

# **BIJECTIONS BETWEEN FIGHTING FISH, PLANAR MAPS AND TAMARI INTERVALS**

CORENTIN HENRIET AND ENRICA DUCHI UNIVERSITÉ PARIS-DIDEROT, FRANCE



## FIGHTING FISH

We define 2 operations on finite words on  $\Sigma = \{E, N, W, S\}$ :

- operation  $\nabla_k$ ,  $k \ge 0$ : replace a subword  $N^k$  by  $EN^kW$ .
- operation  $\Delta_{\ell}$ ,  $\ell \geq 0$  : replace a subword  $W^k$  by  $NW^kS$ .





A fighting fish is a word obtainable from the word ENWS using operations  $\nabla_k$  and  $\Delta_\ell$  for  $k, \ell \geq 1$ . Its size is its semilength (= #E + #N = #W + #S). We denote by  $\mathcal{FF}_n$  the set of fighting fish of size n. See [1] for an introduction/review. Enumerated by  $|\mathcal{FF}_{n+1}| = \frac{2}{(n+1)(2n+1)} {3n \choose n}$  (starting by 1,2,6,22,91,408,...) : same sequence as

# **EXTENDED FIGHTING FISH**

An **extended fighting fish** is a word on  $\{E, N, W, S, V\}$  obtainable from the word ENWS using operations  $\nabla_k$  and  $\Delta_\ell$  for  $k, \ell \ge 1$  and the new operation  $\triangleleft$  that consists in replacing a subword WN by V. Its **size** is its number of lower letters (#E + #N) : V letters are considered as "free steps".

We denote by  $\mathcal{EFF}_n$  the set of extended fighting fish of size *n*, we have  $\mathcal{FF}_n \subseteq \mathcal{EFF}_n$ .









nonseparable planar maps, synchronized intervals of the Tamari lattice, two-stack sortable permutations, left ternary trees, ...

# **GENERALIZED FIGHTING FISH**

A generalized fighting fish is a word obtainable from the empt word using operations  $\nabla_k$  and  $\Delta_\ell$  for  $k, \ell \ge 0$ . Its size is its semilength.

We denote by  $\mathcal{GFF}_n$  the set of generalized fighting fish of size n. Note that  $\mathcal{FF} \subseteq \mathcal{GFF}$ . A **down bridge** (resp. **up bridge**) of  $F \in \mathcal{GFF}$  is a decomposition  $F = F_1 E G W F_2$  (resp;  $F = F_1 N G S F_2$ ) such that G and  $F_1 F_2$  are generalized fighting fish.

#### **PLANAR MAPS**

A **planar map** is a proper embedding of a connected multigraph on the plane, defined up to continuous deformations. A planar map splits the plane into **edges**, **vertices** and **faces**. We will always consider planar maps as **rooted** : an edge (the *root edge*) incident to the outer face (the *root face*) is distinguished and oriented towards a vertex (the *root vertex*) such that the outer face is on its right. A **nonseparable planar map** is a planar map without **cut vertices**, i.e. vertices whose deletion would disconnect the map. We denote by  $\mathcal{M}_n$  (resp.  $\mathcal{NSM}_n$ ) the set of planar maps (resp. nonseparable planar maps) with *n* edges.



The **lower jaw** (resp. **upper jaw**) of  $F \in \mathcal{EFF}$  is the maximal integer k such that  $E^k$  is a prefix of F (resp.  $S^k$  is a suffix of F). The **area** of an extended fighting fish is the number of full squares it contains.

The **conjugate** of  $F \in \mathcal{EFF}$  is the extended fighting fish  $\overline{F}$  obtained by reversing F and changing the letters with the rules  $E \leftrightarrow S$ ,  $N \leftrightarrow W$ .

# **INTERVALS OF THE TAMARI LATTICE**



Descent vector :  $\mathbf{D}(P) = (2, 3, 0, 1, 0, 0, 2, 1, 0, 0)$ 

Contact vector :  $\mathbf{C}(P) = (2, 2, 0, 0, 2, 2, 0, 1, 0, 0)$ 

Type vector :  $\mathbf{T}(P) = (1, 1, 0, 0, 1, 1, 0, 1, 0, 0)$ 

A **Dyck path** of **size** *n*, or *n*-Dyck path, is a finite walk from (0,0) to (2n,0) staying weakly below the *x*-axis, with *n* up steps u = (1,1) and *n* down steps d = (1,-1). For a Dyck path *P*, its **last descent** is the number of down steps it ends with, and its **number of contacts** is the number of its down steps ending on the *x*-axis.

The conjugate of a Dyck path is defined inductively :  $\left\{ \frac{\bullet}{P_1} \right\}$ 

 $\overline{\overline{P_1 u P_2 d}} = \overline{P_2 u \overline{P_1} d}$ 

The **Tamari lattice**  $\mathcal{D}_n$  is the set of Dyck paths of size n endowed with the partial order  $\leq$  given by the reflexive and transitive closure of the **right rotation** :



A **Tamari interval** of size *n* is a pair of *n*-Dyck paths [P, Q] with  $P \preceq Q$ .

A **loop** is an edge with both ends incident to the same vertex. A **bridge** is an edge whose deletion would disconnect the map. The **dual** of a rooted planar map M is the map  $\overline{M}$  whose vertices are faces of M, whose edges are the duals of edges of M (linking adjacent faces of M), rooted in such a way that the root face (resp. vertex) of M becomes the root vertex (resp. face) of  $\overline{M}$ .

#### THE MULLIN ENCODING OF A PLANAR MAP

For a planar map M, its Mullin encoding  $\Phi(M)$  is the word obtained via the following procedure :

- 1. Endow M with its rightmost depth-first search spanning tree T.
- 2. Explore the map *M* with a counterclockwise traversal of *T*, register a *E* (resp. a *W*) if we go along an edge of *T* for the first (resp. second) time and register a *N* (resp. S) if we cross an edge not in *T* for the first (resp. second) time.



**THEOREM** [2] :  $\Phi$  is a bijection between  $\mathcal{M}$  and  $\mathcal{GFF}$  and between  $\mathcal{NSM}$  and  $\mathcal{FF}$ , with the following statistics correspondence :

| $\mathcal{M}$   | #edges | #vertices | #faces | #loops      | #bridges      |
|-----------------|--------|-----------|--------|-------------|---------------|
| $\mathcal{GFF}$ | size   | #E+1      | #N+1   | #up bridges | #down bridges |

A Tamari interval [P,Q] is **synchronized** if  $\mathbf{T}(P) = \mathbf{T}(Q)$ .

We denote by  $\mathcal{I}_n$  (resp.  $S\mathcal{I}_n$ ) the set of Tamari intervals (resp. synchronized intervals) of size n. For a Tamari interval I = [P, Q] its **last descent** is the last descent of Q, its **number of contacts** is the number of contacts of P, and its **Tamari distance** is the length of the longest strictly increasing chain from P to Q in the Tamari lattice. The **conjugate** of a Tamari interval I = [P, Q] is  $\overline{I} = [\overline{Q}, \overline{P}]$ .

### **BIJECTION BETWEEN** $\mathcal{I}$ **AND** $\mathcal{EFF}$

Let I = [P, Q] be a Tamari interval of size n, with  $C(I) = (c_0, ..., c_n)$  and  $D(I) = (d_0, ..., d_n)$  its contact and descent vectors. For  $0 \le i \le n$ , we set :

$$w_{i} = E^{c_{i}(P)-1}N$$
$$w_{i} = WS^{d_{n-i}(Q)-1}$$
$$w_{i} = V$$

if  $c_i(P) \ge 1$  and  $d_{n-i}(Q) = 0$ if  $c_i(P) = 0$  and  $d_{n-i}(Q) \ge 1$ if  $c_i(P) = 0$  and  $d_{n-i}(Q) = 0$ 

We define then  $\Psi(I) = Ew_0w_1...w_nS$ .



 $\mathbf{C}(I) = (3, 2, 0, 2, 0, 1, 1, 1, 0, 0, 1, 1, 5, 1, 0, 0, 0, 0, 0)$  $\mathbf{\overline{D}}(I) = (0, 0, 1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 6)$  ${}_{E^{2}NEN W EN V N N N WS^{5} V N N E^{4}N N WS W W WS^{5}}$ 



**THEOREM** [3]:  $\Psi$  is a bijection between  $\mathcal{EFF}$  and  $\mathcal{I}$  and between  $\mathcal{FF}$  and  $\mathcal{SI}$ , with the following statistics correspondence :

#### Also, $\Phi$ preserves duality : $\overline{\Phi(M)} = \Phi(\overline{M})$ . Counting sequence : $|\mathcal{GFF}_n| = |\mathcal{M}_n| = \frac{2.3^n}{(n+1)(n+2)} {2n \choose n}$ (starting by 1,2,9,54,378,2916,...)

#### **SOME PERSPECTIVES :**

- Find a natural master model of fighting fish unifying generalized and extended fighting fish.
- Find bijections between fighting fish and left ternary trees, extended fighting fish and rooted simple triangulations.
- What is the fish model for *m*-Tamari lattices (the *m*-Dyck paths analogue) ?

#### **SOME REFERENCES :**

- [1] *Fighting fish*, Duchi, Guerrini, Rinaldi, Schaeffer (2017).
- [2] *Bijections between fighting fish, planar maps and Tamari intervals,* Duchi, Henriet (2022).
- [3] *A bijection between Tamari intervals and extended fighting fish*, Duchi, Henriet (2022).
- [4] *Higher trivariate diagonal harmonics via generalized Tamari posets*, Bergeron, Préville-Ratelle (2011).
- [5] *The Rise-Contact involution on Tamari intervals,* Pons (2019).

| $\mathcal{I}$ | size     | Tamari    | #valleys | #valleys | #double    | #double    |
|---------------|----------|-----------|----------|----------|------------|------------|
|               |          | distance  | of P     | of Q     | rises of P | rises of Q |
| EFF           | size + 1 | area+size | #E-1     | #W - 1   | #N - 1     | #S - 1     |

Also,  $\Psi$  preserves symmetry :  $\overline{\Psi(I)} = \Psi(\overline{I})$ . Counting sequence :  $|\mathcal{EFF}_{n+1}| = |\mathcal{I}_n| = \frac{2}{(n+1)(3n+2)} {4n+1 \choose n}$  (starting by 1,3,13,68,399,2530,...).

#### **APPLICATION : A FORMULA FOR TAMARI DISTANCE**

With the area-distance correspondence, the following formula came up naturally : THEOREM [3] : For every Tamari interval I = [P, Q], its Tamari distance d(I) writes :

$$\mathsf{d}(I) = \sum_{0 \le i < j \le n} (c_i(P) - 1)(1 - d_{n-j}(Q))$$

See [4] for a symmetric group representation's view of this statistic, and [5] for an exploration of the numerous symmetries of the Tamari world.