A q-deformation of enriched P-partitions

Darij Grinberg Ekaterina A. Vassilieva
Drexel University École Polytechnique
FPSAC, July 18-22, 2022, Indian Institute of Science, Bengaluru, India

Weighted posets and enriched P-partitions

Let $[n]=\{1,2, \ldots, n\}$ and $\mathbb{P}=\{1,2,3, \ldots\}$. A labelled poset $P=\left([n],<_{P}\right)$ is an arbitrary partial order $<_{P}$ on the set $[n]$. A P-partition is a map $f:[n] \longrightarrow \mathbb{P}$ that satisfies the two following conditions:
(i) If $i<_{P} j$, then $f(i) \leq f(j)$.
(ii) If $i<_{P} j$ and $i>j$, then $f(i)<f(j)$.

We denote $\mathcal{L}_{\mathbb{P}}(P)$ the set of P-partitions. Let $\mathbb{P}^{ \pm}=-\mathbb{P} \cup \mathbb{P}$ be the set of positive and negative integers totally ordered by $-1<1<-2<2<-3<3<\ldots$. An enriched P-partition is a map $f:[n] \longrightarrow \mathbb{P}^{ \pm}$that satisfies the two following conditions:
(i) If $i<_{P} j$ and $i<j$, then $f(i)<f(j)$ or $f(i)=f(j) \in \mathbb{P}$.
(ii) If $i<_{P} j$ and $i>j$, then $f(i)<f(j)$ or $f(i)=f(j) \in-\mathbb{P}$.

A labelled weighted poset is a triple $P=\left([n],<_{P}, \epsilon\right)$ where $\left([n],<_{P}\right)$ is a labelled poset and $\epsilon:[n] \longrightarrow \mathbb{P}$ is a map (called the weight function). Each node of a labelled weighted poset is marked with its label and weight.

Let $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. For $\mathcal{Z} \in\left\{\mathbb{P}, \mathbb{P}^{ \pm}\right\}$, define the generating function $\Gamma_{\mathcal{Z}}\left([n],<_{P}, \epsilon\right)$ corresponding to labelled weighted poset $\left([n],<_{P}, \epsilon\right)$ by

$$
\begin{equation*}
\Gamma_{\mathcal{Z}}\left([n],<_{P}, \epsilon\right)=\sum_{f \in \mathcal{L}_{\mathcal{Z}}\left([n],<_{P}\right)} \prod_{1 \leq i \leq n} x_{|f(i)|}^{\epsilon(i)} \tag{1}
\end{equation*}
$$

Quasisymmetric functions

Let S_{n} be the symmetric group on $[n]$. Given a composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ with n entries, and a permutation $\pi=\pi_{1} \ldots \pi_{n}$ in S_{n}, we let $P_{\pi, \alpha}=\left([n],<_{\pi}, \alpha\right)$ be the labelled weighted poset on $[n]$, where $\pi_{i}<_{\pi} \pi_{j}$ if and only if $i<j$ and α is the weight function sending the vertex labelled π_{i} to α_{i}. For $\mathcal{Z} \in\left\{\mathbb{P}, \mathbb{P}^{ \pm}\right\}$, its generating function

$$
U_{\pi, \alpha}^{\mathcal{Z}}=\Gamma_{\mathcal{Z}}\left([n],<_{\pi}, \alpha\right)
$$

is called the universal quasisymmetric function [5] indexed by π and α.

$$
\pi_{1}, \alpha_{1} \longrightarrow \pi_{2}, \alpha_{2} \longrightarrow \cdots \cdots \cdots \cdots \pi_{n}, \alpha_{n}
$$

Let $\left[1^{n}\right.$] denote the composition with n entries equal to 1 . For each $\pi \in S_{n}$, let $L_{\pi}=$ $U_{\pi,\left[1^{n}\right]}^{\mathbb{P}}$ and $K_{\pi}=U_{\pi,\left[1^{n}\right]}^{\mathbb{P}^{ \pm}}$. The power series L_{π} (resp. K_{π}) are Gessel's fundamental [1] (resp. Stembridge's peak [2]) quasisymmetric functions indexed by π. They are related to the descent set $\operatorname{Des}(\pi)=\{1 \leq i \leq n-1 \mid \pi(i)>\pi(i+1)\}$ and the peak set $\operatorname{Peak}(\pi)=\{2 \leq i \leq n-1 \mid \pi(i-1)<\pi(i)>\pi(i+1)\}$ statistics.

$L_{\pi}\left(K_{\pi}\right)$ depends only on n and $\operatorname{Des}(\pi)(\operatorname{Peak}(\pi))$ and we may write $L_{n, \operatorname{Des}(\pi)}$ $\left(K_{n, \operatorname{Peak}(\pi)}\right)$ instead of $L_{\pi}\left(K_{\pi}\right)$ or even $L_{\operatorname{Des}(\pi)}\left(K_{\operatorname{Peak}(\pi)}\right)$ if n is clear from context. Let $i d_{n}$ and $\overline{i d_{n}}$ denote the permutations in S_{n} given by $i d_{n}=123 \ldots n$ and $\overline{i d_{n}}=$ $n n-1 \ldots 1$. Given a composition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of n entries, define the monomial M_{α} [1], essential $E_{\alpha}[4]$ and enriched monomial $\eta_{\alpha}[3,5]$ quasisymmetric functions

$$
\begin{gathered}
M_{\alpha}=U_{\overline{i d d_{n}}, \alpha}^{\mathbb{P}}=\sum_{i_{1}<\cdots<i_{n}} x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{n}}^{\alpha_{n}}, \quad E_{\alpha}=U_{i d_{n}, \alpha}^{\mathbb{P}}=\sum_{i_{1} \leq \cdots \leq i_{n}} x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{n}}^{\alpha_{n}}, \\
\eta_{\alpha}=U_{i d_{n}, \alpha}^{\mathbb{P}^{ \pm}}=\sum_{i_{1} \leq \cdots \leq i_{n}} 2^{\left|\left\{i_{1}, \ldots, i_{n}\right\}\right|} x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{n}}^{\alpha_{n}}
\end{gathered}
$$

As compositions α such that $|\alpha|=s$ are in bijection with subsets $I \subseteq[s-1]$, one may also reindex these quasisymmetric functions with sets and get M_{I}, E_{I} and η_{I}.

References

[1] I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, 1984 [2] J. Stembridge, Enriched P-partitions, 1997
[3] S. K. Hsiao, Structure of the peak Hopf algebra of quasisymmetric functions, 2007
[4] M. E. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums, 2015
[5] D. Grinberg and E. Vassilieva, Weighted posets and the enriched monomial basis of QSym, 2021

A \mathbf{q}-deformed generating function for \mathbf{P}-partitions

Let $\omega(i, f)=x_{|f(i)|}^{\epsilon(i)}$ be the contributing monomial in the generating function Γ of (1) for vertex i and P-partition f. As per Stembridge, its value does not depend on the sign of f. We break this assumption and write for an additional parameter q :

$$
\omega(i, f, q)=x_{f(i)}^{\epsilon(i)} \text { if } f(i) \in \mathbb{P}, \quad \omega(i, f, q)=q x_{-f(i)}^{\epsilon(i)} \text { if } f(i) \in-\mathbb{P}
$$

Def. Let $q \in \mathbf{k}$ (the base ring of the power series). The q-generating function for enriched P-partitions on the weighted poset $\left([n],<_{P}, \epsilon\right)$ is

This definition covers the cases of Gessel $(q=0)$ and Stembridge $(q=1)$. We further define the q-universal quasisymmetric function $U_{\pi, \alpha}^{q}=\Gamma_{q}\left([n],<_{\pi}, \alpha\right)$.

Prop. Let $q \in \mathbf{k}, \pi \in S_{n}$ and $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ be a composition with n entries.
$U_{\pi, \alpha}^{q}=\sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} ; \\ j \in \operatorname{Peak}(\pi)=i_{j}<1<i_{j+1}}} q^{\left|\left\{j \in \operatorname{Des}(\pi) \mid i_{j}=i_{j+1}\right\}\right|}(q+1)^{\left|\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}\right|} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \ldots x_{i_{n}}^{\alpha_{n}}$
Prop. The product of two q-universal quasisymmetric functions is given by

$$
U_{\pi, \alpha}^{q} U_{\sigma, \beta}^{q}=\sum_{(\tau, \gamma) \in(\pi, \alpha) \uplus(\sigma, \beta)} U_{\tau, \gamma}^{q}
$$

Enriched q-monomials

The enriched q-monomials generalise essential and enriched monomials. For $q \in \mathbf{k}$ and α composition with n entries, define $\eta_{\alpha}^{(q)}=U_{i d_{n}, \alpha}^{q}$. One has $\eta_{\alpha}^{(0)}=E_{\alpha}$ and $\eta_{\alpha}^{(1)}=\eta_{\alpha}$.

Prop. Let $q \in \mathbf{k}$, and let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ be a composition with n entries. Then,

$$
\eta_{\alpha}^{(q)}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{n}}(q+1)^{\left|\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}\right|} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \ldots x_{i_{n}}^{\alpha_{n}}
$$

Thm. Express the quasisymmetric function $U_{\pi, \alpha}^{q}$ in terms of enriched q-monomials:

$$
U_{\pi, \alpha}^{q}=\sum_{\substack{I \subseteq \subseteq \operatorname{Des}(\pi) \\ J \subseteq \operatorname{Peak}(\pi) \\ I \cap J=\emptyset}}(-q)^{|J|}(q-1)^{|I|} \eta_{\alpha \downarrow}^{(q)}
$$

Cor. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ be two compositions. Let $S_{\beta}(\gamma)$ be the set of the positions of the entries of β in a composition $\gamma \in \alpha ш \beta$.

$$
\eta_{\alpha}^{(q)} \eta_{\beta}^{(q)}=\sum_{\substack{\gamma \in \alpha 山 \beta ; \\ I \subseteq S_{\beta}(\gamma) \\ J \subseteq\left(S_{\beta}(\gamma) \backslash\left(S_{\beta}(\gamma)-1\right)\right) \backslash\{1\} \\ I \cap J=\emptyset}}(q-1)^{|I|}(-q)^{|J|} \eta_{\gamma \downarrow I \downarrow \downarrow J}^{(q)} .
$$

Reindex with sets $I \subseteq[s-1]$ such that $\eta_{I}^{(q)}=\sum_{\substack{i i_{1} \leq \ldots \leq i_{s} \\ j \in I \Rightarrow i_{j}=i_{j+1}}}(q+1)^{\left|\left\{i_{1}, \ldots, i_{s}\right\}\right|} x_{i_{1}} \ldots x_{i_{s}}$.
Thm. Let $q \in \mathbf{k}$ be such that $q+1$ is invertible. The family of enriched q-monomial quasisymmetric functions $\left(\eta_{s, I}^{(q)}\right)_{s \geq 0, I \subseteq[s-1]}$ is a basis of QSym. Furthermore

$$
\begin{aligned}
& \eta_{I}^{(q)}=\sum_{I \subseteq J}(q+1)^{s-|J|} M_{J}, \quad(q+1)^{s-|J|} M_{J}=\sum_{J \subseteq I}(-1)^{|\backslash \backslash J|} \eta_{I}^{(q)} . \\
& \eta_{I}^{(q)}=(q+1) \sum_{J \subseteq[s-1]}(-1)^{|J|}(-q)^{|J \backslash I|} L_{J}, \quad(q+1)^{s} L_{J}=\sum_{I \subseteq[s-1]}(-1)^{|I|}(-q)^{|I \backslash J|} \eta_{I}^{(q)} .
\end{aligned}
$$

q-fundamental quasisymmetric functions

The q-fundamental quasisymmetric functions interpolate between Gessel's fundamental and Stembridge peak quasisymmetric functions. Define for $\pi \in S_{n}$ and $q \in \mathbf{k}$ $L_{n, \operatorname{Des}(\pi)}^{(q)}=U_{\pi,\left[1^{n}\right]}^{q}$. For $q=0, L_{n, I}^{(0)}=L_{n, I}$ while for $q=1, L_{n, I}^{(1)}=K_{n, \operatorname{Peak}(I)}$.
Prop. Let $I \subseteq[n-1]$ and $q \in \mathbf{k}$.

$$
L_{I}^{(q)}=\sum_{\substack{J \subseteq I \\ K \subseteq \operatorname{Peak}(I) \\ J \cap K=\emptyset}}(-q)^{|K|}(q-1)^{|J|} \eta_{J \cup(K-1) \cup K}^{(q)}
$$

