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A real vector space A endowed with a commutative ’product’
(x, y)↦ x ○ y is called a Jordan algebra if the multiplication operators
Lxy ∶= x ○ y satisfy the commutator identity

[Lx, Lx2] = 0.

A Jordan algebra A is called euclidean if the symmetric bilinear form

(x∣y) ∶= trA Lx○y

is positive definite. The basic examples are the self-adjoint
(r × r)-matrices A =Hr(K) over K =R,C,H (quaternions) endowed
with the anti-commutator product

x ○ y = 1

2
(xy + yx).

If r = 3 one may also take the Cayley numbers K =O to obtain the
exceptional Jordan algebra H3(O).
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A complex vector space E endowed with a ternary composition

E ×E ×E → E, (u, v,w)↦ {uv∗w}

which is symmetric bilinear in (u,w) and conjugate-linear in v is called a
Jordan triple if the endomorphisms Lu,vw ∶= {uv∗w} satisfy the
commutator identity

[Lu,v, Lx,y] = L{uv∗x},y −Lx,{yu∗v}.

A Jordan triple E is called hermitian if the inner product

(u∣v) ∶= trE Lu,v

is hermitian and positive definite. The basic examples are the matrix
space E =Cr×s endowed with the anti-commutator

{uv∗w} = 1

2
(uv∗w +wv∗u)

and its subtriples Cr×r
sym and Cs×s

asym of symmetric (resp. anti-symmetric)
matrices.
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If A is a euclidean Jordan algebra, then its complexification E = A⊕ iA
becomes a hermitian Jordan triple under

{uv∗w} ∶= (u ○ v∗) ○w + (w ○ v∗) ○ u − (u ○w) ○ v∗

where (x + iy)∗ ∶= x − iy. Conversely, if E is a hermitian Jordan triple
containing a ’unital’ element e ∈ E, satisfying

Le,e = idE ,

then the self-adjoint part

A ∶= {x ∈ E ∶ {ex∗e} = x}

becomes a euclidean Jordan algebra under the product x ○ y ∶= {xe∗y}.
Such Jordan triples are said to be of tube type. For example, E =Cr×s

is of tube type if and only if r = s (square matrices).
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Siegel domain realization of bounded symmetric
domains (Korányi-Wolf)

A bounded symmetric domain is a symmetric space D = G/K of
non-compact type, where G is a semi-simple real Lie group with maximal
subgroup K having a non-discrete center. In the circular Harish-Chandra
realization these domains arise exactly as the unit ball

D = {z ∈ E ∶ ∥z∥ < 1}

of a hermitian Jordan triple E, with respect to the so-called spectral
norm. Consider the Cartan decomposition

g = k⊕ p

of the Lie algebra g of G. Realizing g as holomorphic vector fields h(z) ∂
∂z

on D one shows that k consists of linear vector fields, whereas

p = {(v − {zv∗z}) ∂
∂z
∶ v ∈ E}.
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The stabilizer group K at the origin 0 ∈D consists of (linear) Jordan
triple automorphisms of E. The compact dual manifold M = U/K has
the Lie algebra

u = k⊕ ip

and

ip = {(v + {zv∗z}) ∂
∂z
∶ v ∈ E}.

The matrix case E =Cr×s yields the pseudo-unitary group G = SU(r, s)
acting by Moebius transformations

g(z) = (az + b)(cz + d)−1.

Its compact dual is the Grassmannian M = Grr(Cr+s) with
U = SU(r + s).
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An element c ∈ E satisfying {cc∗c} = c is called a tripotent. For
matrices, these are the ’partial isometries’. Let Sℓ denote the compact
K-homogeneous manifold of all tripotents of rank ℓ ≤ r. According to
Korányi-Wolf, the Cayley transformation induced by a tripotent c is

gc ∶= exp(
π

4
(c + {zc∗z}))

This is a biholomorphic isometry of the compact dual space M. The
original definition used the Harish-Chandra strongly orthogonal roots

γi(ej − {ze∗j z}) ∶= δij

for 1 ≤ i, j ≤ r, where e1, . . . , er is a frame of minimal orthogonal
tripotents. The range

gc(D) =Dc

is the Siegel domain associated with c.
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Any tripotent induces a Peirce decomposition

E = U ⊕ V ⊕W

into eigenspaces of Lc,c for eigenvalue 1, 1
2
,0 resp. In the matrix case

E =Cr×s and c = (1ℓ 0
0 0

) we have

E = ( Cℓ×ℓ Cℓ×(s−ℓ)

C(r−ℓ)×ℓ C(r−ℓ)×(s−ℓ)
) = (U V

V W
) .

We say that c is unital if E = U (V =W = 0) and maximal if
E = U ⊕ V (W = 0). In general, the Peirce 2-space U is always of tube
type. Therefore the self-adjoint part

Ac ∶= {x ∈ U ∶ {cx∗c} = x}

is a euclidean Jordan algebra with unit element c and product
x ○ y ∶= {xc∗y}. Let Ωc ⊂ Ac denote the symmetric cone of Ac, i.e., the
interior of the set of squares in Ac.
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If c is unital then the Cayley transform is

gc(u) = (c − u) ○ (c + u)−1

and its range

Dc = {u ∈ E ∶ u + u∗ ∈ Ωc} = Ωc ⊕ iAc

is a tube domain (Siegel domain of first kind). This is a generalized
(right) half-plane. If c is maximal, the Cayley transform is

gc(u, v) = ((c − u) ○ (c + u)−1,
√
2v ○ (c + u)−1)

and its range

Dc = {u + v ∈ E = U ⊕ V ∶ u + u∗
2
− {cv∗v} ∈ Ωc}

is a Siegel domain (of second kind). If c is arbitrary, one obtains Siegel
domains of third kind in a similar way. These domains are convex and
unbounded (if c ≠ 0.)
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Poisson integral on symmetric domains

The tripotents of maximal rank r are precisely the extreme points of a
bounded symmetric domain D = G/K and form the Shilov boundary
S = Sr. Every g ∈ G has an analytic continuation onto a neighborhood of
D which leaves S invariant. For any z ∈D the isotropy group

Gz ∶= {g ∈ G ∶ g(z) = z}

is compact and acts transitively on S. Let µz be the unique Gz-invariant
probability measure on S. For z = 0 we have G0 =K and put µ ∶= µ0.
The Radon-Nikodym derivative

P(z,w) ∶= µz(dw)
µ(dw)

is the Poisson kernel P ∶D × S →R+. A similar construction holds in
the unbounded setting of Siegel domains.
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For z,w ∈ E define the Bergman endomorphism on E by

Bz,wv = v − 2{zw∗v} + {z{wv∗w}∗z}.

Its determinant is a power

detBz,w = h(z,w)p

of a sesqui-polynomial h ∶ E ×E →C of degree (r, r) called the Jordan
triple determinant. Here p is the so-called ’genus’. For matrices
E =Cr×s we have

Bz,wv = (1r − zw∗)v(1s −w∗z)

and
h(z,w) = det(1r − zw∗) = det(1s −w∗z)

with p = r + s.
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In the bounded setting, Korányi shows that the Szegö kernel (the
reproducing kernel of the Hardy space H2(S)) has the form

S(z,w) = h(z,w)−d/r

where d
r
= 1 + a

2
(r − 1) + b < p − 1 = 1 + a(r − 1) + b. After normalizing the

Lebesgue measure on D the Bergman kernel is

K(z,w) = h(z,w)−p.

For the Poisson kernel he obtains

P(z,w) = ∣S(z,w)∣
2

S(z, z)

which shows the invariance under the action of G. Among other analytic
properties, it is shown that for fixed w ∈ S the function Pw(z) ∶= P(z,w)
on D is harmonic in the sense of symmetric spaces, i.e., it is annihilated
by all G-invariant differential operators (without constant term) on D.
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Harmonic functions and Hua operator
(Johnson-Korányi)

For a symmetric domain D (bounded or unbounded) the Hua operator
HD is a vector-valued operator on D which characterizes the Poisson
integrals

f(z) = (Pϕ)(z) = ∫
S

µ(dζ) P(z, ζ) ϕ(ζ)

of a (bounded) function ϕ on the Shilov boundary S by the Hua
equations HDf = 0. More generally, the higher Poisson integrals

f(z) = (Psϕ)(z) = ∫
S

µ(dζ) P(z, ζ)s ϕ(ζ)

give rise to eigenfunctions

HDf = (d
r
)
2 s(s − 1)

4
f id
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Johnson-Korányi obtain Hua operators with values in kC = LE,E which
satisfy the covariance condition

H(f ○ g)(z) = g′(z)−1 (Hf)(gz) g′(z)
for all g ∈ G, with holomorphic derivative g′(z) ∈KC. Let bi be an
orthonormal basis. Then

HT =∑
ij

L{xbix},bj ⊗
∂2

∂zi∂zj

on the tube domain T = Ω + iA, z = x + iy, and for bounded domains

HD =∑
ij

LB(z,z)bi,bj ⊗
∂2

∂zi∂zj
.

The universal enveloping algebra U(g) consists of all left-invariant
differential operators on G. Since g contains the infinitesimal
transvections (u − {zu∗z}) ∂

∂z
for all u ∈ E, the complex vector fields u ∂

∂z

and {zv∗z} ∂
∂z

for u, v ∈ E belong to gC. Pulled back on G one obtains
(for tube type)

H(2)G =∑
i,j

Lbi,bj ⊗ (bj
∂

∂z
⋅ {zb∗i z}

∂

∂z
) ∈ kC ⊗ U(gC)
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M. Lassalle found Hua operators with values in E. For Jordan triples
one obtains a third order operator

H(3)G = ∑
i,j,k

{bib∗j bk}⊗ ({zb∗kz}
∂

∂z
⋅ bj

∂

∂z
⋅ {zb∗i z}

∂

∂z
) ∈ E ⊗ U(gC)

tube type domains, e ∈ E unital tripotent

H(2)G =∑
i,j

{bib∗j e}⊗ (bj
∂

∂z
⋅ {zb∗i z}

∂

∂z
) ∈ E ⊗ U(gC)

Lassalle’s formula on D

H(2)D =∑
i,j

{e(B1/2
z,z bi)∗(B1/2

z,z bj)}⊗
∂2

∂zi∂zj

unbounded realization (tube domain) z = x + iy, x ∈ Ω

H(2)T =∑
i,j

{xb∗i bj}⊗
∂2

∂zi∂zj
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Holomorphic function spaces and reproducing
kernels (Faraut-Korányi)

Under the natural action of K, the polynomial algebra P(E) has a
multiplicity-free Peter-Weyl decomposition (Hua, Schmid, Kostant)

P(E) =∑
λ

Pλ(E)

into irreducible K-modules Pλ(E), where λ = (λ1 ≥ . . . ≥ λr) is an
arbitrary integer partition of length r. The finite-dimensional Hilbert
space Pλ(E) has a Fischer-Fock reproducing kernel Eλ(z,w). For the
unit ball of rank 1 we have Em(z,w) = (z∣w)

m

m!
. By definition, we have

e(z∣w) =∑
λ

Eλ(z,w).

Let

(p∣q) = ∂pq(0) =
1

πd ∫
E

dz e−(z∣z) p(z) q(z)

denote the Fischer-Fock inner product on P(E).
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The Faraut-Korányi binomial formula is

h(z,w)−s =∑
λ

(s)λ Eλ(z,w)

for all s ∈C, for the multi-variable Pochhammer symbol

(s)λ ∶=
r

∏
j=1

(s − a

2
(j − 1))λj .

Thus the weighted Bergman space H2
s (D) at parameter s > p − 1 has

inner product

(p∣q)s =
1

(s)λ
(p∣q)

for all p, q ∈ Pλ(E). Similarly, the Szego kernel has the expansion

S(z,w) = h(z,w)−d/r =∑
λ

(d/r)λ Eλ(z,w)

and the Hardy norm satisfies

(p∣q)S =
1

(d/r)λ
(p∣q)
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As an application one obtains the analytic continuation of the scalar
holomorphic discrete series (Wallach set) as a disjoint union of

s > a

2
(r − 1) (continuous Wallach set),

s = a

2
(ℓ − 1), ℓ = 1,2, . . . , r (discrete Wallach set).

N(e − x)−s =∑
λ

(s)λΦλ(x)

hypergeometric functions

Fp,q(
s1, . . . , sp
t1, . . . , tq

)(z,w) =∑
λ

(s1)λ⋯(sp)λ
(t1)λ⋯(tq)λ

Eλ(z,w)

Korányi studied asymptotic behaviour, hypergeometric equations,
Kummer relations etc.
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Toeplitz operators on the Lie ball
(Berger-Coburn-Korányi)

Let

h(z,w) =
r

∑
i=0

hi(z,w)

be the homogeneous expansion of the Jordan triple determinant and
define sesqui-polynomials

Fj(z,w) =
j

∑
i=0

(r − i
r − j)hi(z,w).

Then
D = {z ∈ E ∶ Fj(z, z) > 0 ∀ 1 ≤ j ≤ r}

is defined by r analytic inequalities, with Shilov boundary

S = {z ∈ E ∶ Fj(z, z) = 0 ∀ 1 ≤ j ≤ r}.

Since F1(z,w) = r − (z∣w) and Fr(z,w) = h(z,w) we have (z∣z) < r and
h(z, z) > 0 for all z ∈D.
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For the spin factor E =Cd of rank r = 2, we have (z∣w) = 2z ⋅w and
N(z) = z ⋅ z. Hence

F1(z,w) = 2 − (z∣w) = 2(1 − z ⋅w),

F2(z,w) = 1 − (z∣w) +N(z)N(w) = 1 − 2z ⋅w + z ⋅ z w ⋅w.
The associated Lie ball, is thus defined by two analytic inequalities

D = {z ∈Cd ∶ z ⋅ z < 1, 1 − 2z ⋅ z + ∣z ⋅ z∣2 > 0}.

This is an irreducible symmetric domain of rank r = 2. Its Shilov boundary

S = {z ∈Cd ∶ z ⋅ z = 1, 1 − 2z ⋅ z + ∣z ⋅ z∣2 = 0} = T ⋅ Sd−1

is called the Lie sphere. On the other hand, the rank 1 tripotents are
given by the co-sphere bundle

S1 = {
x + iξ
2
∶ ∥x∥ = ∥ξ∥ = 1, x ⋅ ξ = 0} = S∗(Sd−1)
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Let P ∶ L2(S)→H2(S) denote the Szegö projection onto the Hardy
space over the Shilov boundary S. We define the Toeplitz operator Tf

with (continuous) symbol f ∈ C(S) by

Tf(ϕ) ∶= P (fϕ)

for all ϕ ∈H2(S). Thus
Tf = PfP.

These are bounded operators on H2(S) which generate a (highly
non-commutative) Toeplitz C∗-algebra T (S) containing the compact
operators K(H2(S)).
If r = 1 (unit ball) then T /K ≈ C(S) is commutative. For higher rank
r > 1 the situation is much more complicated.
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For every tripotent c of rank ℓ the boundary component

Dc ∶= c +D ∩E0(c) = c + {w ∈ E0(c) ∶ ∥w∥ < 1}

corresponds to a bounded symmetric domain of rank r − ℓ, with Shilov
boundary

Sc ∶= c + Sr−ℓ ∩E0(c).
Let T c denote the ’little’ Toeplitz operator acting on the ’little’ Hardy
space H2(Sc).
Theorem
For every tripotent c the Toeplitz C∗-algebra T (S) has an irreducible
representation

σc ∶ T (S)→ T (Sc) ⊂ L(H2(Sc))
which is uniquely determined by the property

σc(Tf) = T c
fc

for all f ∈ C(S), where fc(ζ) ∶= f(c + ζ). These representations are
pairwise inequivalent.
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With more effort it is proved that the representations σc, for tripotents c
of rank 0 ≤ ℓ ≤ r, constitute the full spectrum of T (S)

SpecT (S) = ⋃
0≤ℓ≤r

Sℓ

endowed with a stratified non-Hausdorff topology. This results in a
composition sequence of C∗-ideals

K = I1 ⊂ I2 ⊂ . . . ⊂ Ir ⊂ T (S)

of length r such that Iℓ+1/Iℓ is stably isomorphic to C(Sℓ). In particular,
for the Lie sphere (r = 2) one obtains

K ⊂ I2 ⊂ T (S)

and the ideal
I2 = K(H2(T))⊗ CZ(Sd−1)

is given by Calderon-Zygmund operators (pseudo-differential operators
of order 0) on Sd−1
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