A q-deformation of enriched P-partitions

Darij Grinberg Ekaterina A. Vassilieva École Polytechnique Drexel University FPSAC, July 18–22, 2022, Indian Institute of Science, Bengaluru, India

Weighted posets and enriched P-partitions

Let $[n] = \{1, 2, ..., n\}$ and $\mathbb{P} = \{1, 2, 3, ...\}$. A labelled poset $P = ([n], <_P)$ is an arbitrary partial order $<_P$ on the set [n]. A *P*-partition is a map $f : [n] \longrightarrow \mathbb{P}$ that satisfies the two following conditions:

(i) If $i <_P j$, then $f(i) \le f(j)$.

(ii) If $i <_P j$ and i > j, then f(i) < f(j).

We denote $\mathcal{L}_{\mathbb{P}}(P)$ the set of *P*-partitions. Let $\mathbb{P}^{\pm} = -\mathbb{P} \cup \mathbb{P}$ be the set of positive and negative integers totally ordered by $-1 < 1 < -2 < 2 < -3 < 3 < \dots$ An enriched *P*-partition is a map $f : [n] \longrightarrow \mathbb{P}^{\pm}$ that satisfies the two following conditions:

(i) If $i <_P j$ and i < j, then f(i) < f(j) or $f(i) = f(j) \in \mathbb{P}$.

A q-deformed generating function for P-partitions

Let $\omega(i, f) = x_{|f(i)|}^{\epsilon(i)}$ be the contributing monomial in the generating function Γ of (1) for vertex i and P-partition f. As per Stembridge, its value does not depend on the sign of f. We break this assumption and write for an additional parameter q:

 $\omega(i, f, q) = x_{f(i)}^{\epsilon(i)} \text{ if } f(i) \in \mathbb{P}, \qquad \omega(i, f, q) = q x_{-f(i)}^{\epsilon(i)} \text{ if } f(i) \in -\mathbb{P}.$

Def. Let $q \in \mathbf{k}$ (the base ring of the power series). The *q*-generating function for enriched P-partitions on the weighted poset $([n], <_P, \epsilon)$ is

 $\Gamma_q([n], <_P, \epsilon) = \sum \qquad \prod \omega(i, f, q) = \sum \qquad \prod q^{[f(i)<0]} x_{|f(i)|}^{\epsilon(i)}$

(ii) If $i <_P j$ and i > j, then f(i) < f(j) or $f(i) = f(j) \in -\mathbb{P}$.

A labelled weighted poset is a triple $P = ([n], <_P, \epsilon)$ where $([n], <_P)$ is a labelled poset and $\epsilon : [n] \longrightarrow \mathbb{P}$ is a map (called the **weight function**). Each node of a labelled weighted poset is marked with its label and weight.

Let $X = \{x_1, x_2, x_3, \ldots\}$. For $\mathcal{Z} \in \{\mathbb{P}, \mathbb{P}^{\pm}\}$, define the generating function $\Gamma_{\mathcal{Z}}([n], <_P, \epsilon)$ corresponding to labelled weighted poset $([n], <_P, \epsilon)$ by

$$\Gamma_{\mathcal{Z}}([n], <_P, \epsilon) = \sum_{f \in \mathcal{L}_{\mathcal{Z}}([n], <_P)} \prod_{1 \le i \le n} x_{|f(i)|}^{\epsilon(i)}.$$
 (1)

Quasisymmetric functions

Let S_n be the symmetric group on [n]. Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ with nentries, and a permutation $\pi = \pi_1 \dots \pi_n$ in S_n , we let $P_{\pi,\alpha} = ([n], <_{\pi}, \alpha)$ be the labelled weighted poset on [n], where $\pi_i <_{\pi} \pi_j$ if and only if i < j and α is the weight function sending the vertex labelled π_i to α_i . For $\mathcal{Z} \in \{\mathbb{P}, \mathbb{P}^{\pm}\}$, its generating function

 $f \in \mathcal{L}_{\mathbb{P}} \pm ([n], <_P) \ 1 \le i \le n \qquad \qquad f \in \mathcal{L}_{\mathbb{P}} \pm ([n], <_P) \ 1 \le i \le n$

This definition covers the cases of Gessel (q = 0) and Stembridge (q = 1). We further define the q-universal quasisymmetric function $U_{\pi,\alpha}^q = \Gamma_q([n], <_{\pi}, \alpha)$.

Prop. Let
$$q \in \mathbf{k}$$
, $\pi \in S_n$ and $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ be a composition with n entries.

$$U_{\pi,\alpha}^{q} = \sum_{\substack{i_{1} \le i_{2} \le \dots \le i_{n};\\ j \in \operatorname{Peak}(\pi) \Rightarrow i_{j-1} < i_{j+1}}} q^{|\{j \in \operatorname{Des}(\pi)|i_{j}=i_{j+1}\}|} (q+1)^{|\{i_{1},i_{2},\dots,i_{n}\}|} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \dots x_{i_{n}}^{\alpha_{n}}$$

Prop. The product of two q-universal quasisymmetric functions is given by

$$U^{q}_{\pi,\alpha}U^{q}_{\sigma,\beta} = \sum_{(\tau,\gamma)\in(\pi,\alpha)\cup(\sigma,\beta)} U^{q}_{\tau,\gamma}.$$

Enriched q-monomials

The enriched q-monomials generalise essential and enriched monomials. For $q \in \mathbf{k}$ and α composition with *n* entries, define $\eta_{\alpha}^{(q)} = U_{id_n,\alpha}^q$. One has $\eta_{\alpha}^{(0)} = E_{\alpha}$ and $\eta_{\alpha}^{(1)} = \eta_{\alpha}$.

Prop. Let $q \in \mathbf{k}$, and let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ be a composition with n entries. Then,

$$\eta_{\alpha}^{(q)} = \sum_{i_1 \le i_2 \le \dots \le i_n} (q+1)^{|\{i_1, i_2, \dots, i_n\}|} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \dots x_{i_n}^{\alpha_n}.$$

 $U_{\pi,\alpha}^{\mathcal{Z}} = \Gamma_{\mathcal{Z}}([n], <_{\pi}, \alpha)$

is called the **universal quasisymmetric function** [5] indexed by π and α .

$$\pi_1, \alpha_1 \longrightarrow \pi_2, \alpha_2 \longrightarrow \cdots \longrightarrow \pi_n, \alpha_n$$

Let $[1^n]$ denote the composition with n entries equal to 1. For each $\pi \in S_n$, let $L_{\pi} =$ $U_{\pi,\lceil 1^n\rceil}^{\mathbb{P}}$ and $K_{\pi} = U_{\pi,\lceil 1^n\rceil}^{\mathbb{P}^{\pm}}$. The power series L_{π} (resp. K_{π}) are **Gessel's fundamental** [1] (resp. Stembridge's peak [2]) quasisymmetric functions indexed by π . They are related to the descent set $Des(\pi) = \{1 \le i \le n - 1 | \pi(i) > \pi(i + 1)\}$ and the peak set $Peak(\pi) = \{2 \le i \le n - 1 | \pi(i - 1) < \pi(i) > \pi(i + 1)\}$ statistics.

$$L_{\pi} = \sum_{\substack{i_{1} \leq \dots \leq i_{n}; \\ j \in \text{Des}(\pi) \Rightarrow i_{j} < i_{j+1}}} x_{i_{1}} \dots x_{i_{n}}, \qquad K_{\pi} = \sum_{\substack{i_{1} \leq \dots \leq i_{n}; \\ j \in \text{Peak}(\pi) \Rightarrow i_{j-1} < i_{j+1}}} 2^{|\{i_{1},\dots,i_{n}\}|} x_{i_{1}} \dots x_{i_{n}}.$$

 L_{π} (K_{π}) depends only on n and $\text{Des}(\pi)$ ($\text{Peak}(\pi)$) and we may write $L_{n,\text{Des}(\pi)}$ $(K_{n,\text{Peak}(\pi)})$ instead of L_{π} (K_{π}) or even $L_{\text{Des}(\pi)}$ $(K_{\text{Peak}(\pi)})$ if n is clear from context. Let id_n and id_n denote the permutations in S_n given by $id_n = 1 \ 2 \ 3 \dots n$ and $id_n =$ $n n - 1 \dots 1$. Given a composition $\alpha = (\alpha_1, \dots, \alpha_n)$ of *n* entries, define the **monomial** M_{α} [1], essential E_{α} [4] and enriched monomial η_{α} [3, 5] quasisymmetric functions

 $M_{\alpha} = U^{\mathbb{P}} = \sum x_{\alpha}^{\alpha_1} \quad x_{\alpha}^{\alpha_n} \quad E_{\alpha} = U^{\mathbb{P}} = \sum x_{\alpha}^{\alpha_1} \quad x_{\alpha}^{\alpha_n}$

Thm. Express the quasisymmetric function $U_{\pi,\alpha}^q$ in terms of enriched q-monomials: $U_{\pi,\alpha}^{q} = \sum (-q)^{|J|} (q-1)^{|I|} \eta_{\alpha^{\downarrow I \downarrow \downarrow J}}^{(q)}.$ $I \subseteq \text{Des}(\pi)$ $I \cap J = \emptyset$

Cor. Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_m)$ be two compositions. Let $S_\beta(\gamma)$ be the set of the positions of the entries of β in a composition $\gamma \in \alpha \sqcup \beta$.

$$\eta_{\alpha}^{(q)}\eta_{\beta}^{(q)} = \sum_{\substack{\gamma \in \alpha \sqcup \beta; \\ I \subseteq S_{\beta}(\gamma) \\ J \subseteq \left(S_{\beta}(\gamma) \setminus (S_{\beta}(\gamma)-1)\right) \setminus \{1\} \\ I \cap J = \emptyset}} (q-1)^{|I|} (-q)^{|J|} \eta_{\gamma \downarrow I \downarrow \downarrow J}^{(q)}.$$

Reindex with sets
$$I \subseteq [s-1]$$
 such that $\eta_I^{(q)} = \sum_{\substack{i_1 \leq \dots \leq i_s \\ j \in I \Rightarrow i_j = i_{j+1}}} (q+1)^{|\{i_1,\dots,i_s\}|} x_{i_1} \dots x_{i_s}$

Thm. Let $q \in \mathbf{k}$ be such that q + 1 is invertible. The family of enriched q-monomial quasisymmetric functions $(\eta_{s,I}^{(q)})_{s>0,I \subseteq [s-1]}$ is a basis of QSym. Furthermore

$$\eta_{I}^{(q)} = \sum_{I \subseteq J} (q+1)^{s-|J|} M_{J}, \quad (q+1)^{s-|J|} M_{J} = \sum_{J \subseteq I} (-1)^{|I \setminus J|} \eta_{I}^{(q)}.$$

$$\eta_{I}^{(q)} = (q+1) \sum_{I \in I} (-1)^{|J|} (-q)^{|J \setminus I|} L_{J}, \quad (q+1)^{s} L_{J} = \sum_{I \in I} (-1)^{|I|} (-q)^{|I \setminus J|} \eta_{I}^{(q)}.$$

$$\eta_{\alpha} = U_{id_{n},\alpha}^{\mathbb{P}^{\pm}} - \sum_{i_{1} < \dots < i_{n}} x_{i_{1}} \dots x_{i_{n}}, \qquad L_{\alpha} = U_{id_{n},\alpha} - \sum_{i_{1} \leq \dots \leq i_{n}} x_{i_{1}} \dots x_{i_{n}} \\
\eta_{\alpha} = U_{id_{n},\alpha}^{\mathbb{P}^{\pm}} = \sum_{i_{1} \leq \dots \leq i_{n}} 2^{|\{i_{1},\dots,i_{n}\}|} x_{i_{1}}^{\alpha_{1}} \dots x_{i_{n}}^{\alpha_{n}}.$$

As compositions α such that $|\alpha| = s$ are in bijection with subsets $I \subseteq [s - 1]$, one may also reindex these quasisymmetric functions with sets and get M_I , E_I and η_I .

References

[1] I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, 1984 [2] J. Stembridge, Enriched P-partitions, 1997

[3] S. K. Hsiao, Structure of the peak Hopf algebra of quasisymmetric functions, 2007

[4] M. E. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums, 2015

[5] D. Grinberg and E. Vassilieva, Weighted posets and the enriched monomial basis of QSym, 2021

q-fundamental quasisymmetric functions

The *q*-fundamental quasisymmetric functions interpolate between Gessel's fundamental and Stembridge peak quasisymmetric functions. Define for $\pi \in S_n$ and $q \in \mathbf{k}$ $L_{n,\text{Des}(\pi)}^{(q)} = U_{\pi,[1^n]}^q$. For q = 0, $L_{n,I}^{(0)} = L_{n,I}$ while for q = 1, $L_{n,I}^{(1)} = K_{n,\text{Peak}(I)}$.

Prop. Let $I \subseteq [n-1]$ and $q \in \mathbf{k}$.

$$L_I^{(q)} = \sum_{\substack{J \subseteq I \\ K \subseteq \operatorname{Peak}(I) \\ J \cap K = \emptyset}} (-q)^{|K|} (q-1)^{|J|} \eta_{J \cup (K-1) \cup K}^{(q)} .$$

Thm. The family of q-fundamental quasisymmetric functions $(L_{n,I}^{(q)})_{n\geq 0,I\subseteq [n-1]}$ is a basis of QSym iff q is not a root of unity.