An involution on derangements preserving excedances and right-to-left minima

Per Alexandersson ${ }^{1}$ Frether Getachew Kebede ${ }^{2}$
${ }^{1}$ Stockholms University, Sweden ${ }^{2}$ Addis Ababa University, Ethiopia
${ }^{1}{ }_{A B A}$

Notations and Background

Let \mathfrak{S}_{n} be the set of all permutations, $\mathfrak{S}_{n}^{e}\left(\mathfrak{S}_{n}^{o}\right)$ be the set of all even (odd) permutations, \mathfrak{D}_{n} be the set of all derangements, and $\mathfrak{D}_{n}^{e}\left(\mathfrak{D}_{n}^{o}\right)$ be the set of all even (odd) derangements of $[n]$.
For any function $g:[n] \longrightarrow[n]$, let

$$
\operatorname{EXCi}(g):=\{j \in[n]: g(j)>j\},
$$

$$
\operatorname{EXCv}(g):=\{g(j): j \in \operatorname{EXCi}(g)\},
$$

$\operatorname{RLMi}(g):=\{i \in[n]: g(i)<g(j)$ for all $j \in\{i+1, \ldots, n\}\}$
$\operatorname{RLMv}(g):=\{g(i): i \in \operatorname{RLMi}(g)\}$
$\operatorname{FIX}(g):=\{i \in[n]: g(i)=i\}$,
Moreover, $\operatorname{exc}(g):=|\operatorname{EXCi}(g)|$ and $\operatorname{rlm}(g):=|\operatorname{RLMi}(g)|=|\operatorname{RLMv}(g)|$.
Note that, $|\operatorname{EXCv}(\sigma)|=|\operatorname{EXCi}(\sigma)|=\operatorname{exc}(\sigma)$, for any $\sigma \in \mathfrak{S}_{n}$
A subexcedant function f on $[n]: f:[n] \longrightarrow[n]$ such that

$$
1 \leq f(i) \leq i, \text { for all } 1 \leq i \leq n
$$

\mathcal{F}_{n} : the set of all subexcedant functions on $[n]$. And $\operatorname{IM}(f):=\{f(i): i \in[n]\}$ is the image of $f \in \mathcal{F}_{n}$. The bijection sefToPerm : $\mathcal{F}_{n} \longrightarrow \mathfrak{S}_{n}$, from [2], is defined as:

$$
\operatorname{sefToPerm}(f):=(n f(n)) \cdots(2 f(2))(1 f(1))
$$

For $\sigma \in \mathfrak{S}_{n}$ and $j \in[n]$, the $j^{\text {th }}$ entry of sefToPerm ${ }^{-1}(\sigma)$ is

$$
\operatorname{sefToPerm}^{-1}(\sigma)_{j}:=\left\{\begin{array}{l}
\sigma(n) \text { if } j=n, \\
\operatorname{sefToPerm}^{-1}((n \sigma(n)) \circ \sigma)_{j} \quad \text { otherwise } . ~
\end{array}\right.
$$

For example, the corresponding subexcedant function of $\sigma=612935487 \in \mathfrak{S}_{9}$ is $f_{\sigma}=112435487 \in \mathcal{F}_{9}$.

An involution

A subexcedant function f is matchless if it is of the form

$$
f:=11234 \ldots k-1 k k \ldots k \quad \text { for } 1 \leq k \leq n-1 .
$$

There are $n-1$ matchless subexcedant functions of length n
$\mathcal{D} \mathcal{F}_{n}$: the set of subexcedant functions corresponding to derangements of $[n]$.
Define $\Psi: \mathcal{D} \mathcal{F}_{n} \longrightarrow \mathcal{D} \mathcal{F}_{n}$ below, where $f_{\tau}:=\Psi\left(f_{\sigma}\right)$. First, if f_{σ} is matchless, we set $f_{\tau}:=f_{\sigma}$. Now we assume that f_{σ} is non-matchless and let

$$
\operatorname{IM}\left(f_{\sigma}\right)=\left\{\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}, \ldots, \mathbf{m}_{\ell}\right\} .
$$

Now define two auxiliary maps, fix_{i}, unfix un $_{i}$ on subexcedant functions. For $i \in$ $\{2, \ldots, \ell\}$

$$
\mathrm{fix}_{i}\left(f_{\sigma}\right)\left(\mathbf{m}_{i}\right):=\mathbf{m}_{i}, \quad \operatorname{unfix}_{i}\left(f_{\sigma}\right)\left(\mathbf{m}_{i}\right):=\mathbf{m}_{i-1}
$$

while the remaining entries of f_{σ} are untouched. For $i \in\{2, \ldots, \ell\}$, we say that f_{σ} satisfies \circledast_{i} if the three conditions
$f_{\sigma}\left(\mathbf{m}_{i}\right)<\mathbf{m}_{i}<\mathbf{m}_{\ell}, \quad f_{\sigma}^{-1}(1)=\{1,2\}$, and $\left\{\mathbf{m}_{i}+1\right\} \subsetneq f_{\sigma}^{-1}\left(\mathbf{m}_{i}\right), \quad\left(\circledast_{i}\right)$ hold. Now let $i \in\{2, \ldots, \ell\}$ be the smallest element satisfying one of the cases below, and let f_{τ} be given as described in each case.
$\mathcal{V}_{i}:$ If $f_{\sigma}\left(\mathbf{m}_{i}\right)=\mathbf{m}_{i}$, then $f_{\tau}:=\operatorname{unfix}\left(f_{\sigma}\right)$.
$\mathbf{m}_{i}:$ If $f_{\sigma}\left(\mathbf{m}_{i}\right)<\mathbf{m}_{i}$ and $\left|f_{\sigma}^{-1}(1)\right| \geq 3$, then $f_{\tau}:=\operatorname{fix}_{i}\left(f_{\sigma}\right)$.
\diamond_{i} : If \circledast_{i} holds and $f_{\sigma}\left(\mathbf{m}_{i+1}\right)=\mathbf{m}_{i+1}$, then $f_{\tau}:=\operatorname{unfix}_{i+1}\left(f_{\sigma}\right)$.
$\bigoplus_{i}:$ If \circledast_{i} holds and $f_{\sigma}\left(\mathbf{m}_{i+1}\right)<\mathbf{m}_{i+1}$, then $f_{\tau}:=\mathrm{fix}_{i+1}\left(f_{\sigma}\right)$.

Examples of the involution

1. Let $f_{\sigma}=1133535$. Then f_{σ} is in case \odot_{2} and $f_{\tau}=\operatorname{unfix} 2\left(f_{\sigma}\right)=1113535$.
2. Now let $f_{\sigma}=1121355$. Since $f_{\sigma}(2)<2$ and $\left|f_{\sigma}^{-1}(1)\right|=3$, then f_{σ} is in case $\boldsymbol{\omega}_{2}$. Thus, $f_{\tau}=\mathrm{fix}_{2}\left(f_{\sigma}\right)=1221355$.
3. Suppose that $f_{\sigma}=1123535 . f_{\sigma}$ is in case \diamond_{3} and
$f_{\tau}=\operatorname{unfix}_{i+1}\left(f_{\sigma}\right)=\operatorname{unfix}_{4}\left(f_{\sigma}\right)=1123335$.
4. Now take $f_{\sigma}=1123445$. It is in $\boldsymbol{\omega}_{4}$ and $f_{\tau}=\operatorname{fix}_{5}\left(f_{\sigma}\right)=1123545$.

Properties of the involution

1. The image is preserved, $\operatorname{IM}\left(f_{\sigma}\right)=\operatorname{IM}\left(\Psi\left(f_{\sigma}\right)\right)$.
2. If $f_{\tau}=\Psi\left(f_{\sigma}\right)$, then $\operatorname{EXCv}(\sigma)=\operatorname{EXCv}(\tau)$.
3. The set of right-to-left minima is preserved, $\operatorname{RLMv}\left(f_{\sigma}\right)=\operatorname{RLMv}\left(\Psi\left(f_{\sigma}\right)\right)$.
4. Ψ changes the parity of a non-matchless subexcedant function.

We now have an involution on derangements $\hat{\Psi}: \mathfrak{D}_{n} \rightarrow \mathfrak{D}_{n}$ by setting $\hat{\Psi}(\sigma):=\left(\operatorname{sef}\right.$ ToPerm $\left.\circ \Psi \circ \operatorname{sefToPerm}{ }^{-1}\right)(\sigma)$, for $\sigma \in \mathfrak{D}_{n}$,

with properties:

1. The excedance value set is preserved, $\operatorname{EXCv}(\hat{\Psi}(\sigma))=\operatorname{EXCv}(\sigma)$.
2. The set of right-to-left minima is preserved, $\operatorname{RLMv}(\hat{\Psi}(\sigma))=\operatorname{RLMv}(\sigma)$.
3. Whenever σ is a non-matchless derangement (the corresponding f_{σ} is non-matchless), $\hat{\Psi}$ changes the parity of σ.

Consequences of the involution

Theorem 1: We have that

$$
\sum_{\pi \in \mathfrak{D}_{n}}(-1)^{\operatorname{inv}(\pi)}\left(\prod_{j \in \operatorname{RLMv}(\pi)} x_{j}\right)\left(\prod_{j \in \operatorname{EXCv}(\pi)} y_{j}\right)=(-1)^{n-1} \sum_{j=1}^{n-1} x_{1} \cdots x_{j} y_{j+1} \cdots y_{n}
$$

Moreover

$$
\sum_{\pi \in \mathfrak{D}_{n}}(-1)^{\operatorname{inv}(\pi)}\left(\prod_{j \in \operatorname{RLMi}(\pi)} x_{j}\right)\left(\prod_{j \in \operatorname{EXCi}(\pi)} y_{j}\right)=(-1)^{n-1} \sum_{j=1}^{n-1} y_{1} \cdots y_{j} x_{j+1} \cdots x_{n} .
$$

Corollary 2: By letting $x_{j} \rightarrow 1$ and $y_{j} \rightarrow t$, we have that

$$
\begin{equation*}
\sum_{\pi \in \mathfrak{D}_{n}}(-1)^{\operatorname{inv}(\pi)} t^{\operatorname{exc}(\pi)}=(-1)^{n-1}\left(t+t^{2}+\cdots+t^{n-1}\right) . \tag{3}
\end{equation*}
$$

By comparing coefficients of t^{k}, we get

$$
\begin{equation*}
\left|\left\{\pi \in \mathfrak{D}_{n}^{e}: \operatorname{exc}(\pi)=k\right\}\right|-\left|\left\{\pi \in \mathfrak{D}_{n}^{o}: \operatorname{exc}(\pi)=k\right\}\right|=(-1)^{n-1} \tag{4}
\end{equation*}
$$

for every $n \geq 1$ and $1 \leq k \leq n-1$. Equation (4) studied by R. Mantaci and F. Rakotondrajao in [3].
Similarly,

$$
\sum_{\pi \in \mathfrak{D}_{n}}(-1)^{\operatorname{inv}(\pi)} t^{\ln (\pi)}=(-1)^{n-1}\left(t+t^{2}+\cdots+t^{n-1}\right) .
$$

A proof using generating functions

Mantaci, in [1], proved Proposition 3 by introducing a bijection on \mathfrak{S}_{n} that preserves the set of excedances and changes the sign of non-fixed elements of the bijection Proposition 3: Let $n \geq 1$, then

$$
\begin{equation*}
\sum_{\pi \in \mathfrak{S}_{n}}(-1)^{\operatorname{inv}(\pi)}\left(\prod_{j \in \operatorname{EXCi}(\pi)} x_{j}\right)=\prod_{j \in[n-1]}\left(1-x_{j}\right) \sum_{E \subseteq[n-1]}(-1)^{|E|_{\mathbf{x}_{E}}} . \tag{6}
\end{equation*}
$$

In particular, by setting all x_{i} equal to t, we have

$$
\sum_{\pi \in \mathfrak{S}_{n}^{e}} t^{\operatorname{exc}(\pi)}-\sum_{\pi \in \mathfrak{S}_{n}^{o}} t^{\operatorname{exc}(\pi)}=(1-t)^{n-1} .
$$

Proposition 4: Let $n \geq 1$ and let $T \subseteq[n]$. Let $m \leq n$ be the largest integer not in T and set $E=\{1,2, \ldots, m-1\} \backslash T$. Then

$$
\begin{equation*}
\sum_{\substack{\pi \in \mathfrak{G}_{n} \\ T \subseteq \operatorname{FIX}(\pi)}}(-1)^{\operatorname{inv}(\pi)}\left(\prod_{j \in \operatorname{EXCi}(\pi)} x_{j}\right)=\prod_{j \in E}\left(1-x_{j}\right), \tag{7}
\end{equation*}
$$

where the empty product has value 1 .
Setting all x_{i} to be t, we have

$$
\sum_{\substack{\pi \in \mathfrak{S}_{n}^{e} \\
T \subseteq F I X \\
\hline}} t^{\operatorname{exc}(\pi)}-\sum_{\substack{\pi \in \mathfrak{S}_{n}^{o} \\
T \subseteq \mathrm{FIX}(\pi)}} t^{\operatorname{exc}(\pi)}=\left\{\begin{array}{ll}
1 & \text { if }|T|=n \\
(1-t)^{n-1-|T|} & \text { otherwise. }
\end{array}\right\}
$$

Using inclusion-Exclusion and Proposition 4, our main theorem is obtained.
Theorem 5: Let $n \geq 1$. Then

$$
\begin{equation*}
\sum_{\pi \in \mathfrak{Q}_{n}}(-1)^{\operatorname{inv}(\pi)}\left(\prod_{j \in \operatorname{EXCi}(\pi)} y_{j}\right)=(-1)^{n-1} \sum_{j=1}^{n-1} x_{1} x_{2} \cdots x_{j} . \tag{9}
\end{equation*}
$$

A right-to-left minima analog

We defined a bijection $\kappa: \mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}$ that has the following properties:

1. κ is an involution,
2. κ preserves the number of right-to-left minima,
3. κ changes sign of non-fixed elements,
4. For each subset $T \in[n] \cap\{2,4,6, \ldots\}$, there is a unique fixed element with $\{1,3,5, \ldots\} \cup T$ as right-to-left minima set.
5. There are $\binom{\lfloor n / 2\rfloor}{ k-[n / 2\rceil}$ fixed elements with exactly k right-to-left minima, and they all have sign $(-1)^{n-k}$
Proposition 6: We have that for any $n \geq 1$

$$
\begin{equation*}
\sum_{\pi \in \mathfrak{S}_{n}}(-1)^{\operatorname{inv}(\pi)}\left(\prod_{j \in \operatorname{RLMv}(\pi)} x_{j}\right)=\left(\prod_{\substack{i \in[n] \\ i \text { odd }}} x_{i}\right)\left(\prod_{\substack{j \in[n] \\ j \operatorname{even}}}\left(x_{j}-1\right)\right) . \tag{10}
\end{equation*}
$$

In particular, for any $k=1, \ldots, n$ we have that

$$
\begin{equation*}
\left|\left\{\pi \in \mathfrak{S}_{n}^{e}: \operatorname{rlm}(\pi)=k\right\}\right|-\left|\left\{\pi \in \mathfrak{S}_{n}^{o}: \operatorname{rlm}(\pi)=k\right\}\right|=(-1)^{n-k}\binom{\lfloor n / 2\rfloor}{ k-\lceil n / 2\rceil} \tag{11}
\end{equation*}
$$

References

[^0]
[^0]: [1] Roberto Mantaci. Binomial coefficients and anti-exce
 Combinatorial Theor, Series A, $63(2): 330-337,1993$.
 [2] Roberto Mantaci and Fania Rakotondraiao. A permutations representation that knows what "eulerian" means.
 Discrete Mathematics \& Theoretical Computer Science, 4(2), 2001.
 3] Roberto Mantaci and Fania Rakotondrajao. Exceedingly deranging! Advances in Applied Mathematics,
 30(1-2):177-188, 2003.

