A description of minimal elements of Shi regions in classical Weyl groups

FPSAC 2022, Indian Institute of Science, Bangalore, Inde
Balthazar Charles, balthazar.charles@universite-paris-saclay.fr

Type A : The Athanasiadis-Linusson bijection

Following [3], a type A_{n} parking function is a permutation π of $\llbracket 1, n+1 \rrbracket$ along with a non-crossing partition P such that the blocks of P are sorted in π.
In type $A_{n-1}, \Phi^{+}=\left\{e_{i}-e_{j} \mid 1 \leq i<j \leq n+1\right\}$ thus if v is a vector indexed by Φ^{+}, we note $v_{i, j}$ instead of $v_{e_{i}-e_{j}}$

Theorem ([3]). The following procedure is a bijection between Shi regions of $\mathcal{A}_{\widetilde{A}_{n}}$ and type A_{n} parking functions. Given a sign type v, construct a permutation π such that (i, j) is an inversion if and only if $v_{i, j}=-$. Then for each (i, j) such that $v_{i, j}=+$, draw an arc between the values i and j in π. Remove any arc containing another to get P.

Figure 2: Example for A_{5} : the sign type v is given as a pyramid: $v_{i, j}$ is the i-th sign from the left on the $j-i$-th row from the bottom. For instance, the "middle 0 " is $v_{2,5}$

0
0
\qquad

The main ingredient: an obvious lemma

Lemma. Let P be a non-nesting partition and let $\eta_{i, j}$ be the maximal number of non-crossing arcs between a and b. Then for all i, j, k, there is a $\varepsilon \in\{0,1\}$ such that $\eta_{i, k}=\eta_{i, j}+\eta_{j, k}+\varepsilon$.

Main result in type A

Proposition. Let v be the sign of a Shi region R and (π, P) the parking function associated to it by [AL'99]. Then:

$$
\min (R)_{i, j}=\left\{\begin{array}{rl}
\eta_{i, j} & \text { if } v_{i, j} \in\{0,+\} \\
-\left(\eta_{i, j}+1\right) & \text { if } v_{i, j}
\end{array}=-\right.
$$

Proof. Check that permuting i, j, k in the lemma gives coefficients respecting the Shi relations. Prove they are minimal by induction on $\left|\pi^{-1}(i)-\pi^{-1}(j)\right|$.

Type W parking functions

In general, for a Weyl group W, a non-crossing partition is an antichain in the root poset $\left(\Phi^{+}, \leq\right)$where $\alpha \geq \beta$ if $\alpha-\beta \in \mathbb{N} \Phi^{+}$
Theorem ([4]). There is a bijection, similar to that of [3] between type \widetilde{W} Shi regions and type W parking functions, that is pairs (π, P) with $\pi \in W$ and P a non-crossing partition such that for all $\alpha \in P, \pi(\alpha) \notin \Phi^{+}$
Morally, π encodes the position of R with respect to the $H_{\alpha, 0}^{0}$ while P encodes the $H_{\alpha, 1}^{0}$

Generalizing to classical Weyl types

The classical Weyl group $A_{n}, B_{n}, C_{n}, D_{n}$ can be realized as permutation groups, and the table below gives a way to associate non-crossing partitions with sets of arcs. We need to check that a non-crossing partition gives non-crossing arcs and that a version of the Lemma applies.

$$
\begin{array}{c|c|c|c|c}
\text { Root } & e_{i}-e_{j}(A B C D) & e_{i}+e_{j}(B C D) & 2 e_{i}(C) & e_{i}(B) \\
\hline \text { Extremities } & i \text { to } j \text { and }-j \text { to }-i & i \text { to }-j \text { and } j \text { to }-i & i \text { to }-i & i \text { to } 0 \text { and } 0 \text { to }-i
\end{array}
$$

In type B, C : write the permutation encoded by In type D : write the permutation in the format: the signs in the format

$$
\pi(1) \cdots \pi(n) 0 \pi(-n) \cdots \pi(-1) . \quad \pi(1) \cdots \pi(n-1) \underset{\pi(-n)}{\pi(1-n)}
$$

By convention, the identity written in this format is sorted, hence a parking function corresponds to a pair (π, P) with π in B_{n} / C_{n} and P with sorted blocks. The Lemma applies. Note that the use of the 0 for B_{n} but not for C_{n} stems from the fact that B_{n} and C_{n} don't have the same root poset.

Let $\eta_{a, b}^{+}$be as before except the count ignores $\pi(-n)$ (and similarly $\eta_{a, b}^{-}$). The Lemma applies to $\max \left(\eta_{a, b}^{+}, \eta_{a, b}^{-}\right)$
In both case, the proof is the same as in type A.

References

[1] Jian Yi Shi. On two presentations of the affine Weyl groups of classical types. J. Algebra, 221(1):360-383, 1999.
[2] Jian Yi Shi. Sign types corresponding to an affine Weyl group. J. London Math. Soc. (2), 35(1):56-74, 1987.
[3] Christos A Athanasiadis and Svante Linusson. A simple bijection for the regions of the shi arrangement of hyperplanes. Discrete mathematics, 204(1-3):27-39, 1999.
[4] Drew Armstrong, Victor Reiner, and Brendon Rhoades. Parking spaces. Advances in Mathematics, 269:647-706, 2015.

