Mockingbird lattices

Samuele Giraudo*

*LIGM, Université Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

Combinatory logic and partial orders

Terms

\because An alphabet is a finite set \mathfrak{G} whose elements are basic combinators.
$\because A$ variable is any element of the set $\mathbb{X}:=\{1,2, \ldots\}$.
\because A \mathfrak{G}-term is a binary tree whose leaves are decorated on $\mathfrak{G} \cup \mathbb{X}$.
\because Let $\mathfrak{T}(\mathfrak{G})$ be the set of the \mathfrak{G}-terms.
\because A combinator is a $\mathfrak{C -}$-term having no leaf decorated by a variable.

A \mathfrak{G}-term where $\mathfrak{G}=\{\mathrm{A}, \mathrm{B}\}$:

With the convention that each internal node O associates from left to right, this term is written as

A (B2) (2 (B 1))

Combinatory logic systems

$\%$ A rewrite relation is a binary relation \rightarrow on $\mathfrak{T}(\mathfrak{G})$ such that

$$
\mathrm{x}_{1} \ldots n \rightarrow \mathrm{t}_{\mathrm{x}}
$$

where $\mathbf{X} \in \mathfrak{G}$ and $\mathfrak{t}_{\mathrm{X}}$ is a \mathfrak{G}-term where leaves are decorated on $[n]$.
\because A combinatory logic system (CLS) is a pair $(\mathfrak{G}, \rightarrow)$ where \mathfrak{G} is an alphabet and \rightarrow is a rewrite relation.

Here are some basic combinators with their rules
\& Identity bird: $\mathrm{I} 1 \rightarrow 1 \quad$ Cardinal: C123 $\rightarrow 132$
\therefore Mockingbird: M1 \rightarrow 11
$\%$ Kestrel: K12 $\rightarrow 1$
$\%$ Bluebird: B123 $\rightarrow 1$ (23)
\because Lark: L1 $2 \rightarrow 1$ (22)

- Starling: S123 \rightarrow 13(23)
\therefore Jay: J1234 \rightarrow 12(143)

A model of computation

$\%$ The closure of \rightarrow is the binary relation \Rightarrow on $\mathfrak{T}(\mathfrak{G})$ where $\mathfrak{t} \Rightarrow \mathfrak{t}^{\prime}$ if (1) $\mathfrak{t} \rightarrow \mathfrak{t}^{\prime}$;
(2) or $t=t_{1} t_{2}$ and $t^{\prime}=t_{1} t_{2}$ with $t_{1} \Rightarrow t_{1}^{\prime}$;
(3) or $t=t_{1} t_{2}$ and $t^{\prime}=t_{1} t_{2}^{\prime}$ with $t_{2} \Rightarrow t_{2}^{\prime}$.
$\because A \mathfrak{G}$-term \mathfrak{t} rewrites into a \mathfrak{G}-term \mathfrak{t}^{\prime} if $\mathfrak{t} \Rightarrow \mathfrak{t}^{\prime}$.
For instance, if \mathcal{C} is the $\mathrm{CLS}(\mathfrak{G}, \rightarrow)$ where $\mathfrak{G}=\{\mathbf{I}, \mathrm{K}, \mathrm{S}\}$, we have

Rewrite graphs

Let \mathcal{C} be a CLS.
\therefore The reflexive and transitive closure of \Rightarrow is the preorder \preccurlyeq.
\because The symmetric closure of \preccurlyeq is the equivalence relation \equiv.
\because The rewrite graph $G_{\mathcal{C}}$ of \mathcal{C} is the digraph of the relation \Rightarrow on $\mathfrak{T}(\mathfrak{G})$.
$\therefore \mathcal{C}$ is locally finite if each \equiv-equivalence class is finite.

Here is a part of $G_{\mathcal{C}}$ where \mathcal{C} is the CLS of the previous example.

Order theoretic properties

Let \mathcal{C} be a CLS
$\because \mathcal{C}$ has the poset property $\mathrm{if} \preccurlyeq$ is a partial order relation In this case the poset of \mathcal{C} is the poset $\mathcal{P}_{\mathcal{C}}:=(\mathfrak{T}(\mathfrak{G}), \preccurlyeq)$
$\because \mathcal{C}$ has the lattice property if \mathcal{C} has the poset property and each interval of $\mathcal{P}_{\mathcal{C}}$ is a lattice.

Here is a part of $G_{\mathcal{C}}$ where \mathcal{C} is the $\mathcal{C L S}$ containing only I.

This CLS has the poset property, but as shown by this Hasse diagram, it has not the lattice property.

A source of combinatorial questions

Main idea: Use combinatory logic to construct new posets. Let \mathcal{C} be a CLS.
\& Prove that \mathcal{C} has the poset property.
If it is the case, enumerate its minimal/maximal elements, its covering pairs, and its intervals.
\% Prove that \mathcal{C} has the lattice property.
If it is the case, describe the meet and join operations of the lattices.

The Mockingbird lattices

The Mockingbird CLS

The Mockingbird CLS is the CLS $\mathcal{C}:=(\mathfrak{G}, \rightarrow)$ where $\mathfrak{G}:=\{M\}$
Here is a part of G_{C}

First properties of the Mockingbird CLS
※Proposition. \mathcal{C} is locally finite.
\% Proposition. \mathcal{C} has the poset property.
\because Proposition. Each \equiv-equivalence class ofC admits a least and a greatest element.

Mockingbird lattices

The Mockingbird lattice $M(d)$ of order $d \geqslant 0$ is the upper set of $\mathcal{P}_{\mathcal{C}}$ generated by the right comb tree with $d+1$ leaves, all decorated by M .
Here are the Hasse diagrams of the first Mockingbird lattices
$M(0) \simeq M(1)$

Some properties
Mockingbird lattices are
\% not graded;
\% not self-dual;
\% not semi-distributive

Lattices of duplicative forests

\because A duplicative forest is a forest of planar rooted trees where nodes are either 0 or 0 .
\therefore Let \mathcal{D}^{*} be the set of the duplicative forests.
\because Let \Rightarrow be the relation on \mathcal{D}^{*} such that $f \Rightarrow f^{\prime}$ if f^{\prime} is obtained by blackening a white node of f and by duplicating its sequence of descendants.
For instance,

\& Let \ll be the reflexive and transitive closure of \Rightarrow
Proposition. The pair $\left(\mathcal{D}^{*}, \ll\right)$ is a poset.
$\%$ There is more: Proposition. $\left(\mathcal{D}^{*}, \ll\right)$ is a lattice.
Lattice property
Theorem. Any interval of $\mathcal{P}_{\mathcal{C}}$ is isomorphic to an interval of $\left(\mathcal{D}^{*}, \ll\right)$.

Therefore, \mathcal{C} has the lattice property

Enumerative properties

Minimal and maximal elements in $\mathcal{P}_{\mathcal{C}}$

\% Proposition. The generating series $\mathrm{D}_{\text {min }}$ of the closed minimal terms of $\mathcal{P}_{\mathcal{C}}$ enumerated w.r.t. their degrees satisfies

$$
D_{\text {min }}=1+z+z D_{\text {min }}^{2}-z\left(D_{\text {min }}\left[z:=z^{2}\right]\right)
$$

The first numbers are
1, 1, 2, 4, 12, 34, 108, 344, 1136, 3796, 12920
\% Proposition. The generating series $\mathrm{D}_{\text {max }}$ of the closed maximal terms of $\mathcal{P}_{\mathcal{C}}$ enumerated w.r.t. their degrees satisfies

$$
D_{\max }=1+z+z D_{\max }^{2}-z D_{\max }
$$

The first numbers are
1, 1, 1, 2, 4, 9, 21, 51, 127, 323, 835,
and form Sequence A001006 (Motzkin numbers).
$\%$ Proposition. The generating series $\mathrm{D}_{\text {iso }}$ of the closed terms of $\mathcal{P}_{\mathcal{C}}$ that are both minimal and maximal enumerated w.r.t. their degrees satisfies

$$
D_{i s o}=1+2 z+z D_{\text {iso }}^{2}-z D_{\text {iso }}-z\left(D_{\text {iso }}\left[z:=z^{2}\right]\right) .
$$

The first numbers ar
$1,1,1,1,3,5,13,29,71,171,427$

Elements, covering pairs and intervals in $\mathrm{M}(d)$
\% Theorem. The generating series H_{gr} of the elements of $\mathrm{M}(d)$ enumerated w.r.t. $d \geqslant 0$ satisfies

$$
\mathrm{H}_{\mathrm{gr}}=1+\mathrm{zH}_{\mathrm{gr}}+\mathrm{z}\left(\mathrm{H}_{\mathrm{gr}} \boxtimes \mathrm{H}_{\mathrm{gr}}\right)
$$

The first numbers are
1, 1, 2, 6, 42, 1806, 3263442, 10650056950806, and form Sequence A007018
\% Theorem. The generating series H_{ni} of the covering pairs of $\mathrm{M}(d)$ enumerated w.r.t. $d \geqslant 0$ satisfies

$$
\mathrm{H}_{\mathrm{ni}}=\mathrm{zH} \mathrm{H}_{\mathrm{ni}}+\mathrm{zH} \mathrm{Hgr}+2 \mathrm{z}\left(\mathrm{H}_{\mathrm{ni}} \boxtimes \mathrm{H}_{\mathrm{gr}}\right) .
$$

The first numbers are
$0,0,1,7,97,8287,29942737,195432804247687$.
\because Theorem. The generating series $\mathrm{H}_{\mathrm{ns}}=\mathrm{H}_{\mathrm{ns}}^{(1)}$ of the intervals of $\mathrm{M}(d)$ enumerated w.r.t. $d \geqslant 0$ satisfies $\mathrm{H}_{\mathrm{ns}}=\mathrm{H}_{\mathrm{ns}}^{(1)}$ where, for any $k \geqslant 1, \mathrm{H}_{\mathrm{ns}}^{(k)}$ satisfies

$$
\mathrm{H}_{\mathrm{ns}}^{(k)}=1+\mathrm{z}\left(\mathrm{H}_{\mathrm{ns}}^{(k)} \boxtimes \mathrm{H}_{\mathrm{ns}}^{(k)}\right)+\mathrm{z} \sum_{i \in \llbracket k]}\binom{k}{i} \mathrm{H}_{\mathrm{ns}}^{(k+i)} .
$$

The first numbers are
$1,1,3,17,371,144513,20932611523,438176621806663544657$.

