Mockingbird lattices

Samuele Giraudo*

[‡]LIGM, Université Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

Combinatory	logic and	partial orders	
-------------	-----------	----------------	--

Terms	A model of computation Order theoretic properties			
An alphabet is a finite set & whose elements are basic combinators.	• The closure of \rightarrow is the binary relation \Rightarrow on $\mathfrak{T}(\mathfrak{G})$ where $\mathfrak{t} \Rightarrow \mathfrak{t}'$ if (1) $\mathfrak{t} \rightarrow \mathfrak{t}'$:	Let \mathcal{C} be a CLS.		
A variable is any element of the set $\mathbb{X} := \{1, 2, \ldots\}$.	(2) or $\mathfrak{t} = \mathfrak{t}_1 \mathfrak{t}_2$ and $\mathfrak{t}' = \mathfrak{t}'_1 \mathfrak{t}_2$ with $\mathfrak{t}_1 \Rightarrow \mathfrak{t}'_1$;	* $\mathcal C$ has the poset property if \preccurlyeq is a partial order relation.		
\bullet A \mathfrak{G} -term is a binary tree whose leaves are decorated on $\mathfrak{G} \cup \mathbb{X}$.	(3) or $\mathfrak{t} = \mathfrak{t}_1 \mathfrak{t}_2$ and $\mathfrak{t}' = \mathfrak{t}_1 \mathfrak{t}'_2$ with $\mathfrak{t}_2 \Rightarrow \mathfrak{t}'_2$.	In this case the poset of $\mathcal C$ is the poset $\mathcal P_\mathcal C:=(\mathfrak T(\mathfrak G),\preccurlyeq).$		
Let $\mathfrak{T}(\mathfrak{G})$ be the set of the \mathfrak{G} -terms.	A \mathfrak{G} -term \mathfrak{t} rewrites into a \mathfrak{G} -term \mathfrak{t}' if $\mathfrak{t} \Rightarrow \mathfrak{t}'$.			
A combinator is a &-term having no leaf decorated by a variable.	For instance, if C is the CLS (\mathfrak{G} , \rightarrow) where $\mathfrak{G} = \{I, K, S\}$, we have	• C has the lattice property if C has the poset property and each interval of $\mathcal{P}_{\mathcal{C}}$ is a lattice.		
A \mathfrak{G} -term where $\mathfrak{G} = \{\mathbf{A}, \mathbf{B}\}$: With the convention that each in-				
ternal node O associates from left		Here is a part of $G_{\mathcal{C}}$ where \mathcal{C} is the CLS containing \swarrow		
to right, this term is written as	$s \qquad s \qquad$	only I. $\begin{array}{c} I(III) \\ \downarrow \\ I(II) \end{array} \qquad \begin{array}{c} II(II) \\ \downarrow \\ I(II) \end{array}$		
$\begin{array}{cccc} B & 2 & B & 1 \\ B & 2 & B & 1 \end{array} \qquad A (B 2) (2 (B 1)). \end{array}$	K K S I S I	This CLS has the poset property, but as shown by		
Combinatory logic systems	Rewrite graphs	this Hasse diagram, it has not the lattice property. \downarrow		

A rewrite relation is a binary relation \rightarrow on $\mathfrak{T}(\mathfrak{G})$ such that

 $X1 \ldots n \rightarrow t_X$ where $X \in \mathfrak{G}$ and \mathfrak{t}_X is a \mathfrak{G} -term where leaves are decorated on [n]. A combinatory logic system (CLS) is a pair $(\mathfrak{G}, \rightarrow)$ where \mathfrak{G} is an

alphabet and \rightarrow is a rewrite relation.

Here are some basic combinators with their rules:

•	Identity	bird:	1	\rightarrow	1	

• Mockingbird: $M1 \rightarrow 11$

***** Kestrel: $K12 \rightarrow 1$

 $Lark: L12 \rightarrow 1(22)$

***** Cardinal: $C123 \rightarrow 132$ ***** Bluebird: $B123 \rightarrow 1(23)$ • Starling: $\$123 \rightarrow 13(23)$ ♣ Jay: $J1234 \rightarrow 12(143)$

Let C be a CLS.

example.

• The reflexive and transitive closure of \Rightarrow is the preorder \preccurlyeq .

♣ The symmetric closure of \preccurlyeq is the equivalence relation \equiv .

• The rewrite graph $G_{\mathcal{C}}$ of \mathcal{C} is the digraph of the relation \Rightarrow on $\mathfrak{T}(\mathfrak{G})$. • C is locally finite if each \equiv -equivalence class is finite.

S(SS)(K(SS))

S(K(SS)K)(K(SS))

A source of combinatorial questions

Main idea: Use combinatory logic to construct new posets.

Let C be a CLS.

• Prove that C has the poset property.

If it is the case, enumerate its minimal/maximal elements, its covering pairs, and its intervals.

 \clubsuit Prove that $\mathcal C$ has the lattice property.

If it is the case, describe the meet and join operations of the lattices.

The Mockingbird lattices

The Mockingbird CLS The Mockingbird CLS is the CLS $C := (\mathfrak{G}, \rightarrow)$ where $\mathfrak{G} := \{M\}$. Here is a part of $G_{\mathcal{C}}$: R $(\uparrow$ M(MM)M(MM)M M(MMM) MMM MMMM MM Μ MM(MM)M MMM(MMM) MM(MM) M(M(MM))

Lattices of duplicative forests

- A duplicative forest is a forest of planar rooted trees where nodes are either or o.
- Let \mathcal{D}^* be the set of the duplicative forests.
- Let \Rightarrow be the relation on \mathcal{D}^* such that $\mathfrak{f} \Rightarrow \mathfrak{f}'$ if \mathfrak{f}' is obtained by blackening a white node of f and by duplicating its sequence of descendants.

Mockingbird lattices

The Mockingbird lattice M(d) of order $d \ge 0$ is the upper set of $\mathcal{P}_{\mathcal{C}}$ generated by the right comb tree with d + 1 leaves, all decorated by M. Here are the Hasse diagrams of the first Mockingbird lattices:

M(2)

First properties of the Mockingbird CLS

Proposition. *C* is locally finite.

- **Proposition**. *C* has the poset property.
- **Proposition**. Each \equiv -equivalence class of C admits a least and a greatest element.

Therefore, C has the lattice property.

	Some properties
10	ckingbird lattices are
% •	not graded;
% •	not self-dual;
*	not semi-distributive.

Enumerative properties

Tools

To establish the next results, we use the following tools.

- The lattice isomorphism between intervals of $\mathcal{P}_{\mathcal{C}}$ and of \mathcal{D}^* ;
- The space $\mathbb{Q}\langle\langle \mathcal{D}^* \rangle\rangle$ of the formal power series of duplicative forests.

To enumerate a set *S* of duplicative forests,

• we express the characteristic series \mathbf{F}_S of S; • we compute the image of \mathbf{F}_S by the linear map sending $\mathfrak{f} \in \mathcal{D}^*$ to $z^{|\mathfrak{f}|}$. Minimal and maximal elements in $\mathcal{P}_{\mathcal{C}}$

Proposition. The generating series D_{min} of the closed minimal terms of $\mathcal{P}_{\mathcal{C}}$ enumerated w.r.t. their degrees satisfies

$$D_{min} = 1 + z + z D_{min}^2 - z \Big(D_{min} \Big[z := z^2 \Big] \Big)$$

The first numbers are

1, 1, 2, 4, 12, 34, 108, 344, 1136, 3796, 12920.

Elements, covering pairs and intervals in M(d)

Theorem. The generating series H_{gr} of the elements of M(d)enumerated w.r.t. $d \ge 0$ satisfies

```
H_{gr} = 1 + zH_{gr} + z(H_{gr} \boxtimes H_{gr}).
```

The first numbers are

1, 1, 2, 6, 42, 1806, 3263442, 10650056950806, and form Sequence A007018.

***** Two particular elements of $\mathbb{Q}\langle\langle \mathcal{D}^*\rangle\rangle$:

• the series **Id** satisfying

 $\mathbf{Id} = \epsilon + \mathbf{O} + \mathbf{O} + \mathbf{O} + \mathbf{O} + \cdots$ • the series $\mathbf{gr}_{\mathfrak{f}}, \mathfrak{f} \in \mathcal{D}^*$, satisfying

 $\mathsf{gr}_{\mathfrak{f}} := \sum \int \mathfrak{f}'.$ $f \in \mathcal{D}^* f \ll f'$

* The Hadamard product \boxtimes on generating series.

Shortest and longest saturated chains in M(d)

Proposition. For any $d \ge 1$, in M(d), every

shortest saturated chain has length d;

• longest saturated chain has length 2^{d-1} .

Proposition. The generating series D_{max} of the closed maximal terms of $\mathcal{P}_{\mathcal{C}}$ enumerated w.r.t. their degrees satisfies

$$D_{\text{max}} = 1 + z + z D_{\text{max}}^2 - z D_{\text{max}}$$

The first numbers are

1, 1, 1, 2, 4, 9, 21, 51, 127, 323, 835,and form Sequence A001006 (Motzkin numbers).

Proposition. The generating series D_{iso} of the closed terms of $\mathcal{P}_{\mathcal{C}}$ that are both minimal and maximal enumerated w.r.t. their degrees satisfies

$$\mathsf{D}_{iso} = 1 + 2z + z\mathsf{D}_{iso}^2 - z\mathsf{D}_{iso} - z\Big(\mathsf{D}_{iso}\Big[z:=z^2\Big]\Big).$$

The first numbers are 1, 1, 1, 1, 3, 5, 13, 29, 71, 171, 427. **Theorem.** The generating series H_{ni} of the covering pairs of M(d)enumerated w.r.t. $d \ge 0$ satisfies

 $H_{ni} = zH_{ni} + zH_{gr} + 2z(H_{ni} \boxtimes H_{gr}).$

The first numbers are

0, 0, 1, 7, 97, 8287, 29942737, 195432804247687. ◆ **Theorem.** The generating series $H_{ns} = H_{ns}^{(1)}$ of the intervals of M(d) enumerated w.r.t. $d \ge 0$ satisfies $H_{ns} = H_{ns}^{(1)}$ where, for any $k \ge 1$, $H_{ns}^{(k)}$ satisfies

$$\mathsf{H}_{\mathrm{ns}}^{(k)} = 1 + \mathsf{z}\Big(\mathsf{H}_{\mathrm{ns}}^{(k)} \boxtimes \mathsf{H}_{\mathrm{ns}}^{(k)}\Big) + \mathsf{z}\sum_{i \in \llbracket k \rrbracket} \binom{k}{i} \mathsf{H}_{\mathrm{ns}}^{(k+i)}.$$

The first numbers are

1, 1, 3, 17, 371, 144513, 20932611523, 438176621806663544657.

34th International Conference on Formal Power Series and Algebraic Combinatorics, July 18-22, 2022, Bangalore, India

Email address: [¬]samuele.giraudo@univ-eiffel.fr