Walks in simplices, cylindric tableaux, and asymmetric exclusion processes

Standard cylindric tableaux (SCT)

An SCT of period $(d, L)=(3,4)$ with inner shape $\mu=[3,1,0]$ and oute shape $\lambda=[5,5,3]$

Cylindric partitions were introduced by Gessel and Krattenthaler [2] and semistandard cylindric tableaux have been studied by Postnikov [6] in connection to Gromov-Witten invariants, and by Neyman [5] in connection to RSK. The resulting cylindric Schur functions have been further studied by McNamara [3].

Walks in simplicial regions

Consider walks in

$$
\Delta_{d, L}=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{N}^{d}: x_{1}+x_{2}+\cdots+x_{d}=L\right\}
$$

with steps $s_{i}=e_{i+1}-e_{i}$ for $1 \leq i \leq n$, with the convention $e_{d+1}:=e_{1}$.

$\overrightarrow{s_{1}}$

Theorem 1 (Mortimer-Prellberg [4])

The number of n-step walks in $\Delta_{3, L}$ starting at $(L, 0, \ldots, 0)$ equals the number of certain Motkin paths of bounded height

A complicated bijective proof is given in [1], along with the following
Theorem 2 (Courtiel-Elvey Price-Marcovici [1])
For any $\mathbf{x} \in \Delta_{d, L}$, there is a bijection
$\{n$-step walks starting at $\mathbf{x}\} \longleftrightarrow\{n$-step walks ending at $\mathbf{x}\}$

Totally asymmetric simple exclusion process (TASEP)
States of the TASEP on the cycle are binary words with d one (representing particles) and L zeros. Each particle can jump counterclockwise if the adjacent site is empty. Let $\mathcal{E}_{d, L}$ be the underlying graph.

Cylindric Robinson-Schensted insertion [5]

Our bijections

Let α be a cylindric shape if period (d, L), let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \Delta_{d, L}$ where $x_{i}=\alpha_{i-1}-\alpha_{i}$ for $1 \leq i \leq d$, and let $u=0^{x_{1}} 10^{x_{2}} 1 \ldots 0^{x_{d}} 1$. Let α^{\prime} be the conjugate of α, let $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{d}\right) \in \Delta_{d, L}$ where $y_{j}=\alpha_{j-1}^{\prime}-\alpha_{j}$ for $1 \leq j \leq L$, and let $u^{r_{c}}=01^{x_{d}} 01^{x_{d-1}} \ldots 01^{x_{1}}$

SCT of period (L,d) with n cells and inner shape α

SCT of period (d, L) with n cells and inner shape α^{\prime}

n-step walks in $\Delta_{L, d}$ starting at \mathbf{y}

reverse-complement
n-step walks in $\mathcal{E}_{L, d}$ starting at $u^{r c}$

References
a [1] J. Courtiel, A. Elvey Price and I. Marcovici, Bijection between walks inside a triangular domain and Motzkin aths of bounded amplitude, Electron. J. Combin. 28, \#2.
[2] I. M Gessel and C. Krattenthaler, Cylindric partition Trans. Amer. Math. Soc. 349, 429-479 (1997).

- [3] P. McNamara, Cylindric skew Schur functions, Adv Math. 205, 275-312 (2006).
- [4] P. Mortimer and T. Prellberg, On the number of walks in a triangular domain, Electron. J. Combin. 22, \#1.64 (2015).
(13] E. Neyman, Cylindric Young Tableaux and their Properties, arXiv:1410.5039 [math].
[6] A. Postnikov, Affine approach to quantum Schubert calculus, Duke Math. J., 128, 473-509 (2005)

