Lambert series lie at the heart of modular forms and the theory of the Riemann zeta function. The early pioneers in the subject were Ramanujan and Wigert. We discuss Ramanujan’s formula for odd zeta values and its generalizations and analogues obtained by the speaker with his co-authors culminating into a recent transformation for $\sum_{n=1}^{\infty}\sigma_a(n)e^{-ny}$
for $a\in\mathbb{C}$
and Re$(y)>0$
. We will discuss several applications of this result. A formula of Wigert and its recent analogue found by Soumyarup Banerjee, Shivajee Gupta and the author will be discussed and its application in the zeta-function theory will be given. This talk is an amalagamation of results of the author on this topic from various papers co-authored with Bibekananda Maji, Rahul Kumar, Rajat Gupta, Soumyarup Banerjee and Shivajee Gupta.