A description of minimal elements of Shiregions in classical Weyl groups FPSAC 2022, Indian Institute of Science, Bangalore, Inde

Balthazar Charles, balthazar.charles@universite-paris-saclay.fr

Introduction

In this extended abstract, we show how a bijection between parking functions and regions of the Shi arrangement from [3] (in type A_n) and [4] (in type B_n, C_n, D_n) allows for the computation of the minimal elements of the Shi regions. This gives a combinatorial interpretation of these minimal elements: they can be seen as counting non-crossing arcs in non-nesting arc diagrams.

Type A: The Athanasia dis-Linusson bijection

Following [3], a type A_n parking function is a permutation π of $\llbracket 1, n+1 \rrbracket$ along with a non-crossing partition P such that the blocks of P are sorted in π . In type A_{n-1} , $\Phi^+ = \{e_i - e_j | 1 \le i < j \le n+1\}$ thus if v is a vector indexed by Φ^+ , we note $v_{i,j}$ instead of $v_{e_i-e_j}$.

Theorem ([3]). The following procedure is a bijection between Shi regions of $\mathcal{A}_{\widetilde{A}_n}$ and type A_n parking functions. Given a sign type v, construct a permutation π such that (i, j) is an inversion if and only if $v_{i,j} = -$. Then for each (i, j) such that $v_{i,j} = +$, draw an arc between the values i

Affine Weyl groups

Let Φ be a irreducible crystallographic root system, Φ^+ the positive roots, W the associated Weyl group and $\forall (\alpha, k) \in \Phi^+ \times \mathbb{Z}$, define:

 $s_{\alpha,k} = x - 2(\langle x | \alpha \rangle - k) \frac{\alpha}{\langle \alpha | \alpha \rangle}$ and

 $H^{s}_{\alpha,k} = \{x \mid \operatorname{sign}(\langle x | \alpha \rangle) = s\}, s \in \{-, 0, +\}.$

The affine Weyl group W is the group generated by all $s_{\alpha,k}$. The *alcoves* are the connected components of the complement of $\bigcup_{\Phi^+ \times \mathbb{Z}} H^0_{\alpha,k}$. If we decide that the only alcove in $\bigcap_{\Phi^+} H^+_{\alpha,0}$ touching the origin corresponds to the identity, there is a natural bijection between elements of W and the set of alcoves.

and j in π . Remove any arc containing another to get P.

Figure 2: Example for A_5 : the sign type v is given as a pyramid: $v_{i,j}$ is the *i*-th sign from the left on the j - i-th row from the bottom. For instance, the "middle 0" is $v_{2,5}$.

The main ingredient: an obvious lemma

Lemma. Let P be a non-nesting partition and let $\eta_{i,j}$ be the maximal number of non-crossing arcs between a and b. Then for all i, j, k, there is a $\varepsilon \in \{0, 1\}$ such that $\eta_{i,k} = \eta_{i,j} + \eta_{j,k} + \varepsilon$.

Main result in type A

Proposition. Let v be the sign of a Shi region R and (π, P) the parking function associated to it by [AL '99]. Then:

Type W parking functions

In general, for a Weyl group W, a non-crossing partition is an antichain in the root poset (Φ^+, \leq) where $\alpha \geq \beta$ if $\alpha - \beta \in \mathbb{N}\Phi^+$.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Figure 1: The case of \widetilde{A}_2 : $\alpha = e_1 - e_2, \beta = e_2 - e_2$ e_3 . The identity element corresponds to the alcove labeled by 0, 0, 0. The underlined coefficients are negative.

$$\min(R)_{i,j} = \begin{cases} \eta_{i,j} & \text{if } v_{i,j} \in \{0,+\} \\ -(\eta_{i,j}+1) & \text{if } v_{i,j} = - \end{cases}$$

Proof. Check that permuting i, j, k in the lemma gives coefficients respecting the Shi relations. Prove they are minimal by induction on $|\pi^{-1}(i) - \pi^{-1}(j)|.$

Theorem ([4]). There is a bijection, similar to that of [3] between type \widetilde{W} Shi regions and type W parking functions, that is pairs (π, P) with $\pi \in W$ and P a non-crossing partition such that for all $\alpha \in P, \pi(\alpha) \notin \Phi^+$.

Morally, π encodes the position of R with respect to the $H^0_{\alpha,0}$ while P encodes the $H^0_{\alpha,1}$.

Shi encoding

As the hyperplanes $H^0_{\alpha,k}$ are all parallels to $H^0_{\alpha,0}$, an element can be encoded by the number of hyperplanes separating its alcove A_w from the identity element (with a minus sign if $A_w \subset$ $H^{-}_{\alpha,k}$), that is, by the integer vector:

 $K(w) = (\max(i \in \mathbb{Z} | A_w \subset H^+_{\alpha,k}))_{\alpha \in \Phi^+}$

Theorem ([1]). $K : \widetilde{W} \mapsto \mathbb{Z}^{\Phi^+}$ is an injection with image the set of vectors v such that $\forall, \alpha, \beta, \gamma \in \Phi^+, \gamma = \alpha + \beta \implies \exists \varepsilon \in \{0, 1\} such$ that $v_{\gamma} = v_{\alpha} + v_{\beta} + \varepsilon$.

Generalizing to classical Weyl types

The classical Weyl group A_n, B_n, C_n, D_n can be realized as permutation groups, and the table below gives a way to associate non-crossing partitions with sets of arcs. We need to check that a non-crossing partition gives non-crossing arcs and that a version of the Lemma applies.

Root $e_i - e_j (ABCD)$ $e_i + e_j (BCD)$ $2e_i (C)$ $e_i (B)$ Extremitiesi to j and -j to -ii to -j and j to -ii to -ii to 0 and 0 to -i

In type B, C: write the permutation encoded by In type D: write the permutation in the format: the signs in the format

 $\pi(1) \cdots \pi(n) \ 0 \ \pi(-n) \cdots \pi(-1).$

By convention, the identity written in this format is sorted, hence a parking function corresponds to Let $\eta_{a,b}^+$ be as before except the count ignores a pair (π, P) with π in B_n/C_n and P with sorted $\pi(-n)$ (and similarly $\eta_{a,b}^{-}$). The Lemma applies blocks. The Lemma applies. Note that the use of to $\max(\eta_{a,b}^+, \eta_{a,b}^-)$. the 0 for B_n but not for C_n stems from the fact that B_n and C_n don't have the same root poset. In both case, the proof is the same as in type A.

$$\pi(1) \cdots \pi(n-1) \frac{\pi(n)}{\pi(-n)} \pi(1-n) \cdots \pi(-1)$$

Shi arrangement

The Shi arrangement is $\mathcal{A}_{\widetilde{A}_n} = \bigcup_{\Phi^+ \times \{0,1\}} H^0_{\alpha,k}$. The regions of the Shi arrangement can be seen as sets of elements of W. A region R is caracterized by $\operatorname{sign}(R) = \operatorname{sign}(K(w))$ for any $w \in R$.

Theorem ([2]). Given a region R there exist a unique element $\min(R)$ such that $\forall \alpha \in$ $\Phi^+, K(\min(R))_{\alpha} = \min(K(w)_{\alpha} | w \in R).$

For instance, the minimum element of the region with sign (+, -, -) is (1, -1, -2).

References

Jian Yi Shi. On two presentations of the affine Weyl [3] Christos A Athanasiadis and Svante Linusson. A simgroups of classical types. J. Algebra, 221(1):360-383, 1999.

hyperplanes. Discrete mathematics, 204(1-3):27-39, 1999. |4|

Jian Yi Shi. Sign types corresponding to an affine Weyl group. J. London Math. Soc. (2), 35(1):56-74, 269:647-706, 2015. 1987.

Drew Armstrong, Victor Reiner, and Brendon Rhoades. Parking spaces. Advances in Mathematics,

ple bijection for the regions of the shi arrangement of