A STATISTIC FOR REGIONS OF BRAID DEFORMATIONS

Priyavrat Deshpande and Krishna Menon
 Chennai Mathematical Institute, India.

Hyperplane Arrangements

1. A hyperplane arrangement is a finite set \mathcal{A} of affine hyperplanes in \mathbb{R}^{n}.
2. A region is a connected component of $\mathbb{R}^{n} \backslash \bigcup_{H \in \mathcal{A}} H$. The number of regions is denoted by $r(\mathcal{A})$.
3. The characteristic polynomial of \mathcal{A}

$$
\chi_{\mathcal{A}}(t)=\sum_{i=0}^{n}(-1)^{n-i} c_{i} t^{i}
$$

encodes the combinatorics of \mathcal{A}.

Theorem (Zaslavsky, 1975)

$$
r(\mathcal{A})=\sum_{i=0}^{n} c_{i}
$$

Branch Statistic

1. The left-most nodes of a tree form its trunk.
2. The trunk nodes break the tree into twigs.
3. The trunk nodes greater than all trunk nodes after it are called branch nodes.
4. The branch nodes group twigs into branches.

Arrangements of Interest

1. Let S be a finite set of integers such that
$\cdot s, t \notin S, s t>0 \Rightarrow s+t \notin S$.
$\cdot s, t \notin S, s>0, t \leq 0 \Rightarrow s-t \notin S, t-s \notin S$.
Let $m=\max \{|s|: s \in S\}$.
2. The arrangement $\mathcal{A}_{S}(n)$ in \mathbb{R}^{n} is given by

$$
\left\{x_{i}-x_{j}=k \mid k \in S, 1 \leq i<j \leq n\right\} .
$$

3. We have

$$
\sum_{n \geq 0} \chi_{\mathcal{A}_{S}(n)}(t) \frac{x^{n}}{n!}=\left(\sum_{n \geq 0}(-1)^{n} r\left(\mathcal{A}_{S}(n)\right) \frac{x^{n}}{n!}\right)^{-}
$$

Objective

Find a statistic on $\mathcal{T}_{S}(n)$ whose distribution is given by the coefficients of $\chi_{A_{s}(n)}(t)$.

Main Result

The coefficient c_{j} is the number of trees in $\mathcal{T}_{S}(n)$ with j branches.

Figure: The characteristic polynomial of the Linial arrangement in \mathbb{R}^{3} is $t^{3}-3 t^{2}+3 t$.

Background

The set $\mathcal{T}_{S}(n)$ consists of labeled ($m+1$)-ary trees with n nodes such that if $\operatorname{cadet}(i)=j$:
$\cdot \operatorname{lsib}(j) \notin S \cup\{0\} \Rightarrow i<j$.

- $-\operatorname{lsib}(j) \notin S \Rightarrow i>j$.

Cadet of a node is its rightmost node child and $\operatorname{lsib}(j)$ is the number of left-siblings of the node j.

Theorem (Bernardi, 2016)

The regions of $\mathcal{A}_{S}(n)$ are in bijection with the trees in $\mathcal{T}_{S}(n)$.

Figure: (Bernardi, 2016) Trees corresponding to regions of the Catalan arrangement in \mathbb{R}^{3}.

Exponential Structures

Given $c: \mathbb{N} \rightarrow \mathbb{N}$ for each $n, j \in \mathbb{N}$, we define

$$
\begin{aligned}
c_{j}(n) & =\sum_{\left\{B_{1}, \ldots, B_{j}\right\} \in \Pi_{n}} c\left(\left|B_{1}\right|\right) \cdots c\left(\left|B_{j}\right|\right) \\
h(n) & =\sum_{j=0}^{n} c_{j}(n) .
\end{aligned}
$$

In such a situation,

$$
\sum_{n, j \geq 0} c_{j}(n) t t^{j} \frac{x^{n}}{n!}=\left(\sum_{n \geq 0} h(n) \frac{x^{n}}{n!}\right)^{t}
$$

Interpreted as:
$h(n)=$ \# Structures on $[n]$
$c(n)=$ \# Connected structures on $[n]$
$c_{j}(n)=\#$ Structures on $[n]$ with j components

The extended Catalan arrangement

Here $S=\{-m, \ldots, m\}$.
Similar statistics can be defined for other Catalan objects.
Coefficient of t^{j}

$$
C(m, n, j)=\sum_{k=j}^{n}(-1)^{k-j} \frac{(n-1)!}{(k-1)!}\binom{(m+1) n}{n-k} c(k, j)
$$

where $c(k, j)$ are unsigned Stirling numbers of the first kind.

- $r\left(\mathcal{A}_{S}\right)=\frac{n!}{m n+1}\binom{(m+1) n}{n}$, i.e., Fuss-Catalan numbers $\times n!$.
- C $(m, n, j) \leq C(m+1, n, j)$.
- C $(m, n, j) \leq C(m, n+1, j)$.
- $C(m, n, j) \geq C(m, n, j+1)$.

References

