prove Theorem 37. The combinatorics is a bit more involved, but very interesting. We
shall do it later, to show the interesting connection between random matrices and certain
enumeration problems in combinatorics.

Generalizations of GOE and GUE in two directions

What is most natural for probabilists is to relax the assumption of Gaussian distribution
but keep independence as much as possible. This leads to the first generalization.

Definition 38. A random matrix A = (a j,k) j,k≤n is called a Wigner matrix if A is real sym-
metric (or complex Hermitian), the entries a j,k, 1≤ j≤ k≤ n, are all independent, the diag-
onal entries are identically distributed, the off-diagonal entries are identically distributed,
both a1,1 and a1,2 have finite second moment, a1,2 has zero mean and unit variance (i.e.,
E[|a1,2|2] = 1).

It is natural to ask whether the asymptotic properties of eigenvalues of GOE (or GUE)
also remain valid for the correspond real Wigner (or complex Wigner) matrix. So far we
have only seen the semi-circle law for GOE, hence that is one question. But even more
interesting are the questions of bulk and edge spacing of eigenvalues (which we have not
yet seen even in the GOE case).

GOE is the only real Wigner matrix that has orthogonal invariance (see Exercise ??). As
that invariance was crucial in getting the exact eigenvalue density, in general we cannot
hope to find the exact eigenvalue distribution for any other Wigner matrix. In fact, I am
not aware of the exact eigenvalue distribution of any Wigner matrices other than GOE
and GUE. This makes their study more difficult and interesting.

The second kind of generalization gives us exact eigenvalue densities but the distri-
bution of the entries will be entirely unclear.

Definition 39. Let V : R 7→ R be a piecewise continuous function such that V (x)
(log |x|)1+ε →

∞ for some ε > 0. Then, we may consider the random n× n matrix A with density on
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Hn proportional to e−trV (X). Such random matrices are referred to as unitarily invariant
ensembles.

It shares the following properties with the GOE/GUE. For any orthogonal (or unitary)

matrix P, we have P∗XP d= X . Therefore, the eigenvalues and eigenvectors are indepen-
dent of each other. The exact density of eigenvalues is proportional

e−∑
n
k=1 V (λk) ∏

j<K
|λ j−λk|β

where β is 1 or 2, depending on whether we are considering real symmetric or complex
Hermitian matrices. When studying asymptotics as the size of the matrix goes to infinity,
there are two possible ways: either keep a fixed V (in which case, the right scaling must
be found, say to get a limiting spectral distribution) or to take βnV in place of V when
considering n× n matrices. In the latter case, the eigenvalue density agrees exactly with
the log-gas as we defined it in (1) (but only for β = 1,2). I have never seen any use of the
matrix itself, the entries . People study the eigenvalue density directly, or using the Jacobi
matrices (for quadratic V ).

In this course, we shall see a bit of both - the Wigner matrix eigenvalues and the uni-
tarily invariant ensembles. But not the deepest results available. In fact, we shall discuss
the limiting spectral distribution completely (for Wigner, may be not for general V in the
unitarily invariant case). But when it comes to spacings between eigenvalues, we shall
do it for GUE and then for the quadratic β log-gas. Corresponding results for Wigner
matrices or for general V are some of the big achievements of random matrix theory (the
few breakthroughs available in the question of universality), but we may not have time to
discuss them.

Exercises

Exercise 40. Let m ≤ n and let Am,n be a random matrix whose entries are i.i.d. N(0,1) random

variables. Show that there exist orthogonal matrices Pm×m and Qn×n such that

(PAQ)i, j =


ai if j = i,

bi if j = i+1,

0 otherwise,

where a1, . . . ,am,b1, . . . ,bm are independent, a2
k ∼ χ2

m−k+1 and b2
k ∼ χ2

n−k.
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Exercise 41. Show that the density of singular values of the matrix of the previous exercise is of

the form ∏ j<k |s j− sk|e−∑ j s j .
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Chapter 7

Wigner matrices: The semi-circle law

In this chapter we shall prove that Wigner matrices, upon scaling down by
√

n, have
semi-circle distribution as the limiting spectral distribution. We do this by a powerful
probabilistic idea of replacement that was first introduced by Lindeberg in his proof of the
central limit theorem. Chatterjee generalized this idea and applied it to many questions in
probability. One of these applications was to derive semi-circle law for Wigner matrices
under optimal conditions.

The invariance principle

Invariance here is the general idea is that for many function f : Rn 7→ R, then the distri-
bution of the random variable f (X1, . . . ,Xn) is approximately the same for any i.i.d. Xis
having zero mean and unit variance. The important requirement on f is that it should not
depend too much on any single variable.

Theorem 42. Let Xk,Yk, k≤ n be independent real-valued random variables. Assume that E[Xk] =
E[Yk] and E[X2

k ] = E[Y 2
k ] for all k ≤ n. Let A be a positive constant. Let h : Rn 7→ R be a function

with bounded derivatives up to order 3. Then, with U = h(X1, . . . ,Xn) and V = h(Y1, . . . ,Yn), we
have ∣∣E [h(U)]−E [g(V )]

∣∣≤ B2(h)
n

∑
k=1

E[X2
k 1|Xk|>A]+E[Y 2

k 1|Yk|>A]

+
1
6

B3(h)
n

∑
k=1

E[|Xk|31|Xk|≤A]+E[|Yk|31|Yk|≤A]

where Bp(h) = max{‖∂p
k h‖sup : k ≤ n}.
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The bound looks a bit complicated, hence the following corollary may help to parse it.

Corollary 43. Along with the assumptions in the theorem, make an additional assumption that
E[|Xk|3],E[|Yk|3] all exist and are bounded by γ. Then,

∣∣E [h(U)]−E [g(V )]
∣∣≤ 1

3
γ B3(h)n.

As written, the invariance principle shows the closeness of expectations of the same
function applied to two sets of random variables. This also allows us to show closeness of
distributions, since the distance between distributions can be measured by the differences
in expectations over sufficiently rich classes of functions. To be concrete, suppose f : Rn 7→
R and we want to show the closeness in distribution of W = f (X) and Z = f (Y ). We take
g : R 7→ R and apply the invariance principle to h = g◦ f to get∣∣E[g(W )]−E[g(Z)]

∣∣≤ B2(h)[· · · ]+B3(h)[· · · ].

If in a given situation, we can show that the right hand side is small for any g, then it
follows that W and Z are close in distribution. In this regard, it is convenient to note that

∂
2
kh(x) = g′′( f (x))(∂k f (x))2 +g′( f (x))∂2

k f (x),

∂
3
kh(x) = g′′′( f (x))(∂k f (x))3 +3g′′( f (x))∂2

k f (x)∂k f (x)+g′( f (x))∂3
k f (x),

whence

B2(h)≤C2(g)λ2( f ), B3(h)≤C3(g)λ3( f ),

where C2(g) = ‖g′‖sup +‖g′′‖sup and C3(g) = ‖g′‖sup +‖g′′‖sup +‖g′′′‖sup while

λp( f ) = max{‖∂r
k f‖p/r

sup : 1≤ r ≤ p, k ≤ n}.

An illustration: The Lindeberg-Feller central limit theorem

Fix g ∈C3
b(R) and let h(x1, . . . ,xn) = g(x1 + . . .+xn). Then, writing sn = x1 + . . .+xn, we have

∂kh(x) = g′(sn), ∂
2
kh(x) = g′′(sn), ∂

3
kh(x) = g′′′(sn)

from which it follows that B2(h) = ‖g′′‖sup and B3(h) = ‖g′′′‖sup. Now we apply Theorem 42
with Xk = Xn,k having zero mean and variance σ2

n,k. We assume that the total variance

∑
n
k=1 E[X2

n,k] = σ2 stays constant. Further, we choose Yk = Yn,k to be Normal with the same
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mean and variance as Xk, so that SY
n ∼ N(0,1). Then, setting A = ε, and writing |x|31|x|≤ε ≤

ε|x|2, we get

∣∣E[g(SX
n
)]
−E

[
g(SY

n )
]∣∣≤ ‖g′′‖sup

n

∑
k=1

E[X2
n,k1|Xn,k|>ε]+E[Y 2

n,k1|Yn,k|>ε] + 2‖g′′′‖supσ
2
ε.

Now impose the Lindeberg condition

lim
n→∞

n

∑
k=1

E[X2
n,k1|Xn,k|>ε] = 0 for any ε > 0.

From this, it follows that maxk≤n σ2
n,k → 0 as n→ ∞ (why?) and from that it follows that

the Lindeberg condition holds for Yn,ks in place of Xn,ks. Putting all this together, letting
n→ ∞ first and then letting ε→ 0 we arrive at

E[g(SX
n )]−E[g(SY

n )]→ 0

as n→ ∞. As SY
n ∼ N(0,σ2) and this is true for all g ∈C3

b , we get SX
n

d→ N(0,σ2). This is the
Lindeberg-Feller central limit theorem.

Remark 44. It is easy to find examples to show that the central limit theorem may fail if
the Lindeberg condition is not satisfied. The Lindeberg condition expresses the idea that
no single Xn,k is too large. More generally, in Theorem 42, the quantities λ2(h) and λ3(h)
measure the maximum “influence” of any variable on the value of h. This is seen from
the definition of the partial derivative as the change in h proportional to the change in xk.

Proof of the invariance principle

Define the vectors

Wk = (X1, . . . ,Xk−1,Yk, . . . ,Yn), W 0
k = (X1, . . . ,Xk−1,0,Yk+1, . . . ,Yn).

Then,

U−V =
n

∑
k=0

(h(Wk+1)−h(W 0
k )) −

n

∑
k=0

(h(Wk)−h(W 0
k )).
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By Taylor expansion we write the kth summands as

h(Wk+1)−h(W 0
k ) =

∂kh(W 0
k )Xk +∂2

kh(W 0
k )X2

k
2 +∂3

kh(W ∗k )X3
k

6 if |Xk| ≤ A,

∂kh(W 0
k )Xk +∂2

kh(W ∗∗k )X2
k

2 if |Xk|> A,

h(Wk)−h(W 0
k ) =

∂kh(W 0
k )Yk +∂2

kh(W 0
k )Y 2

k
2 +∂3

kh(W #
k )Y 3

k
6 if |Yk| ≤ A,

∂kh(W 0
k )Yk +∂2

kh(W ##
k )Y 2

k
2 if |Yk|> A.

where W ∗k ,W ∗∗k are in [0,Xk] and W #
k ,W ##

k are in [0,Yk].
Observe that Xk and Yk are independent of W 0

k , hence upon taking expectations, certain
terms factor (this is the purpose of introducing W 0

k instead of using Taylor expansion
around Wk). Take expectations in the above equations and subtract the second set from
the first set. As the first two moments of Xk match with those of Yk, the first terms cancel
and we also have

E[X2
k 1|Xk|≤A]−E[Y 2

k 1|Yk|≤A] =−E[X2
k 1|Xk|>A]+E[Y 2

k 1|Yk|>A].

Thus, after a little manipulation (note that when terms do not factor, we put absolute
values inside and then we don’t get a difference but a sum as the bound), we get∣∣E [h(Wk+1)]−E [h(Wk)]

∣∣≤ ‖∂2
kh‖sup

(
E[X2

k 1|Xk|>A]+E[Y 2
k 1|Yk|>A]

)
+

1
6
‖∂3

kh‖sup
(
E[|Xk|31|Xk|≤A]+E[|Yk|31|Yk|≤A]

)
.

Summing over k, we get the statement in the theorem. �

Semicircle law for Wigner matrices

We already know the semi-circle law for GOE. We show that the Stieltjes’ transform of
any Wigner matrix is close to that of the GOE matrix, using the invariance principle. To
this end, fix z = u+ iv ∈H and define h : Rn(n+1)/2 7→ R by

h(x) =
1
n

tr(zI−M(x))−1

where M(x) is the symmetric matrix whose (i, j) entry (for i ≤ j) is xi, j (here we think of
coordinates in Rn(n+1)/2 as indexed by (i, j), i ≤ j and correspondingly write ∂(i, j) for the
partial derivative w.r.t. xi, j).
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To calculate the derivatives of h, introduce the matrix H(i, j) which has 1 at the (i, j) and
( j, i) entries and zeros elsewhere. Then, ∂(i, j)M(x) = H(i, j). Hence,

∂(i, j)h(x) =
1
n

tr
{
(zI−M(x))−2H(i, j)

}
,

∂
2
(i, j)h(x) =

1
n

tr
{

(zI−M(x))−3H2
(i, j)

}
,

∂
3
(i, j)h(x) =

1
n

tr
{

(zI−M(x))−4H3
(i, j)

}
.

We need bounds for these. If u,w are vectors, observe that

tr{(zI−M(x))−puwt}= wt(zI−M(x))−1u =
n

∑
k=1

wtykyt
ku

(z−λk)p

where M(x) = ∑
n
k=1 λkykyt

k is the spectral decomposition of M. As |z−λk| ≥ v, we get

∣∣tr{(zI−M(x))−puwt}
∣∣≤ 1

vp

n

∑
k=1
|〈yk,v〉| · |〈yk,u〉| ≤

1
vp‖u‖‖w‖

since the orthonormality of yks implies that ‖u‖2 = ∑
n
k=1 |〈yk,u〉|2 and similarly for w.

To use this, note that H(i, j) = eiet
j + e jet

i where ei are the standard co-ordinate vectors.
Hence also H2

(i, j) = eiet
i + e jet

j and H3
(i, j) = H(i, j). Thus, we arrive at the bounds

∣∣∂(i, j)h(x)
∣∣≤ 2

v2n
,
∣∣∂2

(i, j)h(x)
∣∣≤ 2

v3n
,
∣∣∂(i, j)h(x)

∣∣≤ 2
v4n

.

Consequently, B2(h)≤ 2v−3n−1 and B3(h)≤ 2v−4n−1.
Now we are ready to apply the invariance principle. Let X = ( 1√

nXi, j)i≤ j and Y =

( 1√
nYi, j)i≤ j, where Xi, j are independent and Yi, j are independent and E[Xi, j] = E[Yi, j] and

E[X2
i, j] = E[Y 2

i, j]. For simplicity, first assume that all the variables have third moments
bounded by γ. By Corollary 43, we get

∣∣E[h(X)]−E[h(Y )]
∣∣ ≤ 1

3
γ

n5/2 B3(h)
n(n+1)

2
≤ γB3(h)

3
1√
n
.

In particular, if E[Xi, j] = 0 for all i≤ j and E[X2
i, j] = 1 for i < j and E[X2

i,i] = 2, then taking Y

to be the GOE matrix, we see that

∣∣E[tr(zI− 1√
n

Xn)−1
]
−E

[
tr(zI− 1√

n
Yn)−1

]∣∣→ 0 as n→ ∞.
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Since the ESD of Yn/
√

n converges in probability to µs.c, its Stieltjes’ transform 1
n tr(zI−

1√
nYn)−1 converges in probability to Gµs.c , the Stieltjes’ transform of the semi-circle dis-

tribution. Therefore, from the above comparison of expectations, we see that 1
n tr(zI −

1√
nYn)−1 also converges in probability to Gµs.c . Hence the ESD of Xn/

√
n converges in prob-

ability to µs.c. In particular, this proves semi-circle law for Wigner matrices, under third
moment assumption.

But we do not need the third moment assumption. If we apply the invariance principle
in its original form, we get∣∣E[h(X)]−E[h(Y )]

∣∣≤ 2
v3n2 ∑

i≤ j
E[X2

i, j1|Xi, j|>A
√

n]+E[Y 2
i, j1|Yi, j|>A

√
n]

+
1

2v4n5/2 ∑
i≤ j

E[|Xi, j|31|Xi, j|≤A
√

n]+E[|Yi, j|31|Yi, j|≤A
√

n]

We make the following assumptions on moments.

1. E[Xi, j] = E[Yi, j] for all i≤ j.

2. E[X2
i, j] = E[Y 2

i, j] = 1 for all i < j and E[X2
i,i] = E[Y 2

i,i] = σ2 for all i.

3. Pastur’s condition: 1
n2 ∑i≤ j E[X2

i, j1|Xi, j|≥ε
√

n]→ 0 as n→ ∞ and similarly for Y s.

Then, take A = ε to be small and use the bound |x|31|x|≤ε
√

n to write∣∣E[h(X)]−E[h(Y )]
∣∣≤ 2

v3n2 ∑
i≤ j

E[X2
i, j1|Xi, j|>ε

√
n]+E[Y 2

i, j1|Yi, j|>ε
√

n]

+
ε

2v4n2 ∑
i≤ j

E[|Xi, j|2]+E[|Yi, j|2].

As n→ ∞, the first summand converges to zero (by Pastur’s condition) and the second
summand converges to Cε/v4. Then let ε→ 0. The conclusion is that semi-circle law holds
for Wigner matrices where Xi, j, i < j, are alowed to have different distributions (but zero
mean, unit variance) provided Pastur’s condition is satisfied.

Remark 45. We skipped a couple of points in the end. What we must do is assume the
conditions on X , and take Y to be the GOE matrix (in which case the conditions are satis-
fied). Then from the convergence in probability of ESD of Yn to µs.c we go to the conver-
gence in probability of the Stieltjes’ transform of Yn to Gµs.c and then using the compari-
sion, to the convergence in probability of the Stieltjes’ transform of Xn to Gµs.c , and thence
to the convergence in probability of the ESD of Xn to µs.c.
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One may question applying the invariance principle to Xn and GOE, unless it is as-
sumed that E[X2

i,i] = 2. In fact, the diagonal terms are irrelevant, as will be seen in Exer-
cise ??.
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Chapter 8

Moment method applied to GOE and
connections to enumeration problems

Expected ESD of the GOE matrix

Let Xn be the n×n GOE matrix. Let Ln be the empirical spectral distribution of Xn/
√

n and
let L̄n be the expected empirical spectral distribution. We already know that Ln converges
in probability to the semi-circle distribution. That also implies that L̄n converges to µs.c.

(why?). But we shall prove the latter directly now, by the method of moments. The goal is
to bring out certain interesting combinatorix that comes out of Gaussian matrix integrals.

The starting point for the method of moments is the relationship

Z
xpL̄n(dx) =

1

n1+ p
2

n

∑
i1,...,ip=1

E[Xi1,i2 . . .Xip,i1] (1)

To evaluate the right hand side, we need the following important fact about expectations
of products of Gaussians. To state it, we need the notion of a matching of the set {1,2, . . . ,n}
which is any partitioning of the set into pairs (subsets of size 2). The collection of all
matching of this set will be denoted by Mn. Clearly this is empty if n is odd. For n = 2q, it
may be checked that Mn has cardinality equal to (2q−1)× (2q−3)× . . .×3×1 (why?).

Example 46. M4 consists of 3 elements,

{{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}.
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Lemma 47 (Wick formula). Let (X1, . . . ,Xn) be jointly complex Gaussian with zero means and
covariance matrix Σ = (σi, j)i, j≤n. Then

E[X1 . . .Xn] = ∑
M∈Mn

∏
{i, j}∈M

σi, j.

As an example,

E[X1X2X3X4] = σ1,2σ3,4 +σ1,3σ2,4 +σ1,4σ2,3.

Proof of Lemma 47. When n is odd, the right side is an empty sum, zero by definition. The

left side is zero because of the symmetry (X1, . . . ,Xn)
d= (−X1, . . . ,−Xn). Henceforth, n = 2q.

We start with the joint characteristic function

E[ei(t1X1+...+tnXn)] = exp

{
−1

2

n

∑
i, j=1

tit jσi, j

}

which follows from noticing that t1X1 + . . .+ tnXn ∼ N(0,∑n
i, j=1 tit jσi, j). Differentiate with

respect to tis and to get

inE

[
n

∏
i=1

Xi

]
=

∂n

∂t1 . . .∂tn
exp

{
−1

2

n

∑
i, j=1

tit jσi, j

}∣∣∣
t=0

.

The left side is (−1)qE[X1 . . .X2q]. On the right, the partial derivative with respect to t1
brings down a factor of ∑

n
j=1 t jσi, j. One of the other derivatives ∂/∂t j must operate on this

factor, otherwise the final expression will vanish when we set t = 0. This gives a match
{1, j}. Continuing to argue similarly with the remaining variables, we get the expression
given in the statement of the lemma. �

The idea is to use the formula (1) and evaluate the expectation on the right hand side
with the help of the Wick. The rest of the work is in keeping track of the combinatorics to
see how the semicircle moments emerge. To get the idea, we first do it by hand for a few
small values of q in (1). Remember that Xi,i ∼ N(0,2) and Xi, j ∼ N(0,1) for i < j. Also recall
that the even moments of the semi-circle distribution are given by the Catalan numbers.

(i) Case, q = 1. E[Xi, jX j,i] = 1 for j 6= i and 2 for j = i. Hence E[tr(X2)] = 2n+2
(n

2

)
= n2 +n

and Z
x2 L̄n(dx) =

1
n2 E[trX2] = 1.
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(ii) Case q = 2. From the Wick formula for real Gaussians, E[Xi, jX j,kXk,`X`,i] becomes

= E[Xi, jX j,k]E[Xk,`X`,i]+E[Xi, jXk,`]E[X j,kX`,i]+E[Xi, jX`,i]E[X j,kXk,`]

= (δi,k +δi, j,k)+(δi,kδ j,` +δi,`δ j,k)(δi,kδ j,` +δi, jδk,`)+(δ j,` +δi, j,`)(δ j,` +δ j,k,`)

corresponding to the three matchings {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}
respectively. Observe that the diagonal entries are also taken care of, since their
variance is 2. This looks messy, but look at the first few terms. When we sum over
all i, j,k, `, we get

∑
i, j,k,`

δi,k = n3, ∑
i, j,k,`

δi, j,k = n2, ∑
i, j,k,`

(δi,kδ j,`)2 = n2.

It is clear that what matters is how many of the indices i, j,k, ` are forced to be equal
by the delta functions. The more the constraints, the smaller the contribution upon
summing. Going back, we can see that only two terms (δi,k in the first summand and
δ j,` term in the third summand) contribute n3, while the other give n2 or n only.

Z
x4 L̄n(dx) =

1
n3 E[trX4] =

1
n3 ∑

i, j,k,`
(δi,k +δ j,`) +

1
n3 O(n2) = 2+O(n−1).

Observe that the two non-crossing matchings {{1,2},{3,4}} and {{1,4},{2,3}} con-
tributed 1 each, while the crossing-matching {{1,3},{2,4}} contributed zero in the
limit. Thus, we find that

R
x4 L̄n(dx)→

R
x4 µs.c.(dx)

(iii) Case q = 3. We need to evaluate E[Xi1,i2Xi2,i3 . . .Xi6,i1]. By the wick formula, we get a
sum over matching of [6]. Consider two of these matchings.

(a) {1,4},{2,3},{5,6}: This is a non-crossing matching. We get

E[Xi1,i2Xi4,i5]E[Xi2,i3Xi3,i4]E[Xi5,i6Xi6,i1 ]

= (δi1,i4δi2,i5 +δi1,i5δi2,i4)(δi2,i4 +δi2,i3,i4)(δi5,i1 +δi5,i1,i6)

= δi1,i5δi2,i4 +[. . .].

When we sum over i1, . . . , i6, the first summand gives n4 while all the other terms
(pushed under [. . .]) give O(n3). Thus the contribution from this matching is
n4 +O(n3).

71



(b) {1,5},{2,6},{3,4}: A crossing matching. We get which is equal to

E[Xi1,i2Xi5,i6]E[Xi2,i3Xi6,i1]E[Xi3,i4Xi4,i5 ]

= (δi1,i5δi2,i6 +δi1,i6δi2,i5)(δi2,i6δi3,i1 +δi2,i1δi3,i6)(δi3,i5 +δi3,i4,i5)

It is easy to see that all terms are O(n3). Thus the total contribution from this
matching is O(n3).

We leave it as an exercise to check that all crossing matchings of [6] give O(n3) con-
tribution while the non-crossing ones give n4 +O(n3). Thus,Z

x6 L̄n(dx) =
1
n4 E[trX6] =

1
n4 (C6n4 +O(n3))→C6 =

Z
x6µs.c(dx).

The general case: We need some preparation in combinatorics.

Definition 48. Let P be a polygon with 2q vertices labeled 1,2, . . . ,2q. A gluing of P is a
matching of the edges into pairs along with an assignment of sign {+,−} to each matched
pair of edges. Let M †

2q denote the set of all gluings of P. Thus, there are 2q(2q−1)!! gluings
of a polygon with 2q sides.

Further, let us call a gluing M ∈M †
2q to be good if the underlying matching of edges is

non-crossing and the orientations are such that matched edges are oriented in opposite
directions. That is, [r,r +1] can be matched by [s+1,s] but not with [s,s+1]. The number
of good matchings is the Catalan number Cq.

Example 49. Let P be a quadrilateral with vertices 1,2,3,4. Consider the gluing M =
{{[1,2], [4,3]},{[2,3], [1,4]}}. It means that the edge [1,2] is identified with [4,3] and the
edge [2,3] is identified with [1,4]. If we actually glue the edges of the polygon according
to these rules, we get a torus1. The gluing M′ = {{[1,2], [3,4]},{[2,3], [1,4]}} is different
from M. What does the gluing give us? We identify the edges [2,3] and [1,4] as before,
getting a cylinder. Then we glue the two circular ends in reverse orientation. Hence the
resulting surface is Klein’s bottle.

1Informally, gluing means just that. Formally, gluing means that we fix homeomorphism f : [1,2]→ [3,4]
such that f (1) = 3 and f (2) = 4 and a homeomorphism g : [2,3]→ [1,4] such that g(2) = 1 and g(3) = 4. Then
define the equivalences x ∼ f (x), y ∼ g(y). The resulting quotient space is what we refer to as the glued
surface. It is locally homeomorphic to R2 which justifies the word “surface”. The quotient space does not
depend on the choice of homeomorphisms f and g. In particular, if we reverse the orientations of all the
edges, we get the same quotient space.
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For a polygon P and a gluing M, let VM denote the number of distinct vertices in P

after gluing by M. In other words, the gluing M gives an equivalence relationship on the
vertices of P, and VM is the number of equivalence classes.

Lemma 50. Let P be a polygon with 2q edges and let M ∈M †
2q. Then VM ≤ q+1 with equality if

and only if M is good.

Assuming the lemma we prove the convergence of L̄n to semicircle.

E[Xi1,i2 . . .Xi2q,i1] = ∑
M∈M2q

∏
{r,s}∈M

E[Xir,ir+1Xis,is+1]

= ∑
M∈M2q

∏
{r,s}∈M

(δir,isδir+1,is+1 +δr,s+1δr+1,s)

= ∑
M∈M †

2q

∏
{e, f}∈M

δie,i f .

Here for two edges e, f , if e = [r,r + 1] and s = [s,s + 1] (or f = [s + 1,s]), then δie,i f is just
δir,isδir+1,is+1 (respectively δir,is+1δir+1,is). Also observe that diagonal entries are automat-
ically taken care of since they have have variance 2 (as opposed to variance 1 for off-
diagonal entries).

Sum (8) over i1, . . . , i2q and compare with Recall (1) to get

Z
x2qL̄n(dx) =

1
n1+q ∑

M∈M †
2q

∑
i1,...,i2q

∏
{e, f}∈M

δie,i f =
1

n1+q ∑
M∈M †

2q

nVM . (2)

We explain the last equality. Fix M, and suppose some two vertices r,s are identified by
M. If we choose indices i1, . . . , i2q so that some ir 6= is, then the δ-functions force the term
to vanish. Thus, we can only choose one index for each equivalence class of vertices. This
can be done in nVM ways.

Invoke Lemma 50, and let n → ∞ in (2). Good matchings contribute 1 and others
contribute zero in the limit. Hence, limn→∞

R
x2qL̄n(dx) = Cq. The odd moments of L̄n as

well as µs.c are obviously zero. This completes the proof that L̄n→ µs.c. �

It remains to prove Lemma 50. If one knows a little algebraic topology, this is clear.
First we describe this “high level picture”. For the benefit of those not unfamiliar with
Euler characteristic and genus of a surface, we give a self-contained proof later2.

2However, the connection given here is at the edge of something deep. Note the exact formula for GOE
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A detour into algebraic topology: Recall that a surface is a topological space in which
each point has a neighbourhood that is homeomorphic to the open disk in the plane. For
example, a polygon (where we mean the interior of the polygon as well as its boundary)
is not a surface, since points on the boundary do not have disk-like neighbourhoods. A
sphere, torus, Klein bottle, projective plane are all surfaces. In fact, these can be obtained
from the square P4 by the gluing edges appropriately.

1. Let P = P2q and M ∈M †
2q. After gluing P according to M, we get a surface (means a

topological space that is locally homeomorphic to an open disk in the plane) which
we denote P/M. See examples 49.

2. If we project the edges of P via the quotient map to P/M, we get a graph GM drawn
(or “embedded”) on the surface P/M. A graph is a combinatorial object, defined by
a set of vertices V and a set of edges E. An embedding of a graph on a surface is a
collection of function f : V → S and fe : [0,1]→ S for each e ∈ E such that f is one-
one, for e = (u,v) the function fe is a homeomorphism such that fe(0) = f (u) and
fe(1) = f (v), and such that fe((0,1)) are pairwise disjoint. For an embedding, each
connected component of S \∪e∈E fe[0,1] is called a face. A map is an embedding of
the graph such hat each face is homeomorphic to a disk.

3. For any surface, there is a number χ called the Euler characteristic of the surface,
such that for any map drawn on the surface, V −E + F = χ, where V is the number
of vertices, E is the number of edges and F is the number of faces of the graph. For
example, the sphere has χ = 2 and the torus has χ = 0. The Klein bottle also has
χ = 0. The genus of the surface is related to the Euler characteristic by χ = 2−2g.

4. A general fact is that χ≤ 2 for any surface, with equality if and only if the surface is
simply connected (in which case it is homeomorphic to the sphere).

5. The graph GM has F = 1 face (the interior of the polygon is the one face, as it is home-R
t2qdL̄n(t) = ∑

q
g=0 n−gAq,g, where Aq,g is the number of gluings of P2q that lead to a surface with Euler char-

acteristic 2− 2g. The number g is called the genus. The right hand side can be thought of as a generating
function for the number Aq,g in the variable n−1. This, and other related formulas express generating func-
tions for maps drawn on surfaces of varying genus in terms of Gaussian integrals over hermitian matrices,
which is what the left side is. In particular, such formulas have been used to study “random quadrangu-
lations of the sphere”, and other similar objects, using random matrix theory. Random planar maps are a
fascinating and active research are in probability, motivated by the notion of “quantum gravity” in physics.
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omorphically mapped under the quotient map), E = q edges (since we have merged
2q edges in pairs) and V = VM vertices. Thus, VM = χ(GM)− 1 + q. By the previous
remark, we get VM ≤ q+1 with equality if and only if P/M is simply connected.

6. Only good gluings lead to simply connected P/M.

From these statements, it is clear that Lemma 50 follows. However, for someone unfa-
miliar with algebraic topology, it may seem that we have restated the problem without
solving it. Therefore we give a self-contained proof of the lemma now.

Proof of Lemma 50. After gluing by M, certain vertices of P are identified. If VM > q, there
must be at least one vertex, say r, of P that was not identified with any other vertex.
Clearly, then M must glue [r− 1,r] with [r,r + 1]. Glue these two edges, and we are left
with a polygon Q with 2q− 2 sides with an edge sticking out. For r to remain isolated,
it must not enter the gluing at any future stage. This means, the gluing will continue
within the polygon Q. Inductively, we conclude that Q must be glued by a good gluing.
Retracing this to P, we see that M must be a good gluing of P. Conversely, if M is a good
gluing, it is easy to see that VM = q+13. �

Remark 51. We showed the method of moments for GOE to emphasize the exact combi-
natorial formulas for finite n. However, if we care only about the limits of moments, it
is possible to carry out the same proof for general Wigner matrices. Some points to note
however. The Wick formula is not strictly necessary - here the random variables are either
equal or uncorrelated. By throwing away terms which are not pair matchings (they can be
shown to be negligible), we can recover the limit. Secondly, for general Wigner matrices,
the entries may not have all moments, hence an initial truncation argument is employed.
This is all done in the more general setting of the next section.

Semi-circle law for a more general class of random matrices

Let Gn = (Vn,En) be a sequence of graphs with vertex set Vn and edge set En such that
|Vn| → ∞. Without loss of generality, we take Vn = [n] and make the assumption that Gn is

3Thanks to R. Deepak for this neat proof. Another way to state it is as follows. Consider the polygon
P (now a topological space homeomorphic to the closed disk). Glue it by M to get a quotient space P/M.
Consider the graph G formed by the edges of P (so G is a cycle). Project to G to P/M. The resulting graph
GM is connected (since G was), and has q edges. Hence it can have at most q + 1 vertices, and it has q + 1
vertices if and only if the GM is a tree. Work backwards to see that M must be good. The induction step is
implicit in proving that a graph has V ≤ E +1 with equality for and only for trees.
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regular, i.e., all vertices of Gn have dn neighbours (then |En|= ndn/2) and that dn→ ∞.
Let Xn = (Xi, j)i, j≤n be a real symmetric random matrix satisfying the following assump-

tions. 1. Xi,i, i ≤ n, are i.i.d. with zero mean and finite variance σ2, 2. Xi, j, i ∼ j, are i.i.d.
with mean zero and variance 1, 3. Xi, j = 0 if i 6∼ j in Gn.

Theorem 52. With the above setting, the expected empirical spectral distributions of 1√
dn

An con-

verge to the semi-circle distribution on [−2,2].

In proving the theorem, first assume that Xi,i and Xi, j are bounded random variables.
Then, all moments exist, and we only need to show that 1

ndp/2
n

E[tr(Ap
n)] converges to Cp/2

for even p and to 0 for odd p. As always, we start with

1

ndp/2
n

∑
i1∼i2∼...∼ip∼i1

E[Xi1,i2Xi2,i3 . . .Xip,i1].

Consider a summand. If any variable X j,k occurs only once, then the expectation is zero.
If any term occurs
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Chapter 9

Free probability and random matrices

The appearance of the semicircle law as the limiting spectral distribution of Wigner ma-
trices will be made more natural and put in a larger context by introducing the calculus of
free probability. It is a form of non-commutative probability, with a specific definition of
independence. The combinatorial approach here will require the notion of Mobius func-
tion on a lattice, particularly as applied to (a) Pn, the lattice of partitions of [n] and (b) NCn,
the lattice of non-crossing partitions of [n]. . These are explained in Appendix 10.

Cumulants and moments in classical probability

Let (Ω,F ,P) be a probability space. For random variables Xi on this probability space hav-
ing moments of all orders, define mn[X1, . . . ,Xn] = E[X1X2 . . .Xn], whenever the expectation
exists. We will also write m0 = 1. The function m·[•] is called the moment function.

The lattice of partitions will play an important role. A partition Π ∈ Pn of [n] will be
written as {Π1, . . . ,Π`}, where Π j are the blocks of Π, arranged (just for definiteness) in
increasing order of the smallest elements in the blocks. We write |Π j| for the cardinality
of Π j and `(Π) = ` for the number of blocks in Π.

Definition 53. Define the cumulant function κn[X1, . . . ,Xn] by the equations

mn[X1, . . . ,Xn] = ∑
Π∈Pn

`(Π)

∏
j=1

κ|Π j|[XΠ j ]. (1)

Here [XΠ j ] is the short form for [Xk1, . . . ,Xkr ].
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To see that this defines the cumulant function unambiguously, consider the first three
equations

κ1[X ] = m1[X ]

κ2[X ,Y ] = m2[X ,Y ]−κ1[X ]κ1[Y ]

κ3[X ,Y,Z] = m3[X ,Y,Z]−κ2[X ,Y ]κ1[Z]−κ2[X ,Z]κ1[Y ]−κ2[Y,Z]κ1[X ]+κ1[X ]κ1[Y ]κ1[Z]

It is clear that we can define κ1[•] from the first equation, κ2[•] from the second and so on,
inductively. To write various formulas more succinctly, for any Π ∈ Pn define

mΠ[X1, . . . ,Xn] =
`(Π)

∏
j=1

m|Π j|[XΠ j ], κΠ[X1, . . . ,Xn] =
`(Π)

∏
j=1

κ|Π j|[XΠ j ].

In this notation, the equations defining cumulants may be written as mn[X ] = ∑Π∈Pn κΠ[X ]
where X = (X1, . . . ,Xn). Further, it follows that (below, let P (S) denote the collection of
partitions of the set S)

mΠ[X ] =
`(Π)

∏
j=1

∑
Γ j∈P (Π j)

κΓ j [XΠ j ] = ∑
Γ≤Π

κΓ[X ].

In the last equality, we just used that a choice of Γ1, . . . ,Γ`(Π), when put together, gives a
Γ ∈ Pn that is a refinement of Π. If we fix the random variables, then m•[X ] and κ•[X ] be-
come functions on the lattice Pn related by the the above relation. By the Mobius inversion
formula,

κΠ[X ] = ∑
Γ≤Π

µ(Γ,Π)mΠ[X ].

From the explicit form of the Mobius function for this lattice, we get

κn[X ] = ∑
Γ∈Pn

(−1)`(Γ)−1(`(Γ)−1)! mΓ[X ].

Univariate situation: A special case to note is when all Xis are equal to one random vari-
able ξ. In that case write mn(ξ) = mn[X ] (where [X ] = [ξ, . . . ,ξ]) and κn(ξ) = κn[X ]. Then
mn(ξ) = E[ξn] and

κn(ξ) = ∑
Π∈Pn

(−1)`(Π)−1(`(Π)−1)!
`(Π)

∏
j=1

E
[
ξ
|Π j|
]
.

In particular, κ1(ξ) = E[ξ] and κ2(ξ) = Var(ξ).
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Example 54. Let ξ ∼ N(0,1). Then, we claim that κn(ξ) = 1 if n = 2 and κn(ξ) = 0 for all
other n. Indeed, with this definition of κ, we have

∑
Π∈Pn

`(Π)

∏
j=1

κ|Π j|[XΠ j ] = #{Π ∈ Pn : each block of Π has two elements }.

We know that the right hand side is mn(ξ), hence the moment-cumulant relations are
satisfied.

Properties of classical cumulants: The following lemma collects some basic properties
of the cumulant function. Of particular importance is the relationship between indepen-
dence and the cumulant function.

Lemma 55. 1. Multilinearity: κΠ[•] is multilinear in its arguments.

2. Symmetry: κΠ[•] is invariant if variables within a single block of Π are permuted. In par-
ticular, κn is symmetric in X1, . . . ,Xn.

3. Assume that X = (X1, . . . ,Xd) is such that E[e〈t,X〉] < ∞ for t = (t1, . . . , td) in a neighbourhood

of 0 in Rd . Let ϕX(t) = E
[
e〈t,X〉

]
and ψX(t) = logE

[
e〈t,X〉

]
. Then,

ϕX(t) =
∞

∑
n=0

d

∑
i1,...,in=1

ti1 . . . tin
n!

mn[Xi1, . . . ,Xin],

ψX(t) =
∞

∑
n=1

d

∑
i1,...,in=1

ti1 . . . tin
n!

κn[Xi1, . . . ,Xin ].

4. Let U = (X1, . . . ,Xk) and V = (Xk+1, . . . ,Xd). Then, the following are equivalent.

(i) U and V are independent.

(ii) κn[Xi1, . . . ,Xin] = 0 for any n ≥ 1 and any i1, . . . , in ∈ [d] whenever there is least one p

such that ip ≤ k and at least one q such that iq > k.

Proof. 1. The moment function mn[•] is clearly multilinear in each of its co-ordinates.
Hence, mΠ is also multilinear in its co-ordinates (although it is a product of m|Π j|s,
observe that only one of the blocks contains a particular index. Then the multilin-
earity of κΠ follows from the expression for it in terms of the moments.
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2. Follows because mn is symmetric in all its arguments and mΠ is symmetric under
permutations of its arguments within blocks.

3. Expand e〈t,X〉 = ∑n〈t,X〉n/n! and 〈t,X〉n = ∑
d
i1,...,in=1 ti1 . . . tinXi1 . . .Xin . Taking expec-

tations gives the expansion for ϕX(t). To get the expansion for ΨX(t), let Ψ(t) =
∞

∑
n=1

d
∑

i1,...,in=1

ti1 ...tin
n! κn[Xi1, . . . ,Xin] and consider

eψ(t) =
∞

∑
n=1

1
n!

d

∑
k1,...,kn=1

κk1

4. U = (X1, . . . ,Xm) is independent of V = (Xm+1, . . . ,Xn) if and only if ψ(U,V )(t,s) =
ψU(t) + ψV (s) for all t ∈ Rm, s ∈ Rn−m. By part (b), ψU (respectively, ψV ) has an
expansion involving κk[Xi1, . . . ,Xik ] where i1, . . . , ik ≤ m (respectively, i1, . . . , ik > m).
However, ψ(U,V ) has coefficients κk[Xi1, . . . ,Xik ] where ir range over all of [n]. Thus, U

and V are independent if and only if κk[Xi1, . . . ,Xik ] = 0 whenever there are p,q such
that ip ≤ m and iq > m. This proves the equivalence of the two statements. �

The consequences for the univariate situation is worth summarizng.

Corollary 56. Let ξ,η be real-valued random variables having finite moment generating func-
tions.

1. E[etξ] = ∑
∞
n=0

mn(ξ)
n! tn and logE[etξ] = ∑

∞
n=1

κn(ξ)
n! tn.

2. The variables ξ and η are independent if and only if κn(ξ+η) = κn(ξ)+κn(η) for all n≥ 1.

3. If c is a constant, κn(ξ+ c) = κn(ξ)+ cδn,1.

The proofs are obvious. In the second part, observe that κn(ξ+η) = κn[ξ+η, . . . ,ξ+η]
has 2n terms when expanded by multilinearity, and all but two terms vanish by indepen-
dence. The third follows from the second since a constant is independent of any random
variable. Since κn (except for n = 1) remain unchanged under translations, cumulants are
also called semi-invariants.

Example 57. Let X ∼ exp(1). Then ϕX(t) = (1− t)−1 = ∑n≥0 tn for t < 1. Hence mn = n!.
ψX(t) =− log(1− t) = ∑n≥1 n−1tn which shows that κn = (n−1)!. If Y ∼Gamma(ν,1) then
for integer values of ν it is a sum of i.i.d exponentials, hence κn(Y ) = ν(n−1)!. It may be
verified directly that this is also true for any ν > 0.
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Example 58. Let X ∼ Pois(1). Then E[etX ] = e−1+et
. Expanding this, one can check that

mn = e−1
∑

∞
k=0

kn

k! . It is even easier to see that ψX(t) = −1 + et and hence κn = 1 for all
n ≥ 1 and hence also κΠ = 1. But then, the defining equation for cumulants in terms of
moments shows that mn = ∑Π∈Pn κΠ = |Pn|. Thus as a corollary, we have the non-trivial
relation |Pn|= e−1

∑
∞
k=0

kn

k! , known as Dobinsky’s formula.

Remark 59 (Logarithm of exponential generating functions). The relationship between
mn and κn just comes from the connection that logϕ = ψ where mn/n! are the coefficient of
ϕ and κn/n! are coefficients of ψ. The same is true for coefficients of any two power series
related this way. A closer look at the expressions for mn in terms of κn or the reverse one
shows that if mn counts some combinatorial objects, then κn counts the connected pieces
of the same combinatorial object.

For example, in Example 57, mn = n! counts the number of permutations on n letters
while κn = (n− 1)! counts the number of cyclic permutations. As any permutation may
be written as a product of disjoint cycles, it makes sense to say that cycles are the only
connected permutations.

In Example 58, mn = |Pn| while κn = 1. Indeed, the only “connected partition” is the
one having only one block {1,2, . . . ,n}.

In case of N(0,1), we know that mn counts the number of matching of [n]. What are
connected matchings? If n > 2, there are no connected matchings! Hence, κn = 0 for n≥ 3.

Now we show how cumulants may be used to write a neat proof of (a restricted ver-
sion of) the central limit theorem.

Proof of central limit theorem assuming mgf exists. Suppose X1,X2, . . . are i.i.d with zero mean
and unit variance and such that the mgf of X1 exists in a neighbourhood of zero, then for
any fixed p≥ 1,

κp(Sn/
√

n) = n−
p
2 κ[Sn, . . . ,Sn] = n−

p
2 ∑

1≤i1,...,ip≤n
κp[Xi1 , . . . ,Xip]

by multilinearity of cumulants. If Xir 6= Xis , the corresponding summand will vanish by
the independence of X js. Therefore,

κp(Sn/
√

n) = n−
p
2

n

∑
j=1

κp[X j,X j, . . . ,X j] = n−
p
2 +1

κp(X1)

which goes to zero for p ≥ 3. As the first two cumulants are 0 and 1 respectively, we see
that the cumulants of Sn/

√
n converge to cumulants of N(0,1) and hence the moments

converge also. Thus, Sn/
√

n converges in distribution to N(0,1). �
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As we have said before, the moment method is very flexible, and in many cases cu-
mulants are a better book-keeping device than moments. See Exercise ??. In this context,
we mention a fact that is often useful in that it allows us to consider only cumulants of
high enough order.

Fact 60 (Marcinkiewicz). Let X be a random variable with κp(X) = 0 for p≥ p0 for some p0.
Then X ∼ N(κ1,κ2). Hence, if Xn is a sequence of random variables such that κp(Xn)→ 0

for all large enough p, as n→ ∞. Then Xn converge in distribution to a Gaussian.

Noncommutative probability spaces, free independence

A unital algebra A is a vector space over C endowed with a multiplication operation
(a,b)→ ab which is assumed to be associative and also distributive over addition and
scalar multiplication. In addition we assume that there is a unit, denoted 1, such that
a1 = a = 1a for all a ∈ A . If in addition, there is an involution operation ? : A 7→ A that is
conjugate linear ((αa+βb)∗ = ᾱa∗+ β̄b∗) and idempotent ((a∗)∗ = a), then we say that A is
a ?-algebra.

Definition 61. A non-commutative probability space is a pair (A ,ϕ) where A is a unital algebra
over complex numbers and ϕ is a linear functional on A such that ϕ(1) = 1.

If A is a ?-algebra and ϕ is positive in the sense that ϕ(aa∗) ≥ 0 for all a ∈ A , then we
shall say that (A ,ϕ) is a ?-NCPS.

Elements of A will take the place of complex-valued random variables and ϕ will take
the place of expectation. The involution allows us to define real-valued variables, i.e.,
self-adjoint variables (a∗ = a) and positive variables (those of the form aa∗). This way, the
basic properties of expectation: linearity, positivity (E[X ]≥ 0 for X ≥ 0) and unity (E[1] = 1)
- have the right analogues in the non-commutative setting.

Example 62. Let A = C[x1, . . . ,xn] and ϕ(P) =
R

P(x)dµ(x) where µ is a Borel measure on
Cn with total mass 1. Complex conjugation is an involution on A . In that setting we shall
require µ to be a probability measure for positivity.

Example 63. Let x1, . . . ,xn be non-commuting variables and let A be the space of complex
polynomials in these variables. This just means that elements of A are formal linear com-
binations (with complex coefficients) of the monomials xp1

i1 xp2
i2 . . .xpk

ik where 1≤ i1, . . . , ik ≤ n

and p1, . . . , pk ≥ 1. When k = 0, the empty product is 1. How to add and multiply is clear.
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Define ϕ(P) to be the coefficient of the constant term in P. Then (A ,ϕ) is an NCPS.
Again complex conjugation is an involution, and ϕ is positive.

Example 64. Natural examples of ?-algebras are C∗-algebras1 If that is the case, we may
also call it a C∗-probability space.

Example 65. Let A = Mn(C) be the space of n×n complex matrices with the usual opera-
tions. For any u ∈Cn, we can define ϕu(A) = 〈Au,u〉, which makes this into a ?-probability
space 〈A∗Au,u〉= ‖Au‖2 ≥ 0 for any A ∈Mn(C).

Another example of expectation is ϕ(A) = 1
n tr(A). Indeed this is nothing but 1

n(ϕu1 +
. . .+ϕun) where {u1, . . . ,un} is any orthonormal basis of Cn.

The previous example generalizes to infinite dimensions.

Example 66. Let A := B(H) be the algebra of bounded linear operators on a Hilbert space
H. This is a C∗-algebra where the identity I is the unit and taking adjoints is the involu-
tion. Let u ∈ H be a unit vector and define ϕ(T ) = 〈Tu,u〉. Then, ϕ is a linear functional
and ϕ(I) = 1. Further, ϕ(T ∗T ) = ‖Tu‖2 ≥ 0. Thus, (A ,ϕ) is a C∗-probability space. Here
multiplication is truly non-commutative.

If ψ(T ) = 〈T v,v〉 for a different unit vector v, then for 0 < s < 1, the pair (A ,sϕ+(1−s)ψ)
is also a C∗-probability space. ϕ is called a pure state while sϕ+(1− s)ψ is called a mixed
state. Trace is not well-defined, in general.

The following examples are commutative.

Example 67. Let K be a compact metric space and let A = C(K) (continuous complex-
valued functions). Let µ be any Borel probability measure on K and define ϕ( f ) =

R
K f dµ.

Then (A ,ϕ) is a commutative C∗-probability space.

Example 68. Let (Ω,F ,P) be a probability space and let A = L∞(P). Let 1 be the constant
random variable 1. Then A is a unital algebra. Let ϕ(X) := E[X ] for X ∈ A . This is also a
?-probability space.

1By definition, this means that A has three structures. (a) That of a complex Banach space, (b) that of an
algebra and finally, (c) an involution ∗ : A → A . These operations respect each other as follows. The algebra
operations are continuous and respect the norm in the sense that ‖ab‖ ≤ ‖a‖‖b‖. The involution is also
continuous, norm-preserving, and is conjugate linear. Further (ab)∗ = b∗a∗. Lastly, we have the identity
‖aa∗‖= ‖a‖2 for all a ∈ A .
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Distributions of random variables: In classical probability, under some conditions, the
moment sequence determines the distribution of a random variable, which is a measure
on R. In the non-commutative setting, there is nothing other than the moments. This is
summarized below.

• For a single element a in a NCPS, we can compute its moment sequence mn(a) =
ϕ(an), n ≥ 0. This sequence will be called the distribution of a. For several vari-
ables a1, . . . ,ak we compute their joint moments, i.e., the value of ϕ on all mono-
mials generated by these (non-commuting, in general) variables. That collection
is called their joint distribution. If you prefer a more precise definition, the linear
functional L : C[X1, . . . ,Xn] 7→ C (where Xi are non-commuting variables) define by
L(P(X1, . . . ,Xk)) := ϕ(P(a1, . . . ,ak), is called the joint distribution of (a1, . . . ,ak). The
notion extends to infinitely many variables naturally.

• In a ?-NCPS, for a single element, we compute the joint moments of a and a∗, which
we call the ?-distribution of a. In the special case when aa∗ = a∗a (we then say that a

is normal), this reduces to a two-dimensional array of number ϕ(aka∗`). In particular,
for a self-adjoint variable (i.e., if a = a∗), then all the information is in the sequence of
moments ϕ(an). For several variables in a ?-NCPS, we compute joint moments of the
elements and their involutions. This whole data comprises their joint distribution.

We said that there is nothing more to the distribution than the moments. There is an im-
portant exception. Suppose a is a self-adjoint variable in a ?-NCPS. Then, there exists2

a probability measure whose classical moments are equal to the (non-commutative) mo-
ments of a. In case this measure is unique (for that issue see Appendix 10), we denote it
as µa and refer to it as the distribution of a.

If a is not self-adjoint but normal, again we can associate a probability measure µa in
the complex plane such that

R
zkz̄`dµa(z) = ϕ(aka∗`). That measure (if unique) is called

the distribution of a. It is worth remarking that in the special case when A = B(H) and
ϕ(T ) = 〈Te,e〉 for a unit vector e in the Hilbert space H, the distribution of a self-adjoint or
normal T ∈ A is nothing but its spectral measure at the vector e.

However, for an element that is not self-adjoint or normal, or even for an n-tuple of

2Recall that the necessary condition for existence of a probability measure on R with given moments
is the positive semi-definiteness of the Hankel matrix (mi+ j)i, j≥0. In our case, for any scalars ci (only
finitely many non-zero), we have ∑i, j cic jmi+ j(a) = ϕ(bb∗) with b = ∑i ciai. Positivity of ϕ gives positive
semi-definiteness of the moment sequence.
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self-adjoint variables, there is no meaningful way to associate a distribution on C or a
joint distribution on Rn. All we have are the moments.

Example 69. Let H = `2(Z) and A = B(H) and let ϕ(T ) = 〈Te0,e0〉. Define the left-shift
operator L by (Lx)(n) = x(n + 1) for n ∈ Z. Its adjoint is the right-shift (L∗x)(n) = x(n− 1).
Since Lne0 = e−n and L∗ne0 = en, we see that ϕ(Ln) = ϕ(L∗n) = 0 for n≥ 1. More interestingly,

ϕ((L+L∗)n) = ∑
ε∈{+,−}n

ϕ(Lε1 . . .Lεn)

where L+,L− denote L and L∗, respectively. But Lε1 . . .Lεne0 = ek if ∑i εi = k. Thus, mn(L +
L∗) = 0 if n is odd and m2n(L+L∗) =

(2n
n

)
. Therefore, L+L∗ has arcsine([−2,2]) distribution.

Example 70. Let H = `2(N) and A = B(H) and ϕ(T ) = 〈Te0,e0〉. Let L be the left-shift
operator as before. Then, L∗ is the right-shift operator, i.e., L∗(x1,x2, . . .) = (0,x1,x2, . . .).
Again ϕ(Ln) = 0 and ϕ((L∗)n) = 0 for n≥ 1. Also, L +L∗ has vanishing odd moments and
its even moments are m2n(L+L∗) = Cn, then nth Catalan number. To see this, observe that
ϕ(Lε1 . . .Lεn) is zero whenever there is some k such that there are more pluses than minuses
in {εk, . . . ,εn}. Any other ε contributes 1. The counting problem here is well known to give
the Catalan number.

Example 71. Let µ be any compactly supported probability measure on R. Then there is
a bounded measurable function f : R 7→ R such that µs.c ◦ f−1 = µ. Return to the previous
example and take T = f (L+L∗). By definition, this satisfies

mn(T ) = 〈T ne0,e0〉=
Z

f (x)ndµs.c(x) =
Z

undµ(u).

Thus, T has distribution µ.

Free independence: The all-important concept of independence must be now defined in
the non-commutative setting. There are multiple options, of which the only one we need
to consider is that of free independence.

Definition 72. Let (A ,ϕ) be an NCPS. Let Ai, i ∈ I, be unital sub-algebras of A . We say
that these subalgebras are freely independent if for any n ≥ 1 and any a1 ∈ Ai1 , . . . ,an ∈ Ain

with ϕ(ai) = 0 for all i, we have

ϕ(a1a2 . . .an) = 0 provided i1 6= i2 6= i3 . . . 6= in.
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In a ?-NCPS, we shall usually require the subalgebras to be closed under involution too.
We say that a,b,c, . . . (elements of the algebra A ) are free if the algebras Aa,Ab, . . .

generated by a,b, . . .. We say that the elements are ?-free if Aa,a∗,Ab,b∗ , . . . are freely inde-
pendent.

In classical probability, we could define independence by E[P(X)Q(Y )] = 0 for any
two polynomials P,Q with E[P(X)] = E[Q(Y )] = 0. However, even if we regard a classical
probability space as an NCPS (as in the examples above), two classically independent
random variables are not freely independent except in trivial situations. This is because if
X ,Y are independent zero mean variables, free independence requires E[XY XY ] = 0 which
is almost never satisfied in commutative situation.

If we know the marginal distributions of two independent variables, then their joint
distribution can be determined. The same holds for several variables. Here is an indica-
tion how. Assume that a,b are freely independent variables (for simplicity let us ignore
involutions and work with a NCPS). Then

ϕ((ak1−ϕ(ak1))(b`1−ϕ(b`1)) . . .(akm−ϕ(akm))(b`m−ϕ(b`m))) = 0,

for any k j, ` js. Expand the product and observe that ϕ(ak1b`1
. . .akmb`m) in terms of ϕ ap-

plied to lower degree monomials. Inductively, it is clear that we can recover ϕ applied to
any monomial in a and b, which is the joint distribution of these two variables.

Existence of freely independent variables: We have not yet given any example of freely
independent variables. In fact, one would like to see a theorem (analogous to product
measure construction in classical probability) that given any two distributions (i.e., mo-
ment sequences), there exists an algebra and variables that have these distributions and
are freely independent. Let us state the result in full generality.

Result 73. Given non-commutative probability spaces (Ai,ϕi), i ∈ I, does there exist a
NCPS (A ,ϕ) and subalgebras Bi ⊆ A , i ∈ I, such that (a) (Bi,ϕ

∣∣
Bi

) is isomorphic to (Ai,ϕi)
and (b) Bi, i ∈ I, are freely independent. The same statement holds with ?-NCPS in place
of NCPS.

We give proof in a special setting, for simplicity. We shall simply construct two freely
independent variables with given distributions.

Let x,y be two symbols and let G be the collection of all expressions of the form
xk1y`1 . . .xkmy`m for any m and any k j, ` js (where k1 or `m can be zero, but others are non-zero
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integers). The empty expression is denoted 1. Then G is nothing but the free group3 gen-
erated by two elements x and y. Since Gx := {xk : k ∈ Z} is isomorphic to Z (and similarly
Gy), we also say that G is the free product of Z with itself and write G = Gx ?Gy.

Define H, Hx, Hy, as complex Hilbert spaces with orthonormal bases G, Gx and Gy,
respectively. In short, Hx = Hy = `2(Z) and H = `2(Z ?Z). We have the non-commutative
expectations ϕ,ϕx,ϕy, all given by T 7→ 〈T 1,1〉, where 1 is the identity.

On Hx and Hy, we have the natural left-shifts Lx and Ly. For example, Lx(xk) = xk−1. We
extend these to H by setting

L̃x(xk1y`1 . . .xkmy`m) =

xk1−1y`1 . . .xkmy`m if k1 6= 0,

y`1 . . .y`m if k1 = 0.

Similarly, L̃y acts by “dividing by y on the left”, if the expression starts with y, and keeps
it intact if the expression starts with x. The claim is that L̃x and L̃y are ?-free in (B(H),ϕ).

More generally, to T ∈ B(Hx) associate T̃ ∈ B(H) as follows: If a basis element starts
with y, then T̃ keeps it intact. If it starts with x, we define T̃ (xk1y`1 . . .y`m) = T (xk1)y`1 . . .y`m .
Let Ax be the image of B(Hx) under this map. Similarly define Ay. It is clear that (Ax,ϕ

∣∣
Ax

)
is isomorphic to (B(Hx),ϕx) and similarly for y.

We claim that Ax and Ay are freely independent in B(H) with respect to ϕ. Since the
algebra generated by {L̃x, L̃∗x} is contained in Ax (and similarly for y), this implies the
earlier claim that L̃x and L̃y are ?-free.

Proof. Let T̃i ∈ Ax and S̃i ∈ B(Hy) with ϕ(T̃i) = 0 and ϕ(S̃i) = 0. Consider ϕ(T1S1 . . .TmSm).
complete this �

Moment-cumulant calculus

Let (A ,ϕ) be an NCPS. For a1, . . . ,an ∈ A , define

mn[a1, . . . ,an] = ϕ(a1, . . . ,an).

We also set m0 = 1. This is called the moment function. In particular, for a single variable a,
we have its moments mn(a) := ϕ(an) and joint moments of a and a∗ such as m5[a,a∗,a∗,a]

3In general, given two groups G and H, we can form a group G ? H by considering all finite words
of the form g1h1 . . .gkhk with gi ∈ G and hi ∈ H. Multiplication is just juxtaposition of words, with the
obvious simplification when two elements of G (or both of H) are adjacent to each other. This free product
construction is the reason behind the choice of the name free probability.
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etc. This collection of numbers is what substitutes the distribution of a. There are no
measures associated, except in an important special case.

Further development is analogous to the classical case, with the lattice of non-crossing
partitions replacing the lattice of all partitions. For Π ∈ NCn define mΠ as before (as NCn ⊆
Pn anyway) and define free cumulants by the expressions,

mn[a1, . . . ,an] = ∑
Π∈NCn

`(Π)

∏
j=1

κ|Π j|[aΠ j ], κΠ[a] =
`(Π)

∏
j=1

κ|Π j|[aΠ j ] for Π ∈ NCn.

Thus, the relationship between the moments and cumulants (we say free when there is
need to disambiguate) is given by

mΠ[a] = ∑
Γ≤Π

κΓ[a], κΠ[a] = ∑
Γ≤Π

(−1)`(Π)−1C`(Π)−1mΓ[a]

where the sums are over non-crossing partitions finer than Π. In the second expression,
we used the formula for the Mobius function of NCn.

Properties of free cumulants: As in the classical case, it is easy to see that κΠ[•] is mul-
tilinear in its arguments. There is no symmetry,either in κn or mn, since the variables are
not commutative. In some of our examples where ϕ was a “trace”, there is circular sym-
metry coming from the identity tr(AB) = tr(BA), but that is about it. The key analogy that
we wish to carry through is the characterization of free independence in terms of free
cumulants.

Lemma 74. Let (A ,ϕ) be an NCPS. Let B and C be two unital subalgebras of A . Then B and C
are freely independent if and only if κ[x1, . . . ,xn] = 0 for any n≥ 1 and any xis coming from B ∪C
and there is at least one xi ∈ B and one x j ∈ C .

This proof will be different from the one we gave in the classical case in that we shall
do it entirely combinatorially. Further, we have not yet introduced the analogue of the
moment generating function and its logarithm in the noncommutative setting. We first
prove a special case, when one of the variables is a constant.

Lemma 75. In an NCPS (A ,ϕ), for any n≥ 2 and any a1, . . . ,an ∈A , if one of the ais is constant,
then κn[a1, . . . ,an] = 0.

Proof. Let n = 2 and consider κ2[1,a] (without loss of generality). By the moment cumulant
relations, we have

m1[a] = κ1[a], m2[1,a] = κ2[1,a]+κ1[1]κ1[a].
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Since m2[1,a] = m1[a] and κ1[1] = 1, we get κ2[1,a] = 0 as desired. Now inductively suppose
that the lemma has been proved for n≤ k−1.

Consider a1, . . . ,ak with a` = 1. Let [a] = [a1, . . . ,ak] and â = [a1, . . . ,a`−1,a`+1, . . . ,ak].
From the moment cumulant relations,

mk[a] = ∑
Π∈NCk

κΠ[a], mk−1[â] = ∑
Γ∈NCk−1

κΓ[â].

Clearly mk[a] = mk−1[â]. Further, κΠ[a] = κΓ[â] if Π = Γt {`} (i.e., a singleton block {`}
appended to Γ). Thus, subtracting the above identities, we see that the sum of κΠ[a] over
all Π in which ` is not a singleton, must be zero. Of these, all terms in which ` is in a block
of size less than k vanish, by the induction hypothesis. That leaves only Π = [k], showing
that κk[a] = 0. This completes the induction. �

Lemma 76. Let a1, . . . ,an, where n≥ 2, be elements in a NCPS (A ,ϕ). Then for any 1≤ k≤ n−1,
we have

κn[a1, . . . ,an] = κn−1[a1, . . . ,ak−1,akak+1,ak+2, . . .an]− ∑
Π∈NC(n),`(Π)=2

k∈Π1, k+1∈Π2

κΠ[a1, . . . ,an].

Proof. For n = 2, check that this is true. For general n, we write the moment-cumulant
relations as

mn[a1, . . . ,an] = ∑
Π∈NCn

κΠ[a1, . . . ,an] = κn[a]+ ∑
Π:`(Π)≥2

κΠ[a], (2)

mn−1[a1, . . . ,ak−1,akak+1,ak+2, . . .an] = ∑
Γ∈NCn−1

κΓ[a1, . . . ,ak−1,akak+1,ak+2, . . .an] (3)

= κn−1[a1, . . . ,ak−1,akak+1,ak+2, . . .an]+ ∑
Γ:`(Γ)≥2

κΓ[a1, . . . ,ak−1,akak+1,ak+2, . . .an]

The left hand sides are of course equal, both being ϕ(a1 . . .an). Thus, the right hand sides
are equal. We cancel common terms. Indeed, if Γ has at least two blocks, then inductively
we may write for

κΓ[a1, . . . ,ak−1,akak+1,ak+2, . . .an] = κΓ′[a1, . . . ,an]+∑
Γ′′

κΓ′′ [a1, . . . ,an]

where, if Γ j is the block of Γ that contains4 akak+1, then

4Here it would be better to think of Γ as a partition of the set of variables a1, . . . ,ak−1,akak+1,ak+2, . . .an

rather than 1,2, . . . ,n− 1. The latter makes the phrasing more complicated, as when we separate the two
terms then indices will have to be shifted.
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• Γ′ ∈ NCn is got from Γ by replacing the block Γ j by a block of size |Γ j|+ 1 in which
ak and ak+1 are distinct elements (and the rest are untouched),

• Γ′′ varies over all partitions in NCn−1 got by breaking the jth block of Γ′ (constructed
in the previous step) into exactly two blocks, one of which contains ak and the other
contains ak+1.

What all partitions of NCn occur in this way? We claim that every Π ∈ NCn occurs exactly
once, except for those Π with exactly two blocks, one of which contains ak and the other
contains ak+1. Indeed, if Π contains ak,ak+1 in the same block, then it occurs as Γ′ for
the Γ got by amalgamating ak and ak+1 as one element akak+1. On the other hand, if ak

and ak+1 occur in different blocks of Π, then it is got as a Γ′′ where Γ ∈ NCn−1 is got by
merging those two blocks of Π and then amalgamating ak and ak+1. The only issue if if
the resulting Γ has only one block.

Thus, subtracting the two equations in (2), we get the conclusion of the lemma. �

Proof of Lemma 74. By Lemma 75 and multilinearity of the free cumulant, for any n≥ 2 and
any xis, κn[x1, . . . ,xn] = κn[y1, . . . ,yn] where yi = xi−ϕ(xi)1. Thus, without loss of generality,
we may assume that xi are centered.

Again inductively assume that the lemma is proved for κm, m ≤ n− 1 (we leave the
base case as an exercise). Now consider the case of κn and let S and T be the subsets of
indices for which xi belongs to B and C respectively. Then,

mn[x] = ∑
Π∈NCn

κΠ[x].

Since κΠ factors over the blocks of Π, if there is any of these blocks has size less than n

and intersects both S and T , then κΠ[x] = 0. That leaves only the full partition {[n]} and all
those partitions in which S and of T are unions of blocks. �

Free convolution

Let a,b be self-adjoint elements of a ?-NCPS (A ,ϕ) having distributions µ and ν. Assume
that these measures are compactly supported. If a and b are freely independent, then the
moments of a + b can be calculated in terms of the moments of a and the moments of b.
Hence, the distribution θ of a+b is determined by µ and ν. This gives a binary operation
called free convolution and we write θ = µ�ν.
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In principle, the definition gives us an algorithm to calculate the free convolution of
two probability measures. However, the formulas for the moments of a+b have not been
given explicitly in terms of the individual moments of a and b. Indeed, such formulas
would be horribly complicated. It is to simplify this that free cumulants were introduced.
From Lemma 74, we see that

κn(a+b) = κn[a+b, . . . ,a+b]

= κn[a, . . . ,a]+κn[b, . . . ,b] = κn(a)+κn(b).

Thus, the free cumulants of θ are expressed in a very simple way in terms of the free
cumulants of µ and ν.

Example 77. Let a,b be freely independent semi-circular elements. Then κn(a+b) = 2δn,2.
Since κn(cx) = cnκn(x) (by multi-linearity), we see that κn(a+b√

2
) = δn,2. This means that

(a+b)/
√

2 also has the semi-circle distribution!

This is the analogue of the situation in classical probability where (X +Y )/
√

2∼N(0,1)
if X ,Y are i.i.d. N(0,1). Thus, the semi circle law takes the central place in free probability,
like the Gaussian distribution in classical probability.

Integral transforms

We want to find the analogues in free probability of the moment generating function and
its logarithm in classical probability. We shall restrict ourselves to the univariate setting.

For a probability measure µ∈P (R), recall that its Stieltjes’ transform Gµ(z)=
R 1

z−xdµ(x).
If µ is compactly supported, say spt(µ) ⊆ [−R,R], then for |z| > R, we have the series ex-
pansion near infinity,

Gµ(z) =
∞

∑
n=0

mn(µ)
zn+1

where mn(µ) is the nth moment of µ. We now define the R-transform of µ as

Rµ(w) =
∞

∑
n=1

κn(µ)wn−1

where κn(µ) is the nth free cumulant of µ. Also define the K-transform of µ as Kµ(w) =
1
w + Rµ(w). Do these series converge? Clearly |mn(µ)| ≤ Rn. Further, from the moment
cumulant relations, |κn(µ)| ≤ (Show exponential bound for κn)
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Thus, Gµ encodes the moments and Rµ (or Kµ) encode the free cumulants. How does
the moment-cumulant relation carry over to the level of these transforms?5

Theorem 78. Gµ and Kµ are inverses of each other.

More precisely, the series for Gµ converges in a neighbourhood of ∞ in C∪{∞} and the
series for Kµ converges ina neighbourhood of 0. Further, Gµ maps a neighbourhood of ∞

to a neighbourhood of 0 and there the inverse relationship holds.

Proof. We write the moment-cumulant relationship in a less explicit but more convenient
form. Start with

mn = ∑
Π∈NCn

`(Π)

∏
j=1

κ|Π j|.

Fix the block containing 1 to be V = {1, i1 + 2, i2 + 3, . . . , i` + `+ 1} where i j + j are in in-
creasing order, so that [n] \V has segments of lengths i1, . . . , i`. Then, the restriction of Π

to each of the segments {2, . . . , i1 + 1}, . . . ,{i` + ` + 2, . . . ,n} is a non-crossing partition in
itself. Thus, when we sum over all Π with the first block equal to V , we get

κ` ∑
Π : Π1=V

`(Π)

∏
j=2

κ|Π j| = κ`mi1 . . .mi`.

Thus, we arrive at
mn = ∑

`≥1,i1,...,i`≥0,

i1+...+i`=n−`

κ`mi1 . . .mi`.

Now multiply by z−n−1 and sum over n≥ 0 to get

G(z) = z−1 + ∑
`≥1

κ`z−1
`

∏
j=1

(
∑

i j≥0
mi jz

−i j−1

)
= ∑

`≥1
κ`G(z)` =

1
z

+
G(z)

z
R(G(z)).

5Lagrange’s inversion formula: Let f (w) = w/ϕ(w) where ϕ is analytic near zero with ϕ(0) = 1. Let
g be the functional inverse of f in a neighbourhood of the origin (exists because f (w) ∼ w near w = 0).
Then, [zn]g(z) = 1

n+1 [wn]ϕ(w)n. In our case, f (w) = 1
K(w) = w

1+wR(w) and g(z) = G(1/z) = ∑
∞
n=0 mnzn+1. The

inversion formula gives the relationship between the coefficients of G and coefficients of R. This formula
is mn = 1

n+1 ∑κ`1 . . .κ`n+1 where the sum is over ` j ≥ 0 such that `1 + . . .+ `n+1 = n, with the convention that
κ0 = 0. Two things to do: (1) From here, go to the formula in terms of NCn. (2) Rewrite the chapter just
starting from the Lagrange inversion, which naturally leads to non-crossing matchings and the moment-
freecumulant relations, in the same way that the relationship between coefficients of an analytic function
and its logarithm can be made the starting point of the moment-cumulant relations in the classical setting.
Is there a way to also make the link to random matrix addition directly from here?
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This is the same as z = 1
G(z) +R(G(z)) = K(G(z)). Thus, K is the inverse of G. �

It may be noted that the R-transform (we have defined it only for compactly supported
measures) also determines the measure, since it determines the Stieltjes’ transform in a
neighbourhood of infinity.

Corollary 79. Rµ�ν = Rµ +Rν.

Proof. Immediate consequence of additivity of free cumulants under free convolution. �

We illustrate the usefulness by computing the free convolution of a Bernoulli measure
with itself.

Example 80. Let µ = 1
2(δ1 + δ−1). Then G(z) = z

z2−1 . Solve G(z) = w to get z = 1±
√

1+4w2

2w .

Choosing the right branch, we get R(w) = −1+
√

1+4w2

2w . If θ = µ � µ, then Rθ(w) = 2Rµ(w) =
−1+

√
1+4w2

w , hence Kθ(w) =
√

1+4w2

w . Solving for the inverse, we get Gθ(z) = 1√
z2−4

. Recog-

nizing this as the free convolution of the arcsine law, we see that θ is arcsine on [−2,2].

As another example, let us re-derive the free convolution of semi-circle measure with
itself.

Example 81. If µ is the semi-circle measure on [−2,2], then we know that Gµ(z) = z−
√

z2−4
2 .

More usefully, Gµ(z) satisfies the quadratic equation Gµ(z)2− zGµ(z)+ 1 = 0. Hence, z =
Gµ(z)+ 1

Gµ(z)
showing that Kµ(w) = w+ 1

w and Rµ(w) = w. This is an alternate way to derive

that the free cumulants are all zero except for κ2 which is 1. Hence Rµ�µ(w) = 2w which
is also the R-transform of semi-circle on [−2

√
2,2
√

2] (work out the relationship between
R-transforms of a probability measure ν and its scaling νt(A) := ν(tA)).

Free central limit theorem

We have said before that the semicircle plays a role in free probability very analogous to
the Gaussian in classical probability. Now we prove a free version of the central limit
theorem. Suppose ak are freely independent and identically distributed elements in an
algebra A . Does (a1 + . . .+an)/

√
n converge in distribution to some variable? Firstly note

that κ2[a1 + . . . + an] = nκ2[a1] and hence
√

n is the right scaling factor. Secondly, if we
assume that (a1 + . . .+ an)/

√
n does converge in distribution to some variable a, then for

two freely independent copies a,b of this variable a + b must have the same distribution
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as
√

2a. Just as we saw earlier for classical random variables, this forces the free cumu-
lants to satisfy the relationship 2

p
2 κp[a] = 2κp[a] which implies κp[a] = 0 for p 6= 2 which

implies that a is a semicircular variable. Now we actually prove that the convergence
does happen.

Theorem 82. Let a,ak be freely independent, identically distributed self-adjoint variables in a
?-NCPS (A ,ϕ). Assume that the distribution of a is non-degenerate. Then,

a1 + . . .+an−nκ1(a)
√

n
√

κ2(a)
d→ µs.c.,

the standard semicircle law supported on [−2,2].

Proof. Without loss of generality assume that κ1(a) = 0 and κ2(a) = 1. The proof is word
for word the same as we gave for classical CLT using cumulants (wisely we did not even
change the notation for cumulants!). We conclude that κp(Sn/

√
n)→ δp,2. The only non-

commutative variable whose free cumulants are δp,2 is the standard semicircle law. Hence
the conclusion. �

Random matrices and freeness

We have now seen Voiculescu’s world of free probability with objects and theorems anal-
ogous to those in classical probability theory (we saw only a tiny sample of this. There is
a free version of nearly everything, free Poisson, free Brownian motion, free Lévy process,
free entropy, ... even free graduate students).

Apart from analogy, there is connection between the classical and free worlds, and that
is provided by random matrix theory. Indeed, one of our motivations for introducing free
probability theory is to explain the occurrence of semicircle law and other limit laws in
random matrices, from a more conceptual algebraic framework. The essential connection
is in the following theorem (and other such statements asserting free independence of
classically independent large random matrices).

Theorem 83. Consider Mn(C)⊗L∞(P), the algebra of n× n random complex matrices with the
state ϕ(A) = n−1E[tr(A)]. Let Xn =

(
Xi, j
)

and Yn =
(
Yi, j
)

i, j≤n be random Hermitian matrices on a
common probability space taking values in Mn(C). We consider two scenarios.

1. Xn and Yn are Wigner matrices with X1,1 and X1,2 having exponential tails.
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2. Xn = An and Yn = UnBnU∗n where An,Bn are real diagonal matrices and Un is a Haar dis-
tributed unitary matrix. We assume that the ESD of An and Bn are tight????

In either of these two situations, Xn and Yn are asymptotically freely independent.
In particular, if Xn and Yn have limiting spectral distributions µ and ν respectively, then Xn +Yn

has limiting spectral distribution µ�ν.

Now suppose Xn and Yn are independent copies of GOE matrix. By properties of nor-
mals, Xn +Yn has the same distribution as

√
2Xn.

Spectrum of the sum of two matrices and free convolution

Let a,b be two self-adjoint, freely independent variables in a non-commutative probability
space (A ,ϕ). Then, κn(a+b) = κn(a)+κn(b). Hence the distribution of a and b determine
the distribution of a+b. The procedure to find the distribution of a+b is as follows.

1. Let µ and ν be the distributions of a and b respectively. This means ϕ(an) =
R

xnµ(dx)
and ϕ(bn) =

R
xnν(dx) for all n.

2. From the moments mn(a) := ϕ(an) and mn(b) = ϕ(bn) find the free cumulants κn[a]
and κn[b]. This can be done using the relations (??).

3. Find κn := κn[a]+κn[b] and insert into formulas (??) to find mn.

4. Find the measure θ whose moments are mn. Then θ is the distribution of a+b.

An analogous procedure can be described in classical probability, to find the sum of two
independent random variables using their cumulants. But there are also other useful
techniques for dealing with sums of random variables such as the characteristic func-
tion (which is multiplicative under independence) or the logarithm of the characteris-
tic function (which is additive). There are also such analytic objects associated to non-
commutative random variables, which we describe now.

Let µ be a compactly supported on R with Stieltjes’ transform Gµ(z) =
R
(z− x)−1µ(dx)

for the Stieltjes’ transform of µ. From properties of Stieltjes transforms, we know that
knowing Ga in a neighbourhood of ∞ one can recover all the moments of µ and hence
recover µ itself. Further, Gµ is one-one in a neighbourhood of ∞ and has an analytic inverse
Kµ defined in a neighbourhood of 0. Since Gµ(z) = z−1 + m1z−2 + . . . (where mk are the
moments of µ) for z close to ∞, we see that Kµ(w) = w−1 +Rµ(w) for some analytic function
R (defined in a neighbourhood of 0). Rµ is called the R-transform of µ.
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Lemma 84. Rµ(w) = ∑
∞
n=1 κ

µ
nwn−1, where κ

µ
n are the free cumulants of µ.

Proof. Let S(w) = ∑
∞
n=1 κ

µ
nwn−1. We show that G(w−1 + S(w)) = w for w close to 0 and this

clearly implies that S = Rµ. �

Exercises

Exercise 85. If P,Q are finite posets, then P×Q is a poset with the order (a1,a1)≤ (b1,b2) if a1 ≤ a2

and b1 ≤ b2. Show that µP×Q((a1,a2),(b1,b2)) = µP(a1,b1)µQ(a2,b2). Use this to deduce that for the

Boolean poset µ(A,B) = (−1)|B\A|. [Hint: Write the Boolean poset as a product of n posets].

Exercise 86. Give an alternate derivation of the Mobius function for Pn following these steps.

1. Fix x ∈ N.

(a) Let fx(Π) be the number of Σ ∈ Pn such that Π≤ Σ and `(Σ)≤ x.

(b) Let gx(Π) be the number of Σ ∈ Pn such that Π≤ Σ and `(Σ) = x.

Argue that gx(Π) = x(x−1) . . .(x− `(Π)+1) and fx(Π) = x`(Π).

2. Prove that x(x−1) . . .(x−n+1) = ∑Σ∈Pn µ(0,Σ)x`(Σ) where 0 is the partition of [n] into single-

tons.

3. Equate powers of x to deduce that µ(0,1) = (−1)n−1(n−1)!, where 1 is the single-block par-

tition.

4. Deduce the general formula for µ(Σ,Π).

Exercise 87. Show that |NCn|= Cn as by arguing that

|NCn|=
n

∑
i=2
|NCi−1|× |NCn−i|.

[Hint: Consider the largest element in the block containing 1.]

Exercise 88. Let X1,X2, . . . be i.i.d. random variables with a finite moment generating function. Use

cumulants to show that 1√
n(X1X2 + . . .+XnXn+1) converges in distribution to a Gaussian.
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Chapter 10

Non-asymptotic questions

So far we have only looked at asymptotic questions about random matrices, as the di-
mension goes to infinity. It is always an important question as to how well an asymptotic
result can be used for finite size. For example, is semicircle distribution a reasonable for
the empirical distribution of a 50×50 matrix? If not, 100×100? Rates of convergence are
one kind of answer. Another kind is to look for bounds that are valid for finite dimen-
sions, for instance questions of concentration of measure.

To illustrate with examples from basic probability, the strong law of large numbers and
Cramer’s theorem of large deviations are asymptotic statements. Chebyshev’s inequality
and Hoeffding’s inequality are examples of non-asymptotic statements. In this course we
have seen asymptotic theorems like Wigner’s semi-circle law. A non-asymptotic state-
ment that we have seen is Theorem 15, where we got explicit probability bounds for the
event that the maximal eigenvalue of the quadratic beta gas is more than 2+ ε.

In this chapter, we look at bounds for the extreme singular values of random matrices
with independent entries. More precisely, we want upper bounds for the largest singular
value and lower bounds for the smallest singular value. These bounds will be quite dif-
ferent for rectangular matrices as compared to square matrices. We discuss both, first in
the context of Gaussian matrices and then for general distributions.

Throughout the chapter, A will be an m× n matrix with i.i.d. entries and m ≥ n. The
case of square matrices, when m = n, is usually harder. When m is much larger than n, the
matrix will be called tall. We shall place restrictions on the distribution of entries where
necessary, either for the validity of results or for simplicity of exposition. We shall write
the singular values as 0 ≤ s1(A) ≤ . . . ≤ sn(A). Recall that s2

i , are the eigenvalues of AtA.
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We also write smin and smax for s1 and sn, respectively1. We shall often use the variational
formulas

sn(A) = max
u∈Rn,‖u‖=1

‖Au‖= max
u∈Rn,v∈Rm

‖u‖=1=‖v‖

vtAu, (1)

s1(A) = min
u∈Rn,‖u‖=1

‖Au‖= min
u∈Rn,‖u‖=1

max
v∈Rm,‖v‖=1

vtAu. (2)

Gaussian matrices

As in many other contexts, it is easier to deal with matrices with Gaussian entries. Let ai, j

be i.i.d. standard Gaussian random variables. The key property that simplifies proofs in

this situation is the orthogonal invariance, PAQ d= A for any P ∈ O(m), Q ∈ O(n).
Many questions about singular values can be answered by techniques we have seen

before:

1. It is possible to reduce A to a bidiagonal matrix with independent χ-entries with
various degrees of freedom (see Exercise 40). This makes AtA a Jacobi matrix, and
bounds for its eigenvalues can be got by using Gershgorin-type theorems, just as
we showed the bounds for extreme eigenvalues in the quadratic β-ensembles.

2. It is possible to get the exact distribution of the singular values. From (14) which
gives the density of s2

i , we can deduce the joint density of sis to be

∏
j<k
|s2

j − s2
k |2 ∏

k
e−s2

k sm−n−1
k .

3. One can use method of moments to get bounds for sn(A). Indeed, tr[((AtA)p]≥ s2p
n for

any p ≥ 1. When p is large. For a fixed p, the left hand side (its expectation, for ex-
ample) can be handled by the method of moments, but the bound obtained on sn(A)
or its expectation is loose. To get better bounds, we must use p growing appropri-
ately with n, which makes the execution of the method of moments harder but not
impossible. The reason we get better bounds is simply that (tr[(At

nAn)p])1/2p→ sn(A),
if n is fixed and p→ ∞.

1Almost everything here is taken from various superb expositions by Rudelson and Vershynin, who are
also the discoverers of many of the results in the subject.
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The first two methods do not apply when we go beyond Gaussian matrices. Further,
occasionally we shall consider matrices of the form M + A, where M is a deterministic
matrix, and in that case all these techniques are harder. Hence we shall use other more
geometric techniques. Some of these are fundamental techniques in studying Gaussian
processes in general.

Rectangular Gaussian matrices

Theorem 89. Let Am×n have i.i.d. standard Gaussian entries.

1. For every m≥ n, we have E[smax(A)]≤
√

m+
√

n and E[smin(A)]≥
√

m−
√

n.

2. For any t > 0, we have

P{smax ≥
√

m+
√

n+ t} ≤ 7e−t2/8, and P{smin ≤
√

m−
√

n− t} ≤ 7e−t2/8.

Observe that the lower bound for smin is vacuous when m = n. But if m = n + 1 (or
m = n+k for a fixed k), then the lower bound is of the order of 1/

√
n, which is actually the

right bound even for square matrices. We shall see that later. From the above theorem,
we can deduce that very tall Gaussian matrices are nearly isometries.

Corollary 90. Let Am×n be a matrix with i.i.d. standard Gaussian entries and let B = 1√
mA. Fix

δ < 1. If n≤ mδ2/4, then for sufficiently large m, with probability at least 1− e−mδ2/32, we have

1−δ≤ ‖Bu‖ ≤ 1+δ for all unit vectors u ∈ Rn.

Why should a tall matrix be almost an isometry? By the law of large numbers, we see
that

1
m

m

∑
i=1

a2
i,1 ≈ 1,

1
m

m

∑
i=1

ai,1ai,2 ≈ 0.

Thus, the columns of B are nearly orthonormal in Rm. While this is true for every pair, the
approximations are about 1/

√
m, and when there are many columns, it is not clear how

the errors mount. The corollary above asserts that for tall enough matrices, we do get
approximate isometry property. Still, the heuristic here is the best “explanation” I know.
The proof below does not really illuminate why the bounds should hold.

To prove the theorem, we need some important facts about Gaussian random vari-
ables, given in Appendix 10. The key theorems are Gaussian concentration inequality
(Theorem 137) and two comparison inequalities (Sudakov-Fernique inequality of Theo-
rem 129 and Gordon’s inequality of Theorem 132).
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Second part of Theorem 89 assuming the first. The key point is that s1(A) and sn(A) are Lip(1)
functions from Rmn to R. This follows from the variational formulas (1) and (2), since
A 7→ vtAu is a Lip(1) function for every u,v, and maxima and minima of Lip(1) functions
are necessarily Lip(1). Hence the inequalities in the second part of Theorem 89 follow
from the Gaussian isoperimetric inequality and the bounds for the expectations in the
first part. �

Next we prove the upper bound for the expectations of the largest singular value using
Sudakov-Fernique inequality.

Proof of the upper bound for expectation of smax. Let X(u,v) = vtAu for (u,v) ∈ I = Sn−1×Sm−1.
Then X is a Gaussian process and

E[|X(u,v)−X(u′,v′)|2] = E

(∑
i, j

ai, j(viu j− v′iu
′
j)

)2
= ∑

i≤m, j≤n
(viu j− v′iu

′
j)

2

= 2−2〈u,u′〉〈v,v′〉.

From (1), we know that sn(A) = X∗. We compare X to a simpler Gaussian process Y on I

defined by Y (u,v) = vtξ+utη where ξ∼ Nm(0, Im) and η∼ Nn(0, In). Then,

E[|Y (u,v)−Y (u′,v′)|2] = E[
(
(v− v′)t

ξ+(u−u′)t
η
)2] = ‖u−u′‖2 +‖v− v′‖2

= 4−2〈u,u′〉−2〈v,v′〉.

Thus,

E[|Y (u,v)−Y (u′,v′)|2]−E[|X(u,v)−X(u′,v′)|2] = 2(1−〈u,u′〉)(1−〈v,v′〉)

which is non-negative. By the Sudakov-Fernique inequality (Theorem 129), and we get
E[sn(A)] ≤ E[Y ∗]. But Y ∗ = ‖ξ‖+ ‖η‖ (attained when v = ξ/‖ξ‖ and u = η/‖η‖. Further,
E[‖ξ‖]≤ E[‖ξ‖2]1/2 =

√
m and similarly E[‖η‖]≤

√
n. Thus, E[sn(A)]≤

√
m+
√

n. �

To get the lower bound for E[s1(A)], we use Gordon’s inequality (Exercise 132)

Proof of the lower bound for expectation of smin. Define X and Y as in the previous proof. We
have already seen that

E[|X(u,v)−X(u′,v′)|2]≤ E[|Y (u,v)−Y (u′,v′)|2]
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for all (u,v) ∈ I. Further, if u = u′, then equality holds as both sides are equal to 2−2〈u,u′〉.
Hence, Gordon’s inequality applies and we get E[minu maxv X(u,v)]≥ E[minu maxvY (u,v)].
By (2), minu maxv X(u,v) = s1(A) while minu maxvY (u,v) = ‖ξ‖ − ‖η‖. Hence E[s1(A)] ≥
E[‖ξ‖]−E[‖η‖]. Since ‖ξ‖2 ∼ χ2

m,

E[‖ξ‖] = 1
2m/2Γ(m/2)

∞Z
0

√
xe−xx

m
2−1dx =

√
2Γ(m+1

2 )
Γ(m

2 )

and similarly E[‖η‖] =
√

2Γ( n+1
2 )

Γ( n
2 ) . Thus the theorem is proved if we show that E[‖ξ‖]−

E[‖η‖]≥
√

m−
√

n. This follows if we prove that ν→
√

2Γ( ν+1
2 )

Γ( ν

2 ) −
√

ν is an increasing func-

tion. Finish this �

Square Gaussian matrix

As already remarked, we don’t have a lower bound for the smallest singular value for a
square Gaussian matrix. The following theorem shows that

√
n/s1(A) is tight, and in fact

gives an upper bound of 1/x for the tail probability P(
√

n/s1 > x).

Theorem 91. Let An×n have i.i.d. standard Gaussian entries. Then P{s1(A) ≤ ε√
n} ≤ ε for any

ε > 0. In fact, for any deterministic matrix Mn×n, we have the same bound for s1(A+M).

The reason for adding M is to make the point that even if we start will a matrix with
very small singular values (even zeros), a Gaussian perturbation of it will have singular
values not less than 1/

√
n (in order). Perhaps it will be better to write down the statement

for M +σA, where σ is a small number (to make it feel more like a perturbation of M)2.

2This is the theme of smoothed analysis, introduced by Spielman and Teng. In studying performance
of algorithms two common criteria are to consider the worst case input or a completely random input.
Smoothed analysis is between the two, and considers an arbitrary input and perturbs it slightly, and studies
the worst performance over all choices of that input.

For example, when studying an algorithm for solving linear equations Ax = b, it is known that how badly
it performs depends on the magnitude of condition number of the input matrix, κ(A) := sn(A)/s1(A). There
are ill-conditioned matrices, for example singular matrices, hence the worst case performance is infinitely
bad! What the theorem here says is that for any M, the smallest singular value of M +σA is at least of order
σn−1/2, which is surprisingly good. One also needs a bound on the largest singular value, but that is easier.

Perturbation here makes sense, because there are necessarily numerical approximations due to rounding
off of the entries of a matrix. However, that perturbation should not be modeled by a Gaussian, but perhaps
a discrete distribution. The corresponding theorem is harder and will come later in the chapter.
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It is possible to prove this theorem by the exact density of singular values or the Jacobi
random matrix with the same singular value distribution. But such proofs work only
when M = 0. We shall instead give two proofs, first of a weaker statement, and then the
actual theorem. The proof of the weaker statement is given to illustrate an issue that will
recur later, the loss that accumulates due to naive union bounds.

Proof of a weaker version of Theorem 91. Let A = [u1 . . .un] and M = [m1 . . .mn] where ui and mi

are the columns. If s1(A) ≤ t, then there is a unit vector w ∈ Rn such that ‖(A + M)w‖ ≤ t.
There will be some co-ordinate, say k, such that |wk| ≥ 1√

n . Then, writing (A + M)w =

∑
n
j=1 w j(u j +m j), and dividing out by wk, we get

‖uk +mk + ∑
j 6=k

w j

wk
(u j +m j)‖ ≤ t

√
n.

Condition on u j + w j, j 6= k, and let P be the projection onto the orthogonal complement
of the span of these vectors (with probability 1 this is a rank one projection). Then X =
P(uk +mk) is a one-dimensional Gaussian with some mean and unit variance. Hence, the

probability that |X |< t
√

n is at most
√

2nt√
π

.

Taking into account that this event must happen for some k, the probability that s1(A)≤

t
√

n is at most
√

2
π
tn

3
2 . Taking t = ε/

√
n, we get the bound nε which is weaker than the

claim. �

Even though not optimal, this already shows that the smallest singular value is of
order at least n−3/2, a non-trivial statement. We now strengthen this. We shall use the fol-
lowing important property of a multivariate standard Gaussian vector X ∼ Nn(0, I) com-
ing from orthogonal invariance. For any k-dimensional subspace W of Rn, the projection
of X onto W is a standard k-dimensional Gaussian (inside W ), and in particular the length
of the projection is a χk random variable.

Proof of Theorem 91. Let B = M +A.

Claim: For w ∈ Sn−1 fixed, P{‖B−1w‖> t} ≤ 1/t.

Proof of the claim: Replacing B with PBQ for some P,Q ∈ O(n), we may assume that
w = e1. This is because PQM has the same distribution as A + M for a different M. Now,
〈B−1e1,Bte j〉 = δ j,1, hence 1. B−1e1 is orthogonal to u2, . . . ,un and 2. ‖B−1e1‖ is the re-
ciprocal of the length of the projection of the u1 onto the orthogonal complement of
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span{u2, . . . ,un}. Condition on u2, . . . ,un and choose a vector v normal to all these columns.
Then, ‖B−1e1‖ = |〈u,v〉|. Since 〈u,v〉 is N(µ,1) for some µ (which is fixed by M and v),
it follows that P{|〈u,v〉| < 1/t

∣∣∣∣∣∣ u2, . . . ,un} ≤ 1/t. Take expectation over u2, . . . ,un to get
P{‖B−1e1‖> t} ≤ 1/t. This completes the proof of the claim.

Now let w∼unif(Sn−1) be chosen independently of A. By conditioning on w and apply-
ing the claim, we see that P{‖B−1w‖≤ t}≤ t/

√
2π. Write the singular value decomposition

of B as B = s1v1yt
1 + . . .+ snvnyt

n, we see that ‖B−1w‖2 ≥ s−2
1 |〈w,v1〉|2. As w is uniform on the

sphere, |〈w,v1〉|2 is at least 1/n with probability
�

A curious observation: Let Am×n be the Gaussian matrix and write ai, j = εi, j|ai, j| where
εi, j = sgn(ai, j). Observe that εi, j and |ai, j| are independent. From the convexity of the
norm, using Jensen’s inequality for fixed εi, js, we get

E[‖A‖
∣∣∣∣∣∣ (εi, j)]≥ ‖

(
εi, jE[|ai, j|]

)
‖=

√
2
π
‖B‖

where bi, j = εi, j. Thus, from the bound for the norm of a Gaussian matrix, we get the
bound for the Bernoulli matrix B,

E[sn(B)] = E[‖B‖]≤
√

π

2
(
√

m+
√

n).

For what other distributions can we do this? If we can write a normal random variable as
XY where X and Y are independent random variables, then by the same proof as above,
we get E[‖B‖]≤ 1

E[Y ](
√

m+
√

n), where the entires of B are i.i.d. with the same distribution
as X . I don’t know, but would like to know, what random variables X can occur like
this. Apart from Bernoulli, another example I see is that of uniform, by writing a N(0,1)
variable as ϕ−1(U)V where U ∼ unif[0, 1√

2π
], V ∼ unif[−1,1] and U,V are independent.

Rectangular matrices with independent entries

Now suppose ai, j are i.i.d. We assume that they have a subgaussian distribution, meaning

that P{|a1,1| ≥ t} ≤ Ke−κt2
for all t, for some large constant K and some small constant κ.

Various other constants that will appear in the statements will depend only on K and κ,
unless otherwise stated.
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Appendix 1: Weak convergence and
techniques to show it

Probability measures on the real line

Let P (R) denote the space of all Borel probability measures on R. They can be parameter-
ized by distribution functions, which are functions F : R 7→ [0,1], that are non-decreasing,
right-continuous and satisfy F(+∞) = 1 and F(−∞) = 0. The parameterization (corre-
spondence) is given by sending the measure µ to the distribution function Fµ defined by
Fµ(t) := µ(−∞, t] for t ∈R. The fact that every distribution function is the distribution func-
tion of a probability measure is told and proved in any first course in measure theoretic
probability.

The use of this correspondence is that probability measures are more complicated ob-
jects, being functions on the large and intangible set B(R) (Borel sigma-algebra of R)
while distribution functions are (very restricted) functions on a smaller, more structured,
familiar set, namely the real line. It is possible to work without this correspondence, but
it helps, for example in defining the Lévy-Prohorov metric on P (R) by

D(µ,ν) = inf{r > 0 : Fµ(t + r)+ r > Fν(t) and Fµ(t + r)+ r > Fν(t) for all t}.

The form of the metric is less important than that it exists, and that convergence in this

metric, denoted µn
d→ µ, is equivalent to Fµn(t)→ Fµ(t) for some dense subset of t ∈R. This

is the notion of weak convergence or convergence in distribution. We recall the following basic
result from basic probability class which we recall without proof.

Lemma 92. Let µn,µ ∈ P (R). The following are equivalent.

1. µn
d→ µ, i.e., D(µn,µ)→ 0.

2. Fµn(t)→ Fµ(t) for all t where Fµ is continuous.
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3.
R

f dµn→
R

f dµ for all f ∈Cb(R), the space of bounded continuous functions on R.

4.
R

f dµn→
R

f dµ for all f ∈C∞
c (R).

Sometimes the third statement is taken as the definition of weak convergence, but
the point to note is that as shown in the fourth statement, it suffices to prove the con-
vergence of integrals for a much smaller class of integrands. This is of much practical
importance. Another famous theorem from probability class shows that an even smaller
class of functions suffices. Let et(x) = eitx. The function µ̂(t) :=

R
etdµ is called the charac-

teristic function (or Fourier transform) of µ. If X is a random variable with distribution µ,
then µ̂(t) = E[eitX ].

Lemma 93 (Lévy’s continuity theorem). Let µn,µ be probability measures. Then µn
d→ µ if and

only if
R

etdµn→
R

etdµ for all t ∈ R.

A more basic fact than this is that the characteristic function uniquely determines the
distribution.

Lemma 94 (Fourier inversion). Let µ,ν ∈ P (R). The µ̂ = ν̂ if and only if µ = ν. In fact, one can
recover µ from µ̂ by

µ(a,b)+
1
2

µ{a,b}= lim
L→∞

Z L

−L

e−iat− e−ibt

2πit
µ̂(t)dt.

The practical use of having a small class of functions is seen, for instance, in the proof
of central limit theorem, where the last two lemmas play a crucial role. In random matrix
theory however, the characteristic function itself is of limited use, but there are two other
techniques of great use.

1. The Stieltjes’ transform, which is another integral transform akin to the Fourier
transform.

2. The method of moments. This is the idea that we show that µn
d→ µ by showing that

the moments of µn converge to the corresponding moments of µ. Conditions apply,
as we shall see.

The rest of the chapter is devoted to explaining the generalities of these two techniques.
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Stieltjes’ transform of a probability measure

Definition 95. For µ ∈ P (R), its Stieltjes’ transform is defined as

Gµ(z) =
Z 1

z− x
dµ(x) = E

[
1

z−X

]
where X is a random variable with distribution µ. The Stieltjes’ transform is certainly
well-defined for z ∈ C\support(µ) as the integrand is bounded in that case. In particular,
Gµ(z) makes sense for z ∈H.

Some simple observations on Stieltjes’ transforms.

1. For any µ∈ P (R), |Gµ(z)| ≤ 1
Imz for z∈H. This is because |z−x| ≥ Imz for z∈H, x ∈R.

2. Gµ is holomorphic on C\support(µ). Indeed, if γ is any closed contour that does not
enclose any point of spt(µ), then using the uniform boundedness of 1/(z− x) over
z ∈ γ and x ∈ spt(µ) to interchange integrals, we getZ

γ

Gµ(z)dz =
Z

γ

Z
R

1
z− x

dµ(x)dz =
Z

R

Z
γ

1
z− x

dzdµ(x) = 0.

By Morera’s theorem, Gµ is holomorphic on C\ spt(µ).

3. Suppose µ is supported on a compact interval [−a,a]. Then, its moments mk :=R
xkµ(dx) satisfy |mk| ≤ ak and hence ∑mkz−k−1 converges for |z| > a and uniformly

for |z| ≥ a+δ for any δ > 0. Hence,

∞

∑
k=0

mk

zk+1 = E

[
∞

∑
k=0

Xk

zk

]
= E

[
1

z−X

]
= Gµ(z) (3)

where the first equality follows by DCT. One can legitimately define Gµ(∞) = 0 and
then (3) just gives the power series expansion of w→ Gµ(1/w) around 0.

4. If µ is compactly supported, Gµ(z)∼ 1
z as z→ ∞. If µ is not compactly supported, the

same is true for z = iy as y ↑ ∞.

5. If µ,ν are compactly supported and Gµ(z) = Gν(z) for all z in some open subset of
H, then by (3) the two measures have the same moments and hence µ = ν. But the
condition of compact support is not required, as we shall see in Lemma 96.
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As remarked earlier, the role of Stieltjes’ transform is for random matrix theory is analo-
gous to the role of characteristic functions in classical limit theorems. But in fact it is a bit
nicer/easier than the Fourier transform, as it can be seen as the convolution of the given
probability measure with symmetric Cauchy distributions. As this fact will be crucial in
the proofs below, we state it now.

The symmetric Cauchy distribution with parameter y > 0 is the probability measure

Cy ∈ P (R) having density y
π(y2+x2) . As y approaches 0, the measure Cy

d→ δ0 (check!). It

may also be noted that these distributions form a scale family, i.e., if X ∼C1, then yX ∼Cy.
Now,

−1
π

ImGµ(x+ iy) =
−1
π

Z
R

Im
{

1
x+ iy− t

}
µ(dt) =

Z
R

1
π

y
(x− t)2 + y2 µ(dt). (4)

The last quantity is the density of µ?Cy. In other words, for each y, the function ImGµ(·+
iy) is (up to a factor−1/π) the density of the measure µ?Cy. As y→ 0 this should approach
µ ? δ0 = µ. This is the essential point in the proof of the following lemma which gives the
Stieltjes’ transform analogues of Fourier inversion and Lévy’s continuity theorems.

Lemma 96. Let µ,ν be probability measures on R.

1. For any a < b

lim
y↓0

−1
π

Z b

a
ImGµ(x+ iy) dx = µ(a,b)+

1
2

µ{a}+ 1
2

µ{b}. (5)

2. If Gµ(z) = Gν(z) for all z in an open subset of H, then µ = ν.

3. If µn→ µ, then Gµn → Gµ pointwise on H.

4. If Gµn → G pointwise on H for some G : H→ C, then G is the Stieltjes’ transform of a
possibly defective measure. If further, iyG(iy)→ 1 as y ↑ ∞, then G = Gµ for a probability
measure µ and µn→ µ.

Proof. 1. Let X and Z be independent random variables on some probability space such
that X ∼ µ and Z ∼C1. From (4), we know that

−1
π

Z b

a
ImGµ(x+ iy) dx = E

[
1a≤X+yZ≤b

]
.

Now lim
y↓0

1X+yZ∈[a,b] = 1X∈(a,b) + 1X=a,Z>0 + 1X=b,Z<0. Take expectations, apply DCT,

use the previous identity the independence of X and Z to get (5).

107



2. Follows immediately from the first part.

3. For fixed z ∈ H, the function x 7→ 1
z−x is a bounded and continuous on R. Hence by

one of the equivalent forms of the definition of weak convergence, Gµn(z)→ Gµ(z).

4. Suppose that Gµn→G pointwise for some function G. By Helly’s selection principle,
some subsequence µnk converges vaguely to a possibly defective measure µ. As
(z− x)−1 is continuous and vanishes at infinity, Gµnk

(z)→ Gµ(z) for all z ∈H.

Hence Gµ = G which shows that all subsequential limits have the same Stieltjes
transform G. Further iyG(iy)→ 1 which shows that µ is a probability measure (for
a general positive measure we have Gµ(iy) ∼ µ(R)/iy as y ↑ ∞). By uniqueness of
Stieltjes transforms, all subsequential limits are the same and hence µn→ µ. �

In Lemma 101, we shall see a sharper version of the uniqueness theorem, by getting
a bound on the distance between two probability measures in terms of the difference
between their Stieltjes transforms. Here is a corollary that is sometimes helpful in proving
absolute continuity of a measure from its Stieltjes’ transform. This is to be contrasted
against the difficulty of obtaining such information from moments3.

Corollary 97. If |Gµ(z)| ≤ B for some B and all z ∈H, then µ is absolutely continuous and has a
density bounded by B/π.

Proof. From the inversion formula, letting y ↓ 0 in (5) we see that µ(a,b) ≤ B
π
(b−a) for all

a < b. This proves the statement in the corollary. �

Examples

Example 98. If µ = p1δλ1 + . . .+ pnδλn is a probability measure on R, its Stieltjes’ transform
is given by

Gµ(z) =
n

∑
k=1

pk

z−λk
.

For y > 0, it is easy to see that x 7→ −1
π

ImGµ(x + iy) is a mixture of Cauchy densities with
scale y centered at λ1, . . . ,λk, and with pks as the mixing weights.

3Difficult, but not impossible. Markov proved a necessary and sufficient condition for having a bounded
density in terms of the moments! But yes, it is difficult to check and impossible unless the moments are
known very explicitly.
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Example 99. Let µ be the arc-sine measure having density 1
π
√

1−x2 on [−1,1]. Its Stieltjes’

transform is

Gµ(z) =
1√

z2−4
.

Before explaining the result, we explain the meaning of the function on the right. Observe
that z 7→ z2−4 maps H onto C\ [−4,∞). On this region, a holomorphic square-root can be
defined, for example by taking reiθ 7→ reiθ/2 where r > 0 and 0 < θ < 2π. The composition
of these two functions is what is meant by

√
z2−4.

One way to arrive at the result is to use the series expansion (3) that is valid for |z|> 2.
The odd moments are zero while the 2p moment is

(2p
p

)
which may also be written as

(−1)p22p(−1/2
p

)
. Hence

Gµ(z) =
∞

∑
p=0

(
2p
p

)
1

z2p+1 =
1
z

∞

∑
p=0

(
−1/2

p

)
(−1)p22p

z2p =
1
z

(
1− 4

z2

)− 1
2

.

This is the same as 1/
√

z2−4 (don’t simply write
√

ab =
√

a
√

b to conclude this, the choice
of square roots is dictated by the 1/z behaviour at infinity).

Example 100. If µ is the semi-circle measure having density 1
2π

√
4− x2dx on [−2,2], then

Gµ(z) =
1

2π

Z 2

−2

√
4− x2

z− x
dx =

z−
√

z2−4
2

.

The last integral can be computed by computing the series (3) again. We leave this as an
exercise. Just remember that the odd moments are zero and the 2p moment is the Catalan
numbers Cp = 1

p+1

(2p
p

)
.

The inversion formula can be verified in these cases directly. For example, consider
the Stieltjes’ transform G(z) = 1/

√
z2−4. Let z = x + iv where we shall let v→ 0. Hence

z2−4 = x2−4−2ixv+O(v2). Hence, for |x|< 2,√
z2−4 =

√
4− x2(−1−O(v))−1/2

from which it is easy to see that

−1
π

ImG(x+ iv)→ 1
π
√

4− x2
if |x|< 2.

When |x|> 2, G(x+iv) approaches the real line as v ↓ 0, hence the above limit is zero.
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Exactly the same way, for G(z) = 1
2(z−

√
z2−4), we get

−1
π

ImG(x+ iv) =
−1
π

v− Im
√

(x+ iv)2−4
2

→ 1
2π

√
4− x2.

This verifies the inversion formula in both cases.

Bounding Lévy distance in terms of Stieltjes transform

The following lemma is a quantitative statement that implies parts (2) and (4) of Lemma 96
as easy corollaries (how do you get part (4) of Lemma 96?). The Fourier transform ana-
logue of this is a well-known lemma that is used in the proof of Berry-Esseen theorem
(see ?, chapter.???).

We introduce two stronger metrics on probability measures. Recall the Kolmogorov-
Smirnov distance

dKS(µ,ν) = sup
x∈R
|Fµ(x)−Fν(x)|.

and the total variation distance

dTV (µ,ν) =
1
2

Z
| f (x)−g(x)|dx

if µ and ν have densities f and g. It can be defined more generally, but we shall use total
variation distance only when densities exist. It is an easy exercise to check that

D(µ,ν)≤ dKS(µ,ν)≤ dTV (µ,ν). (6)

Lemma 101. Let µ,ν ∈ P (R). Then, for any y > 0, we have

D(µ,ν)≤ 3
√

y+
1
π

Z
R
| ImGµ(x+ iy)− ImGν(x+ iy)|dx.

Proof. Let µy = µ?Cy and νy = ν?Cy. We bound the Lévy distance between µ and ν in three
stages.

D(µ,ν)≤D(µy,µ)+D(νy,ν)+D(µy,νy).

By the proof of Lemma 96 we know that µy has density−π−1 ImGµ(x+ iy) and similary for
νy. Hence, by the second inequality in (6),

D(µy,νy)≤
1
π

Z
R
| ImGµ(x+ iy)− ImGν(x+ iy)|dx.
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Next we control D(µy,µ). Let X ∼ µ and Z ∼C1 so that V = X + yZ ∼ µy. For t > 0 observe
that P(Z > t) =

R
∞

t π−1(1+u2)−1du≤
R

∞

t π−1u−2du = π−1t−1. Thus, for any δ > 0, we get

P(X ≤ t, V > t +δ)≤ P
(
Z > y−1

δ
)
≤ π

−1
δ
−1y

P(V ≤ t, X > t +δ)≤ P
(
Z <−y−1

δ
)
≤ π

−1
δ
−1y.

These immediately gives a bound of δ+π−1δ−1y for D(µ,µy). Choose δ =
√

y/π to get

D(µ,µy)≤
2√
π

√
y.

The same bound holds for D(ν,νy). Combine with (10) to get the inequality in the state-
ment. �

Method of moments

If µ ∈ P (R), its moments are given by αp = αp(µ) =
R

xpdµ(x), provided the integral exists.
Two natural questions are,

1. If αp(µ) = αp(ν) for all p ∈ N, then is it necessarily true that µ = ν?

2. If αp(µn)→ αp(µ) as n→ ∞, for each p ∈ N, is it necessarily true that µn
d→ µ?

The answer to the first question is “No, in general”. But what is practically useful for
us is that there are easy-to-check sufficient conditions under which the answer is “Yes”.
This is Theorem 102

The answer to the second question is surprisingly clean: Yes, if and only if µ is deter-
mined by its moments (i.e., there is no other measure with the same moments as µ). This
is Theorem 103.

Theorem 102. Let µ ∈ P (R) with all moments and let αp =
R

xpdµ(x). Then, µ is determined by
its moments if any of the following (progressively weaker) conditions is satisfied.

1. µ is compactly supported. This is equivalent to the condition that limsup
m→∞

α
1/2m
2m < ∞.

2. The moment generating function of µ exists in a neighbourhood of 0, i.e.,
R

etxdµ(x) < ∞ for

|t|< δ for some δ > 0. This is equivalent to the condition that limsup
m→∞

α
1/2m
2m
m < ∞
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3. The moments satisfy Carlemann’s condition: ∑
m≥1

1
α

1/2m
2m

= ∞.

The reason that all conditions are stated only in terms of the even moments is that odd
moments can be bounded simply by Cauchy-Schwarz inequality: α2

m≤ α2m. Hence, in the

first two conditions, we may as well write |αm|1/m instead of α
1/2m
2m . In the last condition,

it is better to leave it as it is, since the odd moments could well be zero (which causes the
sum to diverge for silly reasons).

One small point in addition to what we have already said - if moments of a sequence
of probability measures converge, the resulting sequence of numbers is necessarily a mo-
ment sequence of a probability measure. This is an easy fact, because a necessary and
sufficient condition for a sequence of numbers to be a moment sequence is that it must be
positive semi-definite, i.e., ∑

p
i, j=0 cic jαi+ j ≥ 0 for all ci ∈ R.

Putting all this together, we have the following theorem. Nothing more than the state-
ment of this theorem will be required in this course when using the method of moments.

Theorem 103. Let µn be a sequence in P (R). Assume that each µn has all moments which we

denote as α
(n)
p . Assume that αp = lim

n→∞
α

(n)
p exists for all p.

1. There exists a µ ∈ P (R) having moments (αp)p≥0.

2. If (αp)p≥0 satisfy Carlemann’s condition, then such a measure µ is unique and µn
d→ µ.

Exercises

Exercise 104. If µ has a continuous density f , then show that f (x) =− 1
π

lim
y↓0

Im{Gµ(x+ iy)}.
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Appendix 2: Some linear algebra facts

Bounds on eigenvalues

Let λ1, . . . ,λn be eigenvalues of A = (ai, j)i, j≤n. Then,

.max
k≤n
|λk| ≤max

k≤n
rk (7)

where rk = ∑
n
j=1 |ak, j|. Indeed, if Av = λv, then choosing an index k for which |vk| ≥ |v j| for

all j, we get

|λvk|= |(Av)k| ≤
n

∑
j=1
|ak, j||v j| ≤ |vk|rk.

Thus |λ| ≤ rk for at least one k, which proves (7).
A better theorem is the Gershgorin circles theorem which asserts that all the eigen-

values of A are contained in the union of the closed disks D̄(ak,k,sk) where sk = rk−|ak,k|.
Since |ak,k|+ sk = rk, this theorem implies (7). In some lucky situations, the Gershgorin
theorem allows one to give bounds on the locations of various other eigenvalues also.

Perturbations of eigenvalues

How do eigenvalues change when the matrix changes? It is easy to see that eigenvalues
vary continuously as a function of the matrix entries. But to say more is usually difficult.
The standard example is the matrix

An,ε =



0 1 0 0 0 0

0 0 1 . . . 0 0

0 0 . . . . . . . . . 0

0 . . . . . . . . . 1 0

0 0 . . . 0 0 1

ε 0 0 0 0 0


.
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The characteristic polynomial is zn− ε whose roots are equispaced points on the circle
|z| = ε1/n. For fixed n, as ε→ 0, the eigenvalues converge to those of An,0. However, we
see that the continuity gets worse as n increases. This is typically the problem in dealing
with non-Hermitian matrices.

But for Hermitian matrices, the situation is much better. We prove two useful inequal-
ities. The first is useful when only a few entries are perturbed, possibly by large amounts.
The second is useful when many entries are changed, but by a small amount.

Lemma 105. Let A and B be real symmetric (or Hermitian) matrices. If A−B has rank r, then

D(LA,LB)≤ dKS(LA,LB)≤ r
n
.

Proof. Any matrix of rank r can be written as a sum of r rank 1 matrices. Hence it suffices
to prove the lemma for r = 1.

Fix any x and let V be the span of eigenvectors of A having eigenvalue less than or
equal to x and let W be the span of eigenvectors of B having eigenvalue greater x. If
v ∈ V ∩W , then 〈Av,v〉 ≤ x〈v,v〉 and 〈Bv,v〉 > x〈v,v〉. Therefore, v is not in the kernel of
A−B. Since A−B has rank 1, this shows that dim(V ∩W ) ≤ 1. But dim(V ) = nFA(x) and
dim(W ) = n(1−FB(x)). Hence,

nFA(x)+n(1−FB(x)) = dim(V )+dim(W )≤ 1+n,

which gives n|FA(x)−FB(x)| ≤ 1. �

Lemma 106 (Hoffman-Wielandt inequality). Let A and B be real symmetric (or Hermitian)
matrices. Let λ1 ≥ . . . ≥ λn be the eigenvalues of A and let µ1 ≥ . . . ≥ µn be the eigenvalues of B.
Then,

n

∑
k=1

(λk−µk)2 ≤ tr(A−B)2.

Proof. Square both sides and use tr(A2) = ∑
n
k=1 λ2

k and tr(B2) = ∑
n
k=1 µ2

k to rewrite the de-
sired inequality as tr(AB) ≤ ∑

n
k=1 λkµk. Let A = ∑

n
j=1 λ jv jvt

j and B = ∑
n
k=1 µkwkwt

k be the
spectral decompositions of A and B. Then,

tr(AB) =
n

∑
j,k=1

λ jµk〈v j,wk〉2.

The matrix (〈v j,wk〉2) j,k≤n is doubly stochastic, since {v j} and {wk} are orthonormal bases
of Rn. Not all doubly stochastic matrices are of this form, but if the maximum of f (D) =
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∑
n
j,k=1 λ jµkD j,k over all doubly stochastic D is attained within the set of orthostochastic ma-

trices (those of the form (〈v j,wk〉2)), then that is also the maximum over orthostochastic
matrices.

The set of doubly stochastic matrices DSn is a compact convex set whose extreme
points are permutation matrices (this is known as the Birkoff-von Neumann theorem).
And f is a convex function (in fact linear!), hence it attains its maximum on DSn at a per-
mutation matrix. It may be noted that permutation matrices are orthostochastic. Now,
among all permutations π, the quantity f (π) = ∑

n
k=1 λkµπ(k) is maximized when π is the

identity. To see this, observe that if there are i < j such that π(i) > π( j), then

λ jµπ( j) +λkµπ(k) < λ jµ j +λkµk

since λ j > µ j and λk > µk. Hence, any inversion only decreases the value of f , showing
that identity maximizes f (π). And the maximum value of f is ∑ j λ jµ j. �

Here is how to get a bound for the Lévy-Prohorov distance between empirical mea-
sures from the bound given in Hoffman-Wielandt inequality.

Corollary 107. In the notation of Lemma 106, we have D(LA,LB)≤
(1

n tr(A−B)2)1/3.

Proof. If D(LA,LB) > δ, then there is some x such that FA(x) > FB(x+δ)+δ. This means that
there must be at least nδ indices i for which λi≤ x but µi > x+δ. But then, ∑i(λi−µi)2≥ nδ3.
From the Hoffman-Wielandt inequality, this is at most tr(A−B)2 which gives the bound

δ≤
(1

n tr(A−B)
)2/3. �

Some times, we need to compare eigenvalues of a matrix to those of a submatrix,
say by removing one row and one column. Then the perturbation inequalities can be
modified as follows. Let

A =

[
a vt

v B

]
, C =

[
0 0t

0 B

]
.

As A and C are matrices of the same size, we have

1. dKS(LA,LC)≤ 1
n from Lemma 105.

2. ∑
n
k=1(λ

A
k −λC

k )2 ≤ a2 +2‖v‖2 from Lemma 106.
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But the eigenvalues of C are the eigenvalues of B along with an extra zero eigenvalue.
That is, for some 1≤ `≤ n−1, we have

λ
C
i = λ

B
i for i < `, λ

C
` = 0, λ

C
i = λ

B
i−1 for i > `.

Putting these together, we also get a comparison of eigenvalues of A with those of B. We
summarize this as a lemma.

Lemma 108. If A is a real symmetric (or Hermitian) n×n matrix and B is the matrix got from A

by deleting the first row and first column, then

1. dKS(LA,LB)≤ 2
n .

2.
`−1
∑

k=1
(λA

k −λB
k )2 +

n
∑

k=`+1
(λA

k −λB
k−1)

2 ≤ a2 +2‖v‖2.

3. D(LA,LB)≤ (a2+2‖v‖2)1/3

(n−1)1/3 .

Proof. 1. This follows from the fact that dKS(LA,LC) ≤ 1
n and the exact relationship be-

tween eigenvalues of C and B.

2. This follows simply by dropping the (λA
` −λC

` )2 term in the bound for ∑
n
k=1(λ

A
k −λC

k )2.

3. Repeat the argument in the proof of Corollary 107. Just note that LB has atoms of
size 1/(n−1). �

The second statement followingThe first bound can be improved slightly because the
eigenvalues of A and B interlace. Instead of setting the first row and column of C to zero,
we could have set them to any value etc. But this bound is good enough for us.

Block matrix inversion formula

Consider an (m+n)× (m+n) matrix written in block form as

X =

[
Am×m Bm×n

Cn×m Dn×n

]
.

Then, assuming all relevant matrices are invertible,

X−1 =

[
(A−BD−1C)−1 ?

? (D−CA−1B)−1

]
. (8)
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The off-diagonal blocks can also be written explicitly but we omit that here. Particularly
useful is the case when m = 1.[

a bt

c D

]−1

=

[
1

a−btD−1c ?

?
(
D− 1

acbt)−1

]
. (9)

In particular, X1,1 = 1
a−btD−1c . This can be seen from the fact that X1,1 = |D|/|A| and |A| =

|D|(a−btD−1c). We omit the proofs, which are easy and can be looked up in many intro-
ductory linear algebra books (at least those that do a bit of matrices).

Shooting description of eigenvectors and eigenvalues of a Jacobi matrix

Let Tn = Tn(a,b) be a Jacobi matrix. Fix a number x ∈ R. Suppose we want to count how
many eigenvalues of Tn are above x. How do we do it? As we shall see, this does not
require us to compute the eigenvalues at all!

For 1 ≤ k ≤ n, let ϕk be the characteristic polynomial of the top-left k× k principal
submatrix of T . We also set ϕ0 = 1 and ϕ−1 = 0. As we saw in (7), they satisfy the three-
term recurrence

ϕk(x) = (x−ak)ϕk−1(x)−b2
k−1ϕk−2(x).

Thus, to compute ϕk(x) for a fixed x, we have a simple recursive formula. Now we claim
that we can count the number of eigenvalues of Tn that are above x by just looking at this
sequence of number ϕ0(x), . . . ,ϕn(x) which sounds surprising!

Claim 109. The number of eigenvalues of Tn in (x,∞) is equal to the number of sign-changes of
the sequence ϕ0(x), . . . ,ϕn(x).

Indeed, the three term recurrences imply that the roots of ϕk and the roots of ϕk−1

strictly interlace. This argument was given soon after (7). The key point was that when
x is a root of ϕk, the recurrence formula shows that ϕk+1 and ϕk−1 have opposing signs.
Therefore, if inductively we assume that the roots of ϕk−1 interlace with those of ϕk, then
it follows that the roots of ϕk+1 also interlace with those of ϕk.

Now the stated claim follows by staring at Figure 1. But if you prefer words, here is a
verbal argument.

Proof. Suppose the sequence ϕ0(x), . . . ,ϕn(x) has k strict sign-changes. Then, there exist
indices 0 = i0 < i1 < .. . < ik ≤ n, such that ϕi2r(x) > 0 and ϕi2r−1(x) < 0. Since all the ϕ js are
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Figure 1: The top line represents sgn(ϕ0), the next one sgn(ϕ1) and so on till the bottom
line showing sgn(ϕn). Red indicates positive, Blue indicates negative. Note the interlacing
of zeros. From the vertical line drawn at x we can read off the signs of ϕ0(x), . . . ,ϕn(x). For
each of the three vertical lines, note that the number of times the color changes along the
vertical line is equal to the number of zeros on the bottom line that lie to the right of the
vertical line. Convince yourself that this is always the case (at least if the vertical line does
not pass through any of the zeros on any of the lines).

positive eventually on the right (they are monic polynomials), this shows that ϕi1 must
have a root in (x,∞), say λi1,1. But then, ϕi2 must have a root above λi1,1 as well as one
in (x,λi1,1) (otherwise ϕi2(x) would have been negative). Continuing this way, inductively
we see that ϕik has at least k roots in (x,∞). By the interlacing property, each of ϕik+1, . . . ,ϕn

must also have at least k roots in (x,∞). �
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Appendix 3: Gaussian random variables

Basics of Gaussians, moments, cumulants

Standard normal: A standard normal or Gaussian random variable is one with density

ϕ(x) := 1√
2π

e−
1
2 x2

. Its distribution function is Φ(x) =
R x
−∞

ϕ(t)dt and its tail distribution

function is denoted Φ̄(x) := 1−Φ(x). If Xi are i.i.d. standard normals, then X = (X1, . . . ,Xn)
is called a standard normal vector in Rn. It has density ∏

n
i=1 ϕ(xi) = (2π)−n/2 exp{−|x|2/2}

and the distribution is denoted by γn, so that for every Borel set A in Rn we have γn(A) =
(2π)−n/2 R

A
exp{−|x|2/2}dx.

Exercise 110. [Rotation invariance] If Pn×n is an orthogonal matrix, then γnP−1 = γn or

equivalently, PX d= X . Conversely, if a random vector with independent co-ordinates has a
distribution invariant under orthogonal transformations, then it has the same distribution
as cX for some (non-random) scalar c.

Multivariate normal: If Ym×1 = µm×1 + Bm×nXn×1 where X1, . . . ,Xn are i.i.d. standard nor-
mal, then we say that Y ∼ Nm(µ,Σ) with Σ = BBt . Implicit in this notation is the fact that
the distribution of Y depends only on Σ and not on the way in which Y is expressed as
a linear combination of standard normals (this follows from Exercise 110). It is a simple
exercise that µi = E[Xi] and σi, j = Cov(Xi,X j). Since matrices of the form BBt are precisely
positive semi-definite matrices (defined as those Σm×m for which vtΣv ≥ 0 for all v ∈ Rm),
it is clear that covariance matrices of normal random vectors are precisely p.s.d. matrices.
Clearly, if Y ∼ Nm(µ,Σ) and Zp×1 = Cp×mY + θp×1, then Z ∼ Np(θ +Cµ,CΣCt). Thus, affine
linear transformations of normal random vectors are again normal.

Exercise 111. The random vector Y has density if and only if Σ is non-singular, and in that
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case the density is
1

(2π)n/2
√

det(Σ)
exp
{
−1

2
yt

Σ
−1y
}

.

If Σ is singular, then X takes values in a lower dimensional subspace in Rn and hence does
not have density.

Exercise 112. Irrespective of whether Σ is non-singular or not, the characteristic function
of Y is given by

E
[
ei〈λ,Y 〉

]
= e−

1
2 λtΣλ, for λ ∈ Rm.

In particular, if X ∼ N(0,σ2), then its characteristic function is E[eiλX ] = e−
1
2 σ2λ2

for λ ∈ R.

Exercise 113. If Uk×1 and V(m−k)×1 are such that Y t = (U t ,V t), and we write µ = (µ1,µ2) and

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
are partitioned accordingly, then

1. U ∼ Nk(µ1,Σ11).

2. U
∣∣∣
V
∼ Nk

(
µ1−Σ12Σ

−1/2
22 V, Σ11−Σ12Σ

−1
22 Σ21

)
(assume that Σ22 is invertible).

Moments: All questions about a centered Gaussian random vector must be answerable
in terms of the covariance matrix. In some cases, there are explicit answers.

Exercise 114. Prove the Wick formula (also called Feynman diagram formula) for moments
of centered Gaussians.

1. Let X ∼ Nn(0,Σ). Then, E[X1 . . .Xn] = ∑
M∈Mn

∏
{i, j}∈M

σi, j, where Mn is the collection of

all matchings of the set [n] (thus Mn is empty if n is odd) and the product is over all
matched pairs. For example, E[X1X2X3X4] = σ12σ34 +σ13σ24 +σ14σ23.

2. If ξ∼ N(0,1), then E[ξ2n] = (2n−1)(2n−3) . . .(3)(1).

Cumulants: Let X be a real-valued random variable with E[etX ] < ∞ for t in a neighbour-
hood of 0. Then, we can write the power series expansions

E[eiλX ] =
∞

∑
k=0

mn(X)
λn

n!
, logE[eiλX ] =

∞

∑
k=1

κn[X ]
λn

n!
.
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Here mn[X ] = E[Xn] are the moments while κn[X ] is a linear combination of the first n

moments (κ1 = m1, κ2 = m2−m2
1, etc). Then κn is called the nth cumulant of X . If X and Y

are independent, then it is clear that κn[X +Y ] = κn[X ]+κn[Y ].

Exercise 115. (optional). Prove the following relationship between moments and cumu-
lants. The sums below are over partitions Π of the set [n] and Π1, . . . ,Π`Π

denote the blocks
of Π.

mn[X ] = ∑
Π

∏
i

κ|Πi|[X ], κn[X ] = ∑
Π

(−1)`Π−1
∏

i
m|Πi|[X ].

Thus κ1 = m1, κ2 = m2−m2
1,

Exercise 116. If ξ∼ N(0,1), then κ1 = 0, κ2 = 1 and κn = 0 for all n≥ 3.

The converse of this result is also true and often useful in proving that a random
variable is normal. For instance, the theorem below implies that to show that a sequence
of random variables converges to normal, it suffices to show that cumulants κm[Xn]→ 0

for all m≥ m0 for some m0.

Result 117 (Marcinkiewicz). If X is a random variable with finite moments of all orders
and κn[X ] = 0 for all n≥ n0 for some n0, then X is Gaussian.

Convergence and Gaussians:

Exercise 118. The family of distributions N(µ,σ2), where µ ∈ R and 0 ≤ σ2 < ∞, is closed
under convergence in distribution (for this statement to be valid we include N(µ,0) which

means δµ). Indeed, N(µn,σ
2
n)

d→ N(µ,σ2) if and only if µn→ µ and σ2
n→ σ2.

A vector space of Gaussian random variables: Let Y ∼ Nm(0,Σ) be a random vector in
some probability space (Ω,F ,P). Then, for every vector v ∈ Rm, define the random vari-
able Yv := vtY . Then, for any v1, . . . ,v j, the random variables Yv1, . . . ,Yv j are jointly nor-
mal. The joint distribution of {Yv} is fully specified by noting that Yv have zero mean and
E[YvYu] = vtΣu.

We may interpret this as follows. If Σ is p.d. (p.s.d. and non-singular), then (v,u)Σ :=
vtΣu defines an inner product on Rm. On the other hand, the set L2

0(Ω,F ,P) of real-valued
random variables on Ω with zero mean and finite variance, is also an inner product space
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under the inner product 〈U,V 〉 := E[UV ]. The observation in the previous paragraph is
that v→ Yv is an isomorphism of (Rm,(·, ·)Σ) into L2

0(Ω,F ,P).
In other words, given any finite dimensional inner-product space (V,〈·, ·〉), we can

find a collection of Gaussian random variables on some probability space, such that this
collection is isomorphic to the given inner-product space. Later we shall see the same for
Hilbert spaces4.

Tails of the Gaussian distribution: Recall the standard Gaussian density ϕ(x). The cor-
responding cumulative distribution function is denoted by Φ and the tail is denoted by
Φ̄(x) :=

R
∞

x ϕ(t)dt. The following estimate will be used very often.

Exercise 119. For all x > 0, we have 1√
2π

x
1+x2 e−

1
2 x2 ≤ Φ̄(x)≤ 1√

2π

1
x e−

1
2 x2

In particular5, Φ̄(x)∼

x−1ϕ(x) as x→ ∞. Most often the following simpler bound, valid for x≥ 1, suffices.

1
10x

e−
1
2 x2
≤ Φ̄(x)≤ e−

1
2 x2

.

For t > 0, let pt(x) := 1√
t ϕ(x/

√
t) be the N(0, t) density. We interpret p0(x)dx as the

degenerate measure at 0. These densities have the following interesting properties.

Exercise 120. Show that pt ? ps = pt+s, i.e.,
R
R

pt(x− y)ps(y)dy = pt+s(x).

Exercise 121. Show that pt(x) satisfies the heat equation: ∂

∂t pt(x) = 1
2

∂2

∂x2 pt(x) for all t > 0

and x ∈ R.

Remark 122. Put together, these facts say that pt(x) is the fundamental solution to the heat

equation. This just means that the heat equation ∂

∂t u(t,x) = 1
2

∂2

∂x2 u(t,x) with the initial con-
dition u(0,x) = f (x) can be solved simply as u(t,x) = ( f ? pt)(x) :=

R
R f (y)pt(x− y)dy. This

works for reasonable f (say f ∈ L1(R)).

We shall have many occasions to use the following “integration by parts” formula.

Exercise 123. Let X ∼ Nn(0,Σ) and let F : Rn→ R. Under suitable conditions on F (state
sufficient conditions), show that E [XiF(X)] = ∑

n
j=1 σi jE[∂ jF(X)]. As a corollary, deduce

the Wick formula of Exercise 114.
4This may seem fairly pointless, but here is one thought-provoking question. Given a vector space of

Gaussian random variables, we can multiply any two of them and thus get a larger vector space spanned
by the given normal random variables and all pair-wise products of them. What does this new vector space
correspond to in terms of the original (V,〈·, ·〉)?

5The notation f (x)∼ g(x) means that lim
x→∞

f (x)
g(x) = 1.
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Stein’s equation: Here we may revert to t = 1, thus p1 = ϕ. Then, ϕ′(x) =−xϕ(x). Hence,
for any f ∈C1

b(R), we integrate by parts to get
R

f ′(x)ϕ(x)dx =−
R

f (x)ϕ′(x)dx =
R

f (x)xϕ(x)dx.
If X ∼ N(0,1), then we may write this as

E[(T f )(X)] = 0 for all f ∈C1
b(R), where (T f )(x) = f ′(x)− x f (x). (10)

The converse is also true. Suppose (10) holds for all f ∈ C1
b(R). Apply it to f (x) = eiλx

for any fixed λ ∈ R to get E[XeiλX ] = iλE[eiλX ]. Thus, if ψ(λ) := E[eiλX ] is the characteristic
function of X , then ψ′(λ) = −λψ(λ) which has only one solution, e−λ2/2. Hence X must
have standard normal distribution.

Digression - central limit theorem: One reason for the importance of normal distribution
is of course the central limit theorem. The basic central limit theorem is for Wn := (X1 +
. . .+Xn)/

√
n where Xi are i.i.d. with zero mean and unit variance. Here is a sketch of how

central limit theorem can be proved using Stein’s method. Let f ∈C1
b(R) and observe that

E[Wn f (Wn)] =
√

nE[X1 f (Wn)]. Next, write

f
(

X1 + . . .+Xn√
n

)
≈ f

(
X2 + . . .+Xn√

n

)
+

X1√
n

f ′
(

X2 + . . .+Xn√
n

)
where we do not make precise the meaning of the approximation. Let Ŵn = X2+...+Xn√

n .

Then,

E[Wn f (Wn)]≈
√

nE[X1]E[ f (Ŵn)]+E[X2
1 ]E[ f ′(Ŵn)] = E[ f ′(Ŵn)].

Since Ŵn ≈Wn, this shows that E[T f (Wn)]≈ 0. We conclude that Wn ≈ N(0,1).
There are missing pieces here, most important being the last statement - that if a ran-

dom variable satisfies Stein’s equation approximately, then it must be approximately nor-
mal. When included, one does get a proof of the standard CLT.

Comparison inequalities

The study of the maximum (or supremum) of a collection of Gaussian random variables
is of fundamental importance. In such cases, certain comparison inequalities are helpful
in reducing the problem at hand to the same problem for a simpler correlation matrix.
We start with a lemma of this kind and from which we derive two important results -
Slepian’s inequality, Gordon’s inequality and Sudakov-Fernique inequality6.

6The presentation here is cooked up from Ledoux-Talagrand (the book titled Probability on Banach spaces)
and from Sourav Chatterjee’s paper on Sudakov-Fernique inequality. Chatterjee’s proof can be used to
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Lemma 124 (J.P. Kahane). Let X and Y be n×1 mutivariate Gaussian vectors with equal means,
i.e., E[Xi] = E[Yi] for all i. Let A = {(i, j) : σX

i j < σY
i j} and let B = {(i, j) : σX

i j > σY
i j}. Let f : Rn→R

be any C2 function all of whose partial derivatives up to second order have subgaussian growth
and such that ∂i∂ j f ≥ 0 for all (i, j) ∈ A and ∂i∂ j f ≤ 0 for all (i, j) ∈ B. Then, E[ f (X)]≤ E[ f (Y )].

Proof. First assume that both X and Y are centered. Without loss of generality we may
assume that X and Y are defined on the same probability space and independent of each
other.

Interpolate between them by setting Z(θ) = (cosθ)X + (sinθ)Y for 0 ≤ θ ≤ π

2 so that
Z(0) = X and Z(π/2) = Y . Then,

E[ f (Y )]−E[ f (X)] = E
[Z

π/2

0

d
dθ

f (Z(θ))dθ

]
=

Z
π/2

0

d
dθ

E[ f (Zθ)]dθ.

The interchange of expectation and derivative etc., can be justified by the conditions on f

but we shall omit these routine checks. Further,

d
dθ

E[ f (Zθ)] = E[∇ f (Zθ) · Ż(θ)] =
n

∑
i=1
{−(sinθ)E[Xi∂i f (Zθ)]+(cosθ)E[Yi∂i f (Zθ)]} .

Now use Exercise 123 to deduce (apply the exercise after conditioning on X or Y and using
the independence of X and Y ) that

E[Xi∂i f (Zθ)] = (cosθ)
n

∑
j=1

σ
X
i jE[∂i∂ j f (Zθ)]

E[Yi∂i f (Zθ)] = (sinθ)
n

∑
j=1

σ
Y
i jE[∂i∂ j f (Zθ)].

Consequently,

d
dθ

E[ f (Zθ)] = (cosθ)(sinθ)
n

∑
i, j=1

E[∂i∂ j f (Zθ)]
(
σ

Y
i j−σ

X
i j
)
. (11)

The assumptions on ∂i∂ j f ensure that each term is non-negative. Integrating, we get
E[ f (X)]≤ E[ f (Y )].

It remains to consider the case when the means are not zero. Let µi = E[Xi] = E[Yi] and
set X̂i = Xi−µi and Ŷi =Yi−µi and let g(x1, . . . ,xn) = f (x1 +µ1, . . . ,xn +µn). Then f (X) = g(X̂)
and f (Y ) = g(Ŷ ) while ∂i∂ jg(x) = ∂i∂ j f (x + µ). Thus, the already proved statement for
centered variables implies the one for non-centered variables. �

prove Kahane’s inequality too, and consequently Slepian’s, and that is the way we present it here.
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Special cases of this lemma are very useful. We write X∗ for maxi Xi.

Corollary 125 (Slepian’s inequality). Let X and Y be n×1 mutivariate Gaussian vectors with
equal means, i.e., E[Xi] = E[Yi] for all i. Assume that σX

ii = σY
ii for all i and that σX

i j ≥ σY
i j for all

i, j. Then,

1. For any real t1, . . . , tn, we have P{Xi < ti for all i} ≥ P{Yi < ti for all i}.

2. X∗ ≺ Y ∗, i.e., P{X∗ > t} ≤ P{Y ∗ > t} for all t.

Proof. In the language of Lemma 124 by taking B⊆{(i, i) : 1≤ i≤ n}while A = /0. We would
like to say that the first conclusion follows by simply taking f (x1, . . . ,xn) = ∏

n
i=1 1xi<ti . The

only wrinkle is that it is not smooth. by approximating the indicator with smooth increas-
ing functions, we can get the conclusion.

To elaborate, let ψ ∈ C∞(R) be an increasing function ψ(t) = 0 for t < 0 and ψ(t) = 1

for t > 1. Then ψε(t) = ψ(t/ε) increases to 1t<0 as ε ↓ 0. If fε(x1, . . . ,xn) = ∏
n
i=1 ψε(xi− ti),

then ∂i j f ≥ 0 and hence Lemma 124 applies to show that E[ fε(X)]≤ E[ fε(Y )]. Let ε ↓ 0 and
apply monotone convergence theorem to get the first conclusion.

Taking ti = t, we immediately get the second conclusion from the first. �

Here is a second corollary which generalizes Slepian’s inequality (take m = 1).

Corollary 126 (Gordon’s inequality). Let Xi, j and Yi, j be m×n arrays of joint Gaussians with
equal means. Assume that

1. Cov(Xi, j,Xi,`)≥ Cov(Yi, j,Yi,`),

2. Cov(Xi, j,Xk,`)≤ Cov(Yi, j,Yk,`) if i 6= k,

3. Var(Xi, j) = Var(Yi, j).

Then

1. For any real ti, j we have P

{T
i

S
j
{Xi, j < ti, j}

}
≥ P

{T
i

S
j
{Yi, j < ti, j}

}
,

2. min
i

max
j

Xi, j ≺min
i

max
j

Yi, j.

Exercise 127. Deduce this from Lemma 124.
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Remark 128. The often repeated trick that we referred to is of constructing the two ran-
dom vectors independently on the same space and interpolating between them. Then the
comparison inequality reduces to a differential inequality which is simpler to deal with.
Quite often different parameterizations of the same interpolation are used, for example
Zt =

√
1− t2X + tY for 0≤ t ≤ 1 or Zs =

√
1− e−2sX + e−sY for −∞≤ s≤ ∞.

Studying the maximum of a Gaussian process is a very important problem. Slepian’s
(or Gordon’s) inequality helps to control the maximum of our process by that of a simpler
process. For example, if X1, . . . ,Xn are standard normal variables with positive correlation
between any pair of them, then maxXi is stochastically smaller than the maximum of
n independent standard normals (which is easy). However, the conditions of Slepian’s
inequality are sometimes restrictive, and the conclusions are much stronger than often
required. The following theorem is a more applicable substitute.

Theorem 129 (Sudakov-Fernique inequality). Let X and Y be n×1 Gaussian vectors satisfying
E[Xi] = E[Yi] for all i and E[(Xi−X j)2]≤ E[(Yi−Yj)2] for all i 6= j. Then, E[X∗]≤ E[Y ∗].

Remark 130. Assume that the processes are centered. If the two processes had the same
variances, then the condition E[(Xi−X j)2]≤E[(Yi−Yj)2] would be the same as Cov(Xi,X j)≥
Cov(Yi,Yj). In that case, Slepian’s inequality would apply and we would get the much
stronger conclusion of X∗ ≺ Y ∗. The point here is that we relax the assumption of equal
variances and settle for the weaker conclusion which only compares expectations of the
maxima.

For non-centered processes one may wonder whether it would not be more appropri-
ate to compare Var(Xi−X j) with Var(Yi−Yj) in the assumption. But since E[(Xi−X j)2] =
Var(Xi−X j)+ (E[Xi]−E[X j])2, and the means are assumed to be equal, that would be the
same condition!

Proof. The proof of Lemma 124 can be copied exactly to get (11) for any smooth func-
tion f with appropriate growth conditions. Now we specialize to the function fβ(x) =
1
β

log∑
n
i=1 eβxi where β > 0 is fixed. Let pi(x) = eβxi

∑
n
i=1 eβxi

, so that (p1(x), . . . , pn(x)) is a proba-

bility vector for each x ∈ Rn. Observe that

∂i f (x) = pi(x)

∂i∂ j f (x) = βpi(x)δi, j−βpi(x)p j(x).
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Thus, (11) gives

1
β(cosθ)(sinθ)

d
dθ

E[ fβ(Zθ)] =
n

∑
i, j=1

(σY
i j−σ

X
i j)E

[
pi(x)δi, j− pi(x)p j(x)

]
=

n

∑
i=1

(σY
ii −σ

X
ii )E[pi(x)]−

n

∑
i, j=1

(σY
i j−σ

X
i j)E[pi(x)p j(x)]

Since ∑i pi(x) = 1, we can write pi(x) = ∑ j pi(x)p j(x) and hence

1
β(cosθ)(sinθ)

d
dθ

E[ fβ(Zθ)] =
n

∑
i, j=1

(σY
ii −σ

X
ii )E[pi(x)p j(x)]−

n

∑
i, j=1

(σY
i j−σ

X
i j)E[pi(x)p j(x)]

= ∑
i< j

E[pi(x)p j(x)]
(
σ

Y
ii −σ

X
ii +σ

Y
j j−σ

X
j j−2σ

Y
i j +2σ

X
i j
)

= ∑
i< j

E[pi(x)p j(x)]
(
γ

X
i j− γ

Y
i j
)

where γX
i j = σX

ii +σX
j j−2σX

i j = E[(Xi−µi−X j +µ j)2]. Of course, the latter is equal to E[(Xi−
X j)2]− (µi− µ j)2. Since the µi are the same for X as for Y we get γX

i j ≤ γY
i j. Clearly pi(x) ≥

0 too. Therefore, d
dθ

E[ fβ(Zθ)] ≥ 0 and we get E[ fβ(X)] ≤ E[ fβ(Y )]. Letting β ↑ ∞ we get
E[X∗]≤ E[Y ∗]. �

Remark 131. This proof contains another useful idea - to express maxi xi in terms of fβ(x).
The advantage is that fβ is smooth while the maximum is not. And for large β, the two

are close because maxi xi ≤ fβ(x)≤maxi xi +
logn

β
.

If Sudakov-Fernique inequality is considered a modification of Slepian’s inequality,
the analogous modification of Gordon’s inequality is the following. We leave it as exercise
as we may not use it in the course.

Exercise 132. Let Xi, j and Yi, j be n×m arrays of joint Gaussians with equal means. Assume
that

1. E[|Xi, j−Xi,`|2]≥ E[|Yi, j−Yi,`|2],

2. E[|Xi, j−Xk,`|2]≤ E[|Yi, j−Yk,`|2] if i 6= k.

Then E[min
i

max
j

Xi, j]≥ E[min
i

max
j

Yi, j].
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Remark 133. All through this section, we have stated comparison inequalities for two
Gaussian vectors of the same dimension. What about infinite, even uncountable, index
sets? Indeed, suppose T is an index set and X = (Xt)t∈T is a Gaussian process on T . By
this we just mean that all finite linear combinations c1Xt1 + . . .+ cnXtn , are Gaussian. We
want to talk about X∗T = supt∈T Xt . One possible issue is that this is not measurable. For
instance, if T = [0,1] and Xt , t ∈ T , are i.i.d. N(0,1). But this is hardly of significance.

If there is any reasonable sample-path regularity in t 7→ Xt (for example almost sure
continuity if T has a topology), then X∗ turns out to be measurable trivially. And then it
follows that E[X∗T ] = supF E[X∗F ] where the supremum is over finite F ⊆ T . For example, in
this book we used Gaussian processes such as X(u,v) = vtAu where A is an m× n matrix
with i.i.d. Gaussian entries and u ∈ Sn−1, v ∈ Sm−1. Continuity of X is clear and hence X∗

is well-defined and measurable.
The point of all this is that we may apply all the comparison inequalities we have

obtained to Gaussian processes on arbitrary index sets.

Gaussian isoperimetric inequality

Let γm denotes the standard Gaussian measure on Rm. For a set A ⊆ Rm and ε > 0, let Aε

denote the ε-neighbourhood of A. Let Φ̄(t) = γ1(t,∞) be the tail cumulative distribution
function of the standard Gaussian on the line.

Theorem 134 (Borell, Tsirelson-Ibragimov-Sudakov (1970s)). Let A be any Borel subset of
Rm with γm(A) > 0 and let H be a half-space in Rm with γm(H) = γm(A). Then γm(Aε) ≥ γm(Hε)
for all ε > 0. If A is a closed set with γm(A) > 0, then equality holds for some ε > 0 if and only if A

is a half-space.

The isoperimetric inequality implies concentration inequalities for various functions
of Gaussian random variables.

Theorem 135. Let f : Rn→ R be a Lip(κ) function. Let M f be a median of f , defined by γn{ f ≥
M f } ≥ 1

2 and γn{ f ≤M f } ≥ 1
2 . Then, for every t > 0, we have

γn
{

f −M f ≥ t
}
≤ Φ̄

( t
κ

)
≤ e−

t2

2κ2 , (12)

γn
{
| f −M f | ≥ t

}
≤ 2Φ̄

( t
κ

)
≤ 2e−

t2

2κ2 . (13)
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Proof. If A = { f ≤M f } then At ⊆ { f ≤M f + κt}. But Φ−1(γn(A)) ≥ 0 and hence by (??) we
get Φ−1(γn(At))≥ t. Hence γn{ f ≥M f +κt} ≤ Φ̄(t) which shows the first claim. The second
follows by adding the same estimate for γn{ f ≤M f − t}. �

Remark 136. Since Φ̄(t) is strictly smaller than 1
2 for every t > 0, it follows that the median

is unique! Some examples of Lipschitz functions of interest are maxi xi and d(x,A) for a
fixed closed set A. A smooth function is Lipschitz if and only if its gradient is bounded. It
is also useful to observe that if f = supi∈I fi and each fi is Lip(κ), then so is f .

In many situations, the mean is easier to compute than the median. Here is a simple
way to get a (sub-optimal) concentration inequality around the mean for the same setting
as above. Let f : Rn→ R be a Lip(κ) function and let M f be its median under γn and let
E f =

R
f (x)dγn(x) be its expectation. Using the bound in Theorem 135 we get

E[( f −M f )+] =
Z

∞

0
γn{ f > M f + t}dt ≤

Z
∞

0
Φ̄(t/κ)dt =

κ√
2π

.

The same bound holds for E[( f −M f )−] and we get E[| f −M f |]≤
√

2
π

κ < κ. In particular,

|E f −M f |< κ. Therefore, for t ≥ 2, we get

γn{ f −E f > tκ} ≤ γn

{
f −M f >

t
2

κ

}
≤ Φ̄(t/2),

by another application of Theorem 135. For t ≤ 2, we use the trivial bound γn{ f −E f >

tκ} ≤ 1. Hence CΦ̄(t/2) is a valid bound for all t if we set C = 1/Φ̄(1). Putting all this
together and using the same for deviations below E f we arrive at the following result.

Theorem 137. Let f : Rn→ R be a Lip(κ) function. Let E f =
R

f dγn. Then, for every t > 0, we
have

γn
{

f −E f ≥ t
}
≤ 7Φ̄

( t
2κ

)
≤ 7e−

t2

8κ2 , (14)

γn
{
| f −E f | ≥ t

}
≤ 7Φ̄

( t
2κ

)
≤ 7e−

t2

8κ2 . (15)

We simply replaced Φ̄(1) by the smaller number 1/7.
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Appendix 4: Some combinatorics facts

The Mobius function of a lattice

Let (L,≤) be a finite partially ordered set. If for every x,y ∈ L, there is a unique least
upper bound and a unique greatest lower bound, then we say that L is a lattice. Some of
the generalities below apply to any finite poset, but all our applications of interest are to
lattices. We define the Mobius function of L as the function on L×L satisfying

µ(a,b) :=


1 if a = b

−∑a≤x<b µ(a,x) if a < b,

0 if b < a.

Note that this is defined inductively. First we know µ(a,a). Then we compute µ(a,b)
where a is immediately below b. Then, when there is at most one intermediate element in
any chain connecting a to b, etc. The key property of the Mobius function is that

∑
x: a≤x≤b

µ(a,x) =

1 if a = b,

0 if a < b.

If µ satisfies µ(a,a) = 1 and the above identities, then it must be the Mobius function.

Lemma 138 (Mobius inversion formula). Let f ,g : L 7→ C. If f (b) = ∑
a: a≤b

g(a) for all b, then,

g(b) = ∑
a: a≤b

f (a)µ(a,b) for all b.

Proof. Let h(b) denote the right hand side of the above equation. For any b ∈ L, we have

∑
a: a≤b

h(a) = ∑
a: a≤b

∑
c: c≤a

f (c)µ(c,a) = ∑
c: c≤a

f (c) ∑
a: c≤a≤b

µ(c,a) = f (b).
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Thus, ∑a: a≤b[g(a)−h(a)] = 0 for all b. Starting with the minimal elements and proceeding
upwards inductively, we see that g = h. This proves the lemma. �

Example 139. If L = {0,1, . . . ,n} with the order from Z, then it is easy to work out that
µ(a,a) = 1, µ(a−1,a) =−1 and µ(a,b) = 0 for all other (a,b). Then the lemma just says the
obvious thing that if f (k) = g(0)+ . . .+g(k), then g(k) = f (k)− f (k−1).

Example 140. Let L be the Boolean lattice consisting of all subsets of [n] with inclusion as
the partial order. Then, one can work out that µ(A,B) = (−1)|B\A|. To see this, suppose we
have proved it whenever A ⊆ B and |B \A| ≤ k. Then take A ⊆ B with |B \A| = k + 1. By
definition of the Mobius function,

µ(A,B) =− ∑
C:A⊆C(B

(−1)|C\A| =− ∑
D:D(B\A

(−1)|D| = (−1)|B\A|

where the last equality follows from the fact that for any set S,

∑
D: D⊆S

(−1)|D| =

1 if S = /0,

0 if S 6= /0.

Example 141. Let L = N with a≤ b if a divides b. Then µ(m,n) is equal to (−1)k if n/m is a
product of k distinct primes, and equal to zero if n/m has a square factor (or if m does not
divide n). Check this inductively as in the previous example.

Usually µ(1,n) is simply written as µ(n). The Mobius inversion formula is used fre-
quently in number theory.

Two lattices will be relevant to us in what follows.

The lattice of partitions: Let Pn denote the set of all set-partitions of [n]. The sets that
make up a partition are referred to as blocks. Note that the order of the blocks, or of the
elements in individual blocks are irrelevant.

Example 142. The set P3 consists of the five partitions {{1,2,3}}, {{1,2},{3}}, {{1,3},{2}},
{{2,3},{1}} and {{1},{2},{3}}.

For a partition Π we denote the number of blocks by `(Π) and the individual blocks
by Π j, 1 ≤ j ≤ `(Π). If we ever need to be more definite, we shall define Π1 be the block
containing 1, and Π2 to be the block containing the least element not in Π1, etc. We shall
write |Π j| for the cardinality of the block Π j.
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The most important structure on Pn is the partial order defined by refinement. That is,
Γ ≤ Π if every block of Γ is contained inside a block of Π. In this partial order, there is
a unique maximal element {[n]} and a unique minimal element {{1}, . . . ,{n}}. Further,
this order makes Pn into a lattice, meaning that for any Π,Γ, there is a unique least upper
bound (denoted Π∨Γ) and a unique greatest lower bound (denoted Π∧Γ).

Lemma 143. The Mobius function of Pn is given by

µ(Γ,Π) =
`(Π)

∏
j=1

(−1)`(Γ j)−1(`(Γ j)−1)! for Γ≤Π.

Here Γ j ∈ P (Π j) is the partition of Π j induced by Γ. In particular,

µ(Γ,{[n]}) = (−1)`(Γ)−1(`(Γ)−1)!

Proof of Lemma 143. We claim that for any m≥ 1,

∑
Π∈Pm

(−1)`(Π)−1(`(Π)−1)! = 0. (16)

Assume this, and fix a pair of partitions Γ≤Π. Let Π j be a union of k j blocks of Γ. Then if
Γ≤Θ≤Π, then Θ is naturally identified with a tuple (θ1, . . . ,θ`(Π)), where θi ∈ Pki , i≤ `(Π)
(by considering how the k j blocks of Γ inside Π j are combined in Θ). Therefore,

∑
Θ:Γ≤Θ≤Π

`(Π)

∏
j=1

(−1)`(Θ
j)−1(`(Θ j)−1)! =

`(Π)

∏
j=1

∑
θ∈Pk j

(−1)`(θ
j)−1(`(θ j)−1)! = 0.

This shows that the given formula for µ makes it into the Mobius function. It only remains
to prove (16). Check validity for small m. Assuming the result for Pm, we prove it for Pm+1.
For this, observe the following way to build Pm+1 from Pm. Take any Π in Pm with ` = `(Π)
and consider the `(Π)+ 1 partitions Π0,Π1, . . . ,Π` of [m + 1] where Π j is got by inserting
the element m + 1 into the jth block of Π and Π0 by appending {m + 1} as a singleton
block. As Π varies over Pm, we get each element of Pm+1 exactly once.

Now, write µm(Π) = (−1)`(Π)−1(`(Π)−1)! for Π ∈ Pm. Then

µm+1(Π0) =−µm(Π)`, µm(Π j) = µm(Π), 1≤ j ≤ m,

whence µm+1(Π0)+ . . .+ µm+1(Πm) = 0. Thus, ∑Γ∈Pm+1 µm+1(Γ) = 0. Did we use the result
for m? �
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The lattice of non-crossing partitions: Let NCn denote the set of all non-crossing set-
partitions of [n]. By this we mean Π ∈ Pn for which there does not exist and 1 ≤ i < j <

k < ` ≤ n such that i,k are in one block of Π and j, ` are in a different block. From Pn, the
refinement order is inherited by NCn. It is also a lattice.

Note that by definition, NCn = Pn for n≤ 3. The first non-trivial case is n = 4.

Example 144. In P4 there is only one crossing partition {1,3},{2,4}. Thus, NCn consists of
all elements of Pn except this one.

Now recall the Cataln numbers Cn =
(2n

n

) 1
n+1 .

Lemma 145. The Mobius function of NCn is given by

µ(Γ,Π) =
`(Π)

∏
j=1

(−1)`(Γ j)−1C`(Γ j)−1 for Γ≤Π.

In particular,

µ(Γ,{[n]}) = (−1)`(Γ)−1C`(Γ)−1.

Proof. As in Lemma 143, it suffices to prove that

∑
Γ∈NCm

µm(Γ) = 0

where µm(Γ) = (−1)`(Γ)−1C`(Γ)−1. Here NCm+1 is constructed from NCm as follows. Take

any Π ∈ NCm with `(Π) = ` and construct Π0,Π1, . . . ,Π`′ by either keeping {m + 1} as a
singleton block (that is Π0) or by adding m+1 to one of the blocks of Π so that the result-
ing partition remains non-crossing. The latter may be possible for only `′ = `′(Π) blocks
among the ` blocks. Then,

µm+1(Π0) =−µm(Π)
C`

C`−1
, µm+1(Π j) = µm(Π),1≤ j ≤ `′.

Thus

∑
Γ∈Pm+1

µm+1(Γ) = ∑
Π∈Pm

µm(Π)(`′(Π)− `(Π))

�

133


	The simplest non-trivial matrices
	Jacobi matrices
	The 1-dimensional discrete Laplacian matrix
	Empirical spectral distribution and related notions
	The oscillator matrix
	A class of Jacobi matrices
	Exercises


	The simplest non-trivial random matrix
	Parameterizing a Jacobi matrix by its spectral measure at e1
	The Jacobian determinant
	A class of random Jacobi matrices
	Computation of the Jacobian determinant
	Remarks on the moment problem and Jacobi matrices
	Laguerre Beta ensembles: Another random tridiagonal matrix
	Exercises
	Notes


	The beta log-gas
	The quadratic beta log-gas
	Mehta integral
	The range of the log-gas
	Exercises


	The method of moments applied to Jacobi matrices, deterministic and random
	A class of deterministic Jacobi matrices
	The method of moments
	A more general Jacobi matrix
	The limiting distribution of beta log-gases
	Exercises


	Stieltjes' transform method for Jacobi matrices
	Spectral measure of Tn(f) at e1
	Limiting spectral distribution of Tn(f)
	One dimensional Anderson model and the method of spectral averaging


	Gaussian random matrices
	GOE and GUE
	Reduction to a Jacobi matrix
	Eigenvalue distribution of GOE and GUE
	A direct proof by change of variable? Some remarks
	Generalizations of GOE and GUE in two directions
	Exercises


	Wigner matrices: The semi-circle law
	The invariance principle
	An illustration: The Lindeberg-Feller central limit theorem
	Proof of the invariance principle
	Semicircle law for Wigner matrices


	Moment method applied to GOE and connections to enumeration problems
	Expected ESD of the GOE matrix
	Semi-circle law for a more general class of random matrices


	Free probability and random matrices
	Cumulants and moments in classical probability
	Noncommutative probability spaces, free independence
	Moment-cumulant calculus
	Free convolution
	Integral transforms
	Free central limit theorem
	Random matrices and freeness
	Spectrum of the sum of two matrices and free convolution
	Exercises


	Non-asymptotic questions
	Gaussian matrices
	Rectangular matrices with independent entries


	Appendix 1: Weak convergence and techniques to show it
	Probability measures on the real line
	Stieltjes' transform of a probability measure
	Examples
	Bounding Lévy distance in terms of Stieltjes transform
	Method of moments
	Exercises


	Appendix 2: Some linear algebra facts
	Bounds on eigenvalues
	Perturbations of eigenvalues
	Block matrix inversion formula
	Shooting description of eigenvectors and eigenvalues of a Jacobi matrix


	Appendix 3: Gaussian random variables
	Basics of Gaussians, moments, cumulants
	Comparison inequalities
	Gaussian isoperimetric inequality


	Appendix 4: Some combinatorics facts 
	The Mobius function of a lattice


