Bijections between Fighting Fish, Planar Maps and Tamari Intervals

Corentin Henriet and Enrica Duchi
Université Paris-Diderot, France

Fighting Fish

We define 2 operations on finite words on $\Sigma=\{E, N, W, S\}$

- operation $\nabla_{k}, k \geq 0$: replace a subword N^{k} by $E N^{k} W$
- operation $\triangle_{\ell}, \ell \geq 0$: replace a subword W^{k} by $N W^{k} S$

$E^{4} N E^{2} N W^{2} N_{H} E N N N^{3}$
$W S^{3} W N^{5} E^{1} N^{2} W S W^{4} S$
A fighting fish is a word obtainable from the word $E N W S$ using operations ∇_{k} and \triangle_{ℓ} for :, $\ell \geq 1$. Its size is its semilength $(=\# E+\# N=\# W+\# S)$. We denote by $\mathcal{F \mathcal { F }} \mathcal{F}_{n}$ the set of fighting fish of size n. See [1] for an introduction/review. Enumerated by $\left|\mathcal{F} \mathcal{F}_{n+1}\right|=\frac{2}{(n+1)(2 n+1)}\binom{3 n}{n}$ (starting by $1,2,6,22,91,408, \ldots$): same sequence as nonseparable planar maps, synchronized intervals of the Tamari lattice, two-stack sortable permutations, left ternary trees,

Generalized Fighting Fish

A generalized fighting fish is a word obtainable from the empy word using operations ∇_{k} and Δ_{ℓ} for $k, \ell \geq 0$. Its size is its semilength
We denote by $\mathcal{G \mathcal { F F }}{ }_{n}$ the set of generalized fighting fish of size n. Note that $\mathcal{F F} \subseteq \mathcal{G F F}$ A down bridge (resp. up bridge) of $\mathrm{F} \in \mathcal{G F \mathcal { F }}$ is a decomposition $\mathrm{F}=\mathrm{F}_{1} E G W \mathrm{~F}_{2}$ (resp; $\mathrm{F}=\mathrm{F}_{1} N G S \mathrm{~F}_{2}$) such that G and $\mathrm{F}_{1} \mathrm{~F}_{2}$ are generalized fighting fish.

Planar maps

A planar map is a proper embedding of a connected multigraph on the plane, defined up to continuous deformations. A planar map splits the plane into edges, vertices and faces. We will always consider planar maps as rooted : an edge (the root edge) incident to the outer face (the root face) is distinguished and oriented towards a vertex (the root vertex) such that the outer face is on its right. A nonseparable planar map is a planar map without cut vertices, i.e. vertices whose deletion would disconnect the map. We denote by $\mathcal{M}_{n}\left(\right.$ resp. $\mathcal{N} \mathcal{S} \mathcal{M}_{n}$) the set of planar maps (resp. nonseparable planar maps) with n edges

A loop is an edge with both ends incident to the same vertex. A bridge is an edge whose deletion would disconnect the map. The dual of a rooted planar map M is the map M whose vertices are faces of M, whose edges are the duals of edges of M (linking adjacent faces of M), rooted in such a way that the root face (resp. vertex) of M becomes the root vertex (resp. face) of \bar{M}.

The Mullin encoding of a Planar map

For a planar map M, its Mullin encoding $\Phi(M)$ is the word obtained via the following procedure

1. Endow M with its rightmost depth-first search spanning tree T
2. Explore the map M with a counterclockwise traversal of T, register a E (resp. a W) if we go along an edge of T for the first (resp. second) time and register a N (resp. S) if we cross an edge not in T for the first (resp. second) time.

Theorem [2]: Φ is a bijection between \mathcal{M} and $\mathcal{G F F}$ and between $\mathcal{N S M}$ and $\mathcal{F F}$, with the following statistics correspondence:

\mathcal{M}	\#edges	\#vertices	\#faces	\#loops	\#bridges
$\mathcal{G F F}$	size	$\# E+1$	$\# N+1$	\#up bridges	\#down bridges

Also, Φ preserves duality : $\overline{\Phi(M)}=\Phi(\bar{M})$.
Counting sequence : $\left|\mathcal{G} \mathcal{F} \mathcal{F}_{n}\right|=\left|\mathcal{M}_{n}\right|=\frac{2.3^{n}}{(n+1)(n+2)}\binom{2 n}{n}$ (starting by $1,2,9,54,378,2916, \ldots$)

SOME PERSPECTIVES :

- Find a natural master model of fighting fish unifying generalized and extended fighting fish.
- Find bijections between fighting fish and left ternary trees, extended fighting fish and rooted simple triangulations.
- What is the fish model for m-Tamari lattices (the m-Dyck paths analogue) ?

SOME REFERENCES :

[1] Fighting fish, Duchi, Guerrini, Rinaldi, Schaeffer (2017)
[2] Bijections between fighting fish, planar maps and Tamari intervals, Duchi, Henriet (2022).
[3] A bijection between Tamari intervals and extended fighting fish, Duchi, Henriet (2022).
[4] Higher trivariate diagonal harmonics via generalized Tamari posets, Bergeron, Préville-Ratelle (2011) [5] The Rise-Contact involution on Tamari intervals, Pons (2019).

Extended Fighting Fish

An extended fighting fish is a word on $\{E, N, W, S, V\}$ obtainable from the word $E N W S$ using operations ∇_{k} and \triangle_{ℓ} for $k, \ell \geq 1$ and the new operation \triangleleft that consists in replacing a subword $W N$ by V. Its size is its number of lower letters $(\# E+\# N): V$ letters are considered as "free steps'
We denote by $\mathcal{E \mathcal { F F }}{ }_{n}$ the set of extended fighting fish of size n, we have $\mathcal{F} \mathcal{F}_{n} \subseteq \mathcal{E F F} \mathcal{F}_{n}$

The lower jaw (resp. upper jaw) of $\mathrm{F} \in \mathcal{E F} \mathcal{F}$ is the maximal integer k such that E^{k} is a prefix of F (resp. S^{k} is a suffix of F). The area of an extended fighting fish is the number of full squares it contains.
The conjugate of $\mathrm{F} \in \mathcal{E F F \mathcal { F }}$ is the extended fighting fish $\overline{\mathrm{F}}$ obtained by reversing F and changing the letters with the rules $E \leftrightarrow S, N \leftrightarrow W$

Intervals of the Tamari lattice

Descent vector
$\mathbf{D}(P)=(2,3,0$,
Contact vector:
$\stackrel{\text { Type vector: }}{\mathbf{T}(P)}=(1,1,0,0,1,1,1,0,1,0,0$
A Dyck path of size n, or n-Dyck path, is a finite walk from $(0,0)$ to $(2 n, 0)$ staying weakly below the x-axis, with n up steps $u=(1,1)$ and n down steps $d=(1,-1)$.
For a Dyck path P, its last descent is the number of down steps it ends with, and its number of contacts is the number of its down steps ending on the x-axis
The conjugate of a Dyck path is defined inductively : $\left\{\begin{array}{l}\overline{\boldsymbol{\bullet}}=\boldsymbol{\bullet} \\ \overline{P_{1} u P_{2} d}\end{array}=\overline{P_{2}} u \overline{P_{1}} d\right.$
The Tamari lattice \mathcal{D}_{n} is the set of Dyck paths of size n endowed with the partial order \preceq given by the reflexive and transitive closure of the right rotation

\preceq

A Tamari interval of size n is a pair of n-Dyck paths $[P, Q]$ with $P \preceq Q$
A Tamari interval $[P, Q]$ is synchronized if $\mathbf{T}(P)=\mathbf{T}(Q)$,
We denote by \mathcal{I}_{n} (resp. $\mathcal{S I}_{n}$) the set of Tamari intervals (resp. synchronized intervals) of size n. For a Tamari interval $I=[P, Q]$ its last descent is the last descent of Q, its number of contacts is the number of contacts of P, and its Tamari distance is the length of the longest strictly increasing chain from P to Q in the Tamari lattice.
The conjugate of a Tamari interval $I=[P, Q]$ is $\bar{I}=[\bar{Q}, \bar{P}]$.

BIJECTION BETWEEN \mathcal{I} AND $\mathcal{E F} \mathcal{F}$

Let $I=[P, Q]$ be a Tamari interval of size n, with $\mathbf{C}(I)=\left(\mathrm{c}_{0}, \ldots, \mathrm{c}_{n}\right)$ and $\mathbf{D}(I)=\left(\mathrm{d}_{0}, \ldots, \mathrm{~d}_{n}\right)$ its contact and descent vectors. For $0 \leq i \leq n$, we set

$$
\begin{array}{ll}
w_{i}=E^{\mathrm{c}_{i}(P)-1} N & \text { if } \mathrm{c}_{i}(P) \geq 1 \text { and } \mathrm{d}_{n-i}(Q)=0 \\
w_{i}=W S^{\mathrm{d}_{n-i}(Q)-1} & \text { if } \mathrm{c}_{i}(P)=0 \text { and } \mathrm{d}_{n-i}(Q) \geq 1 \\
w_{i}=V & \text { if } \mathrm{c}_{i}(P)=0 \text { and } \mathrm{d}_{n-i}(Q)=0
\end{array}
$$

We define then $\Psi(I)=E w_{0} w_{1} \ldots w_{n} S$

$\mathbf{C}(I)=(3,2,0,2,0,1,1,1,0,0,1,1,5,1,0,0,0,0,0)$
$\overleftarrow{\mathrm{D}}(I)=(0,0,1,0,0,0,0,0,6,0,0,0,0,0,2,1,1,1,6)$

Theorem [3]: Ψ is a bijection between $\mathcal{E F F}$ and \mathcal{I} and between $\mathcal{F F}$ and $\mathcal{S I}$, with the follow ing statistics correspondence :

\mathcal{I}	size	Tamari distance	\#valleys of P	\#valleys of Q	\#double rises of P	\#double rises of Q
$\mathcal{E F F}$	size +1	area + size	$\# E-1$	$\# W-1$	$\# N-1$	$\# S-1$

Also, Ψ preserves symmetry : $\overline{\Psi(I)}=\Psi(\bar{I})$.
Counting sequence : $\left|\mathcal{E F F}_{n+1}\right|=\left|\mathcal{I}_{n}\right|=\frac{2}{(n+1)(3 n+2)}\binom{4 n+1}{n}$ (starting by 1,3,13,68,399,2530,...).

APPLICATION : A FORMULA FOR TAMARI DISTANCE

With the area-distance correspondence, the following formula came up naturally Theorem [3] : For every Tamari interval $I=[P, Q]$, its Tamari distance $\mathrm{d}(I)$ writes :

$$
\mathrm{d}(I)=\sum_{0 \leq i<j \leq n}\left(\mathrm{c}_{i}(P)-1\right)\left(1-\mathrm{d}_{n-j}(Q)\right)
$$

See [4] for a symmetric group representation's view of this statistic, and [5] for an exploration of the numerous symmetries of the Tamari world.

