

An involution on derangements preserving excedances and right-to-left minima

Notations and Background

Let \mathfrak{S}_n be the set of all permutations, \mathfrak{S}_n^e (\mathfrak{S}_n^o) be the set of all even (odd) permutations, \mathfrak{D}_n be the set of all derangements, and \mathfrak{D}_n^e (\mathfrak{D}_n^o) be the set of all even (odd) derangements of [n].

For any function $g: [n] \longrightarrow [n]$, let $\mathrm{EXCi}(g) \coloneqq \{ j \in [n] : g(j) > j \},\$ $\mathrm{EXCv}(g) \coloneqq \{g(j) : j \in \mathrm{EXCi}(g)\},\$ $RLMi(g) \coloneqq \{i \in [n] : g(i) < g(j) \text{ for all } j \in \{i+1, ..., n\}\},\$ $\operatorname{RLMv}(g) \coloneqq \{g(i) : i \in \operatorname{RLMi}(g)\},\$ $FIX(g) \coloneqq \{i \in [n] : g(i) = i\},\$

Moreover, $exc(g) \coloneqq |EXCi(g)|$ and $rlm(g) \coloneqq |RLMi(g)| = |RLMv(g)|$.

Note that, $|\operatorname{EXCv}(\sigma)| = |\operatorname{EXCi}(\sigma)| = \operatorname{exc}(\sigma)$, for any $\sigma \in \mathfrak{S}_n$

A subexcedant function f on $[n]: f : [n] \longrightarrow [n]$ such that

 $1 \leq f(i) \leq i$, for all $1 \leq i \leq n$.

 \mathcal{F}_n : the set of all subexcedant functions on [n]. And $IM(f) \coloneqq \{f(i) : i \in [n]\}$ is the *image* of $f \in \mathcal{F}_n$. The bijection sefToPerm : $\mathcal{F}_n \longrightarrow \mathfrak{S}_n$, from [2], is defined as: $\mathtt{sefToPerm}(f) \coloneqq (n \ f(n)) \cdots (2 \ f(2))(1 \ f(1)).$

For $\sigma \in \mathfrak{S}_n$ and $j \in [n]$, the j^{th} entry of sefToPerm⁻¹(σ) is

$$\texttt{sefToPerm}^{-1}(\sigma)_j \coloneqq \begin{cases} \sigma(n) \text{ if } j = n, \\ \texttt{sefToPerm}^{-1} \left(\left(n \ \sigma(n) \right) \circ \sigma \right)_j & \texttt{otherwise}. \end{cases}$$

For example, the corresponding subexcedant function of $\sigma = 612935487 \in \mathfrak{S}_9$ is $f_{\sigma} = 112435487 \in \mathcal{F}_9.$

An involution

A subexcedant function f is matchless if it is of the form

 $f \coloneqq 11234...k-1 \ k \ k...k$ for $1 \le k \le n-1$.

There are n-1 matchless subexcedant functions of length n.

 \mathcal{DF}_n : the set of subexcedant functions corresponding to derangements of [n]. Define $\Psi : \mathcal{DF}_n \longrightarrow \mathcal{DF}_n$ below, where $f_\tau \coloneqq \Psi(f_\sigma)$. First, if f_σ is matchless, we set $f_{\tau} \coloneqq f_{\sigma}$. Now we assume that f_{σ} is non-matchless and let

 $\mathrm{IM}(f_{\sigma}) = \{\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3, \dots, \mathbf{m}_{\ell}\}.$

Now define two auxiliary maps, fix_i, unfix_i on subexcedant functions. For $i \in i$ $\{2,\ldots,\ell\},\$

 $\texttt{fix}_i(f_{\sigma})(\mathbf{m}_i) \coloneqq \mathbf{m}_i, \qquad \texttt{unfix}_i(f_{\sigma})(\mathbf{m}_i) \coloneqq \mathbf{m}_{i-1}$

while the remaining entries of f_{σ} are untouched. For $i \in \{2, \ldots, \ell\}$, we say that f_{σ} satisfies \circledast_i if the three conditions

 $f_{\sigma}(\mathbf{m}_{i}) < \mathbf{m}_{i} < \mathbf{m}_{\ell}, \quad f_{\sigma}^{-1}(1) = \{1, 2\}, \text{ and } \{\mathbf{m}_{i} + 1\} \subsetneq f_{\sigma}^{-1}(\mathbf{m}_{i}),$ hold. Now let $i \in \{2, \ldots, \ell\}$ be the *smallest* element satisfying one of the cases below, and let f_{τ} be given as described in each case.

 \heartsuit_i : If $f_{\sigma}(\mathbf{m}_i) = \mathbf{m}_i$, then $f_{\tau} \coloneqq \operatorname{unfix}_i(f_{\sigma})$. ϕ_i : If $f_{\sigma}(\mathbf{m}_i) < \mathbf{m}_i$ and $|f_{\sigma}^{-1}(1)| \ge 3$, then $f_{\tau} := \mathtt{fix}_i(f_{\sigma})$. \Diamond_i : If \circledast_i holds and $f_{\sigma}(\mathbf{m}_{i+1}) = \mathbf{m}_{i+1}$, then $f_{\tau} \coloneqq \operatorname{unfix}_{i+1}(f_{\sigma})$. \mathbf{A}_i : If \mathbf{w}_i holds and $f_{\sigma}(\mathbf{m}_{i+1}) < \mathbf{m}_{i+1}$, then $f_{\tau} \coloneqq \mathtt{fix}_{i+1}(f_{\sigma})$.

Per Alexandersson¹ Frether Getachew Kebede²

¹Stockholms University, Sweden

²Addis Ababa University, Ethiopia

Examples of the involution

- **1.** Let $f_{\sigma} = 1133535$. Then f_{σ} is in case \heartsuit_2 and $f_{\tau} = \text{unfix}_2(f_{\sigma}) = 1113535$. 2. Now let $f_{\sigma} = 1121355$. Since $f_{\sigma}(2) < 2$ and $|f_{\sigma}^{-1}(1)| = 3$, then f_{σ} is in case \blacklozenge_2 . Thus,
 - $f_{\tau} = \mathtt{fix}_2(f_{\sigma}) = 1221355.$
- **3.** Suppose that $f_{\sigma} = 1123535$. f_{σ} is in case \diamondsuit_3 and $f_{\tau} = \operatorname{unfix}_{i+1}(f_{\sigma}) = \operatorname{unfix}_4(f_{\sigma}) = 1123335.$
- **4.** Now take $f_{\sigma} = 1123445$. It is in A_4 and $f_{\tau} = fix_5(f_{\sigma}) = 1123545$.

Properties of the involution

- 1. The image is preserved, $IM(f_{\sigma}) = IM(\Psi(f_{\sigma}))$.
- 2. If $f_{\tau} = \Psi(f_{\sigma})$, then $\text{EXCv}(\sigma) = \text{EXCv}(\tau)$.
- 3. The set of right-to-left minima is preserved, $\operatorname{RLMv}(f_{\sigma}) = \operatorname{RLMv}(\Psi(f_{\sigma}))$.
- 4. Ψ changes the parity of a non-matchless subexcedant function.

We now have an involution on derangements $\hat{\Psi} : \mathfrak{D}_n \to \mathfrak{D}_n$ by setting $\hat{\Psi}(\sigma) \coloneqq (\texttt{sefToPerm} \circ \Psi \circ \texttt{sefToPerm}^{-1})(\sigma), \text{ for } \sigma \in \mathfrak{D}_n,$

with properties:

- **1.** The excedance value set is preserved, $\text{EXCv}(\hat{\Psi}(\sigma)) = \text{EXCv}(\sigma)$.
- 2. The set of right-to-left minima is preserved, $RLMv(\hat{\Psi}(\sigma)) = RLMv(\sigma)$.
- 3. Whenever σ is a non-matchless derangement (the corresponding f_{σ} is non-matchless), $\hat{\Psi}$ changes the parity of σ .

Consequences of the involution

Theorem 1: We have that

$$\sum_{\pi \in \mathfrak{D}_n} (-1)^{\mathrm{inv}(\pi)} \left(\prod_{j \in \mathrm{RLMv}(\pi)} x_j \right) \left(\prod_{j \in \mathrm{EXCv}(\pi)} y_j \right) = (-1)^{n-1} \sum_{j=1}^{n-1} x_1 \cdots x_j$$

Moreover,

$$\sum_{\pi \in \mathfrak{D}_n} (-1)^{\mathrm{inv}(\pi)} \left(\prod_{j \in \mathrm{RLMi}(\pi)} x_j \right) \left(\prod_{j \in \mathrm{EXCi}(\pi)} y_j \right) = (-1)^{n-1} \sum_{j=1}^{n-1} y_1 \cdots y_j x_j$$

Corollary 2: By letting $x_i \to 1$ and $y_i \to t$, we have that

$$\sum_{e \in \mathfrak{D}_n} (-1)^{\operatorname{inv}(\pi)} t^{\operatorname{exc}(\pi)} = (-1)^{n-1} (t + t^2 + \dots + t^{n-1}).$$

By comparing coefficients of t^k , we get

$$|\{\pi \in \mathfrak{D}_n^e : \exp(\pi) = k\}| - |\{\pi \in \mathfrak{D}_n^o : \exp(\pi) = k\}| = (-1)^r$$

or every $n \ge 1$ and $1 \le k \le n-1$. Equation (4) studied by R.

for every
$$n \ge 1$$
 and $1 \le k \le n - 1$. Equation (4) studied by R. Rakotondrajao in [3]. Similarly,

$$\sum_{\pi \in \mathfrak{D}_n} (-1)^{\mathrm{inv}(\pi)} t^{\mathrm{rlm}(\pi)} = (-1)^{n-1} (t + t^2 + \dots + t^{n-1}).$$

(*)

 $y_{j+1} \cdots y_n$. (1) $x_{j+1}\cdots x_n$. (2) (3)

n-1(4)

Mantaci and F.

(5)

A proof using generating functions

Mantaci, in [1], proved Proposition 3 by introducing a bijection on \mathfrak{S}_n that preserves the set of excedances and changes the sign of non-fixed elements of the bijection. **Proposition 3:** Let $n \ge 1$, then

$$\sum_{\pi \in \mathfrak{S}_n} (-1)^{\mathrm{inv}(\pi)} \left(\prod_{j \in \mathrm{EXCi}(\pi)} x_j \right) = \prod_{j \in [n-1]} (1-x_j) \sum_{E \subseteq [n-1]} \sum_{i \in [n-1]} (1-x_i) \sum_{i \in [n$$

In particular, by setting all x_i equal to t, we have

$$\sum_{\pi \in \mathfrak{S}_n^e} t^{\operatorname{exc}(\pi)} - \sum_{\pi \in \mathfrak{S}_n^o} t^{\operatorname{exc}(\pi)} = (1-t)^{n-1}$$

Proposition 4: Let $n \ge 1$ and let $T \subseteq [n]$. Let $m \le n$ be the largest integer not in T and set $E = \{1, 2, ..., m - 1\} \setminus T$. Then

$$\sum_{\substack{\pi \in \mathfrak{S}_n \\ \Gamma \subseteq \mathrm{FIX}(\pi)}} (-1)^{\mathrm{inv}(\pi)} \left(\prod_{j \in \mathrm{EXCi}(\pi)} x_j \right) = \prod_{j \in E} (1 - 1)^{\mathrm{inv}(\pi)} (-1)^{\mathrm{inv}(\pi)} \left(\prod_{j \in \mathrm{EXCi}(\pi)} x_j \right) = \prod_{j \in E} (1 - 1)^{\mathrm{inv}(\pi)} (-1)^{\mathrm{inv}(\pi)} ($$

where the empty product has value 1. Setting all x_i to be t, we have

$$\sum_{\substack{\pi \in \mathfrak{S}_n^e \\ T \subseteq \operatorname{FIX}(\pi)}} t^{\operatorname{exc}(\pi)} - \sum_{\substack{\pi \in \mathfrak{S}_n^o \\ T \subseteq \operatorname{FIX}(\pi)}} t^{\operatorname{exc}(\pi)} = \begin{cases} 1 \\ (1-t)^{n-1-|T|} \end{cases}$$

Using inclusion-Exclusion and Proposition 4, our main theorem is obtained. **Theorem 5:** Let $n \ge 1$. Then

$$\sum_{\pi \in \mathfrak{D}_n} (-1)^{\mathrm{inv}(\pi)} \left(\prod_{j \in \mathrm{EXCi}(\pi)} y_j \right) = (-1)^{n-1} \sum_{j=1}^{n-1} x_{12}$$

A right-to-left minima analog

We defined a bijection $\kappa : \mathfrak{S}_n \to \mathfrak{S}_n$ that has the following properties: 1. κ is an involution,

- 2. κ preserves the number of right-to-left minima,
- 3. κ changes sign of non-fixed elements,
- 4. For each subset $T \in [n] \cap \{2, 4, 6, ...\}$, there is a unique fixed element with $\{1, 3, 5, \ldots\} \cup T$ as right-to-left minima set.

5. There are $\binom{\lfloor n/2 \rfloor}{k - \lfloor n/2 \rfloor}$ fixed elements with exactly k right-to-left minima, and they all have sign $(-1)^{n-k}$.

Proposition 6: We have that for any $n \ge 1$

$$\sum_{\pi \in \mathfrak{S}_n} (-1)^{\mathrm{inv}(\pi)} \left(\prod_{\substack{j \in \mathrm{RLMv}(\pi)}} x_j \right) = \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{j \in [n] \\ j \text{ even}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{j \in [n] \\ j \text{ even}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd}}} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd} x_i \right) \left(\prod_{\substack{i \in [n] \\ i \text{ odd} x_i \right) \left(\prod_$$

In particular, for any $k = 1, \ldots, n$ we have that

$$|\{\pi \in \mathfrak{S}_n^e : \operatorname{rlm}(\pi) = k\}| - |\{\pi \in \mathfrak{S}_n^o : \operatorname{rlm}(\pi) = k\}| = (-1)^n$$

References

- [1] Roberto Mantaci. Binomial coefficients and anti-exceedances of even permutations: A combinatorial proof. Journal of Combinatorial Theory, Series A, 63(2):330–337, 1993.
- [2] Roberto Mantaci and Fanja Rakotondrajao. A permutations representation that knows what "eulerian" means. Discrete Mathematics & Theoretical Computer Science, 4(2), 2001.
- [3] Roberto Mantaci and Fanja Rakotondrajao. Exceedingly deranging! Advances in Applied Mathematics, 30(1-2):177-188, 2003.

$(-1)^{ E }\mathbf{x}_E.$	(6)

(7) $(x_j),$

if T = n	(8)
otherwise.	

(9) $_1x_2\cdots x_j$.

 $(x_j - 1)).$ (10)

frigetach@gmail.com