Factorization of classical characters twisted by roots of unity

Arvind Ayyer and Nishu Kumari* (Indian Institute of Science)

Abstract

- Fix $t \geq 2, n \in \mathbb{Z}^{+}$. Consider the irreducible characters of representations of $\mathrm{GL}_{t n}, \mathrm{SO}_{2 t n+1}, \mathrm{Sp}_{2 t n}$
and $\mathrm{O}_{2 t n}$ over \mathbb{C}, evaluated at elements $\omega^{k} x_{i}$ for $0 \leq k \leq t-1$ and $1 \leq i \leq n$, where ω is a
primitive $t^{\text {th }}$ root of unity.
- Motivated by the case of $\mathrm{GL}_{t n}$, considered by D. J. Littlewood (AMS press, 1950) and indepen-
dently by D. Prasad (Israel J. Math., 2016).
- We characterize partitions for which the specialized irreducible character is nonzero in terms of
what we call z-asymmetric partitions, where z is an integer which depends on the group.
- The non-zero character factorizes into characters of smaller classical groups.
- We also give product formulas for general z-asymmetric partitions and t-cores.
- Finally, we show that there are infinitely many z-asymmetric t-cores for $t \geq z+2$.

Notations and Definitions

- $X=\left(x_{1}, \ldots, x_{n}\right)$ - a tuple of commuting indeterminates. $X^{j}=\left(x_{1}^{j}, \ldots, x_{n}^{j}\right), j \in \mathbb{Z} . \bar{X}=\left(\frac{1}{x_{1}}, \ldots, \frac{1}{x_{n}}\right)$.
- Partition and its beta-set:

$\beta(\lambda, 4)=(7,6,3,1)$
- For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{j}\right)$ partitions, $k+j \leq 2 n$,

$$
\mu_{1}+(\lambda, 0, \ldots, 0,-\operatorname{rev}(\mu))=(\mu_{1}+\lambda_{1}, \ldots, \mu_{1}+\lambda_{k}, \underbrace{\mu_{1}, \ldots, \mu_{1}}_{2 n-j-k}, \mu_{1}-\mu_{j}, \ldots, \mu_{1}-\mu_{2}, 0) .
$$

- The parts of the beta set congruent to $i(\bmod t)$ for $i \in[0, t-1]$:

$i=1, t=3$
- t-core of λ : Consider $t j+i, 0 \leq j \leq n_{i}(\lambda, m)-1,0 \leq i \leq t-1$

$\operatorname{core}_{3}(\lambda)=(4-3,3-2,1-1,0)=(1,1)$.
- t-quotient of λ : For each $i \in[0, t-1]$, consider $\left\lfloor\frac{\beta^{(2)}(\lambda, m)}{t}\right\rfloor$
$\operatorname{quo}_{3}(\lambda)=\left(\lambda^{(0)}, \lambda^{(1)}, \lambda^{(2)}\right), \quad \lambda^{(0)}=(2-1,1-0)=(1,1), \quad \lambda^{(1)}=(2-1,0-0)=(1), \quad \lambda^{(2)}=\emptyset$.
- z-asymmetric partition: $(\alpha \mid \alpha+z), z \in \mathbb{Z}$.

$\lambda=(4,2,2,1,1)=(3,0 \mid 4,1)$ symplectic (1 -asymmetric) 3 -core

Weyl Character Formulas

Let λ be a partition of length at most n.

- The Schur polynomial or general linear (type A) character of GL ${ }_{n}$ indexed by λ :

$$
s_{\lambda}(X)=\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(x_{i}^{\beta_{j}(\lambda, n)}\right)}{\operatorname{det}_{1 \leq i, j \leq n}\left(x_{i}^{n-j}\right)}
$$

- The odd orthogonal (type B) character of the group $\mathrm{SO}(2 n+1)$ indexed by λ :

$$
\operatorname{so}_{\lambda}(X)=\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(x_{i}^{\beta_{j}(\lambda, n)+1 / 2}-\bar{x}_{i}^{\beta_{j}(\lambda, n)+1 / 2}\right)}{\operatorname{det}_{1 \leq i, j \leq n}\left(x_{i}^{n-j+1 / 2}-\bar{x}_{i}^{n-j+1 / 2}\right)}
$$

- The symplectic (type C) character of the group $\operatorname{Sp}(2 n)$ indexed by λ :

$$
\operatorname{sp}_{\lambda}(X)=\frac{\operatorname{det}_{1 \leq i, j \leq n}\left(x_{i}^{\beta_{j}(\lambda, n)+1}-\bar{x}_{i}^{\beta_{j}(\lambda, n)+1}\right)}{\operatorname{det}_{1 \leq i, j \leq n}\left(x_{i}^{n-j+1}-\bar{x}_{i}^{n-j+1}\right)} .
$$

- The even orthogonal (type D) character of the group $O(2 n)$ indexed by λ :

$$
o_{\lambda}^{\text {even }}(X)=\frac{2 \operatorname{det}_{1 \leq i, j \leq n}\left(x_{i}^{\beta_{j}(\lambda, n)}+\bar{x}_{i}^{\beta_{j}(\lambda, n)}\right)}{\left(1+\delta_{\lambda_{n}, 0}\right) \operatorname{det}_{1 \leq i, j \leq n}\left(x_{i}^{n-j}+\bar{x}_{i}^{n-j}\right)},
$$

- For $\ell(\lambda) \leq t n$, let $\sigma_{\lambda} \in S_{t n}$ be the permutation that rearranges the parts of $\beta(\lambda, t n)$ such that

$$
\beta_{\sigma_{\lambda}(j)}(\lambda, t n) \equiv q \quad(\bmod t), \quad \sum_{i=0}^{q-1} n_{i}(\lambda, t n)+1 \leq j \leq \sum_{i=0}^{q} n_{i}(\lambda, t n)
$$

arranged in decreasing order for each $q \in\{0,1, \ldots, t-1\}$.

Schur Factorization

Theorem (D. J. Littlewood (AMS press, 1950), D. Prasad (Israel J. Math., 2016))

Let λ be a partition of length at most $t n$ indexing an irreducible representation of $\mathrm{GL}_{t n}$ and $q u o_{t}(\lambda)=$ $\left(\lambda^{(0)}, \ldots, \lambda^{(t-1)}\right)$. Then the Schur polynomial $s_{\lambda}\left(X, \omega X, \ldots, \omega^{t-1} X\right)$ is given as follows.

1. If $\operatorname{core}_{t}(\lambda)$ is non-empty, then

$$
s_{\lambda}\left(X, \omega X, \ldots, \omega^{t-1} X\right)=0
$$

2. If $\operatorname{core}_{t}(\lambda)$ is empty, then

$$
s_{\lambda}\left(X, \omega X, \ldots, \omega^{t-1} X\right)=\operatorname{sgn}\left(\sigma_{\lambda}\right)(-1)^{\frac{n(n+1)}{2} \frac{t(t-1)}{2}} \prod_{i=0}^{t-1} s_{\lambda^{(i)}}\left(X^{t}\right)
$$

Factorization of other Classical Characters

Let λ be a partition of length at most $t n$ indexing an irreducible representation of $\operatorname{Sp}_{2 t n}$ and $\operatorname{quo}_{t}(\lambda)=$ $\left(\lambda^{(0)}, \ldots, \lambda^{(t-1)}\right)$. Then the $\mathrm{Sp}_{2 t n}$-character $\mathrm{sp}_{\lambda}\left(X, \omega X, \ldots, \omega^{t-1} X\right)$ is given as follows.

1. If $\operatorname{core}_{t}(\lambda)$ is not a symplectic t-core, then

$$
\operatorname{sp}_{\lambda}\left(X, \omega X, \ldots, \omega^{t-1} X\right)=0
$$

2. If $\operatorname{core}_{t}(\lambda)$ is a symplectic t-core with rank r , then

$$
\operatorname{sp}_{\lambda}\left(X, \omega X, \ldots, \omega^{t-1} X\right)=(-1)^{\epsilon} \operatorname{sgn}\left(\sigma_{\lambda}\right) \operatorname{sp}_{\lambda^{(t-1)}}\left(X^{t}\right) \prod_{i=0}^{\left\lfloor\left\lfloor\frac{t-3}{2}\right\rfloor\right.} s_{\mu_{i}}\left(X^{t}, \bar{X}^{t}\right) \times \begin{cases}\mathrm{so}_{\lambda} \lambda^{\left.\frac{t}{2}-1\right)}\left(X^{t}\right) & t \text { even }, \\ 1 & t \text { odd },\end{cases}
$$

where

$$
\epsilon=-\sum_{i=\left\lfloor\frac{t}{2}\right\rfloor}^{t-2}\binom{n_{i}(\lambda)+1}{2}+ \begin{cases}\frac{n(n+1)}{2}+n r & t \text { even } \\ 0 & t \text { odd }\end{cases}
$$

$$
\text { and } \mu_{i}=\lambda_{1}^{(t-2-i)}+\left(\lambda^{(i)}, 0, \ldots, 0,-\operatorname{rev}\left(\lambda^{(t-2-i)}\right)\right), 0 \leq i \leq\left\lfloor\frac{t-3}{2}\right\rfloor
$$

- Example: $t=2, n=1$ and $a \geq b \geq 0 \cdot \operatorname{sp}_{(a, b)}(x,-x)$ is nonzero if and only if a and b have the same parity.

$$
\operatorname{sp}_{(a, b)}(x,-x)= \begin{cases}-\operatorname{sp}_{\left(\frac{b-1}{2}\right)}\left(x^{2}\right) \operatorname{so}_{\left(\frac{a+1}{2}\right)}\left(x^{2}\right) & a \text { and } b \text { are odd } \\ \operatorname{sp}_{\left(\frac{a}{2}\right)}\left(x^{2}\right) \operatorname{so}_{\left(\frac{b}{2}\right)}\left(x^{2}\right) & a \text { and } b \text { are even. }\end{cases}
$$

- We give similar factorization results for the irreducible characters of classical groups of type B and D, namely $O_{2 t n}$ [1], Theorem 2.15] and $\mathrm{SO}_{2 t n+1}$ [1, Theorem 2.17], where we specialize the elements as before.

Generating Functions

- The set of z-asymmetric partitions and z-asymmetric t-cores $-\mathcal{P}_{z}$ and $\mathcal{P}_{z, t}$ respectively.

Theorem (Ayyer-Kumari, [1], 2021)

For $z \in \mathbb{Z}$,

$$
\sum_{\lambda \in \mathcal{P}_{z}} q^{|\lambda|}=\prod_{k \geq 0}\left(1+q^{z+1+2 k}\right)=\left(-q^{z+1} ; q^{2}\right)_{\infty}, \quad(a ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-a q^{j}\right)
$$

Theorem (Ayyer-Kumari, [1], 2021)

For $|z| \geq t-1$, the empty partition is the only t-core in $\mathcal{P}_{z, t}$

Theorem (Ayyer-Kumari, [1], 2021)

Let $0 \leq z \leq t-2$. Represent elements of $\mathbb{Z}\left\lfloor\frac{t-z}{2}\right\rfloor$ by $\left(z_{0}, \ldots, \chi_{\left\lfloor\frac{t-z-2}{2}\right\rfloor}\right)$ and define $b \in \mathbb{Z}^{\left\lfloor\frac{t-z}{2}\right\rfloor}$ by $\vec{b}_{i}=t-z-1-2 i$. Then there exists a bijection $\phi: \mathcal{P}_{z, t} \rightarrow \mathbb{Z}^{\left\lfloor\frac{t-z}{2}\right\rfloor}$ satisfying $|\lambda|=t\|\phi(\vec{\lambda})\|^{2}-\vec{b} \cdot \phi(\vec{\lambda})$, where \cdot represents the standard inner product.

- Ramanujan theta function:

$$
f(a, b)=\sum_{n=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}} .
$$

Let $p_{z, t}(m)$ be the cardinality of partitions in $\mathcal{P}_{z, t}$ of size m. For $0 \leq z \leq t-2$, we have

$$
\sum_{m \geq 0} p_{z, t}(m) q^{m}=\prod_{i=0}^{\lfloor(t-z-2) / 2\rfloor} f\left(q^{2 i+z+1}, q^{2 t-2 i-z-1}\right)
$$

Reference

[1] A. Ayyer, N. Kumari, Factorization of Classical characters twisted by roots of unity, to appear in Journal of Algebra. arXiv identifier: 2109.11310.

