Abstract

- We show that functions over perfect matchings of complete graphs admit unique (canonical) presentations as harmonic polynomials annihilated by certain differential operators (**Theorem 1**).
- Using the theory of Jack polynomials, we give a concrete description of these harmonic polynomials by computing the unique harmonic presentation of the standard basis of Specht polynomials (Theorem 2).
- We prove a perhaps new combinatorial identity that equates the product of the top row of lower hook lengths of λ to a weighted sum of so-called *tableau transversals* of λ (**Theorem 3**).

In this poster presentation, we focus just on perfect matchings of the complete bipartite graph $K_{n,n}$, that is, the symmetric group S_n .

Polynomial Presentations of Functions

Let $f \in \mathbb{R}S_n$ be a real-valued function on the symmetric group. Let $p \in \mathbb{R}[X]$ be a polynomial in the variables

$$X = \begin{pmatrix} X_{1,1}, \cdots, X_{1,n} \\ \vdots, \cdots, \vdots \\ X_{n,1}, \cdots, X_{n,n} \end{pmatrix}.$$

Let $P_{\sigma} \in GL_n$ be the permutation matrix of $\sigma \in S_n$. We say $p \in \mathbb{R}[X]$ is a presentation of $f \in \mathbb{R}S_n$ if

$$f(\sigma) = p(P_{\sigma}) \quad \text{ for all } \sigma \in S_n$$

and we write $f \equiv p$.

Note that $X_{i,j}X_{i,k} \equiv 0$ and $X_{i,k}X_{j,k} \equiv 0$ for all $1 \leq i, j, k \leq n$. A polynomial p is *succinct* if its monomial terms are not multiples of $X_{i,j}X_{i,k}$ or $X_{i,k}X_{j,k}$ for all $1 \leq i, j, k \leq n$.

We can still present $0 \in \mathbb{R}S_n$ as a succinct polynomial z:

$$z(X) = \sum_{i=1}^{n} \sum_{j=1}^{n} (l_i + r_j) X_{i,j} \text{ such that } \sum_{i=1}^{n} l_i + \sum_{j=1}^{n} (l_j + r_j) X_{i,j} x_{i,j}$$

thus there is no unique succinct presentation of any $f \in \mathbb{R}S_n$.

Is there a canonical succinct presentation of each $f \in \mathbb{R}S_n$?

Yes, if we further insist the polynomial is harmonic.

Harmonic Polynomials on Perfect Matchings

Yuval Filmus

Department of Computer Science Technion, Israel

Harmonic Polynomials

We say that a succinct polynomial $p \in \mathbb{R}[X]$ is *harmonic* if

$$\Delta_{i,*}p := \sum_{j=1}^{n} \partial p / \partial X_{i,j} = 0 \quad \forall 1 \le i$$

$$\Delta_{*,j}p := \sum_{i=1}^{n} \partial p / \partial X_{i,j} = 0 \quad \forall 1 \le n$$

Theorem 1 Any $f \in \mathbb{R}S_n$ can be presented uniquely as a succinct harmonic polynomial $p \in \mathbb{R}[X]$. Moreover, the unique succinct harmonic presentation of the \perp -projection $f^{=d}$ of f onto V_d (see below) equals the dth homogeneous part $p^{=d}$ of p.

$$\mathbb{R}S_n \cong \bigoplus_{d=0}^{n-1} V^d, \quad V^d := \bigoplus_{\lambda \vdash n: \lambda_1 = r}^{n-1}$$

The proof features a class of incidence matrices that we call the matching inclusion matrices $W_{\ell,n}$ whose rows are indexed by partial matchings of size ℓ , columns indexed by perfect matchings, defined such that

$$W_{\ell,n}[m,M] = \begin{cases} 1 & \text{if } m \subseteq \\ 0 & \text{otherw} \end{cases}$$

- The matching-analogue of the celebrated *set incidence matrices*.
- Experimental data shows the nonzero elementary divisors of $W_{\ell,n}$ for all $\ell \leq n \leq 6$ are 1. Is this true for all n?

Jack Polynomials

For any $\alpha \in \mathbb{R}$, the *(integral form) Jack polynomals J_{\lambda}* are defined as the unique family satisfying the following relations:

- Orthogonality: $\langle J_{\lambda}, J_{\mu} \rangle_{\alpha} = 0$ whenever $\lambda \neq \mu$.
- Triangularity: $J_{\lambda} = \sum_{\mu \triangleleft \lambda} c_{\lambda \mu} m_{\mu}$
- Normalization: $[m_{1^n}]J_{\lambda} = n!$.

Let $a_{\lambda}(i, j)$ and $l_{\lambda}(i, j)$ be the *arm length* and *leg length* of a cell $(i, j) \in \lambda$, i.e., the number of cells in row *i* to the right of (i, j), and the number of cells in column j below (i, j).

Let $h_{\lambda}^{*}(i, j) := a_{\lambda}(i, j)\alpha + l_{\lambda}(i, j) + 1$ be the lower hook length. Let H_T^* be the product of the lower hook lengths of a shape T.

 $r_j = 0,$

Nathan Lindzey

Department of Computer Science University of Colorado at Boulder, USA

Specht Polynomials and Differential Operators

 $\leq n$, and

 $\leq j \leq n.$

 V^{λ} n-d

M;

vise.

Let $\{f_{s,t} \in \mathbb{R}[X] : s, t \text{ standard } \lambda \text{-tableaux}, \lambda \vdash n\}$ be the Specht polyno*mial basis* of $\mathbb{R}S_n$ defined such that

 $f_{s,t}(X) := \sum \sum \operatorname{sgn}(\sigma) X(\tau, \sigma) X(\tau, \sigma)$ $\tau \in R_s \sigma \in C_t$

where $C_t(R_t)$ is the *column (row) stabilizer* of t. They are a sum of λ_1 -many products of determinants corresponding to the pairs of columns of s, t.

Let $I = i_1, \ldots, i_d \in [n]$ be distinct and $J = j_1, \ldots, j_d \in [n]$ be distinct. Let X be the $d \times d$ matrix with $X_{a,b} = X_{i_a,j_b}$. Define the quasi-determinant as

$$q(I,J)(X) := \sum_{i \in I, j \in J} \frac{\partial}{\partial X_{i,j}} \det X = \sum_{i \in I, j \in J} \frac{\partial}{\partial X_{i,j}} \sum_{\pi \in S_d} \operatorname{sgn}(\pi) \prod_{s \in [d]} X_{i_s, j_{\pi(s)}}.$$

Let $f'_{s,t}(X)$ be the quasi-Specht polynomials defined such that

$$f'_{s,t}(X) := \sum_{\tau \in R_s} \prod_{i=1}^{\lambda_1} q((\tau s)_i, t_i).$$

The $f'_{s,t}(X)$'s are harmonic. Define the differential operator

$$D_k := (\sum_{i,j=1}^n \partial/\partial X_{i,j})^k / k!.$$

Theorem 2 Let s, t be standard Young tableaux of shape λ . The canonical presentation of $f_{s,t}$ is $p_{s,t}(X) := d_{\lambda}(1)^{-1} f'_{s,t} = d_{\lambda}(1)^{-1} D_{\lambda_1} f_{s,t}$ where $d_{\lambda}(1)$ is the product of the hook lengths along the top row of λ .

A *tableau transversal* T of λ is a set of cells that forms a transversal of the columns of λ , e.g.,

Let $w_{\alpha}(\lambda) := \sum_{T} H_{T}^{*}$ where T ranges over all tableau transversals of λ . **Theorem 3** For all λ , we have $\prod_{i=1}^{\lambda_1}$

$$(s, \sigma t), \quad X(s, t) := \prod_{(i,j) \in \lambda} X_{s_{i,j}, t_{i,j}}$$

What is the canonical presentation of each $f_{s,t} \in \mathbb{R}S_n$?

We show the product of the lower hook lengths along the top row of λ are equal to weighted sums of so-called tableau traversals of λ .

$$H_T^* = \prod_{i=0}^4 (i\alpha + 1) \prod_{i=0}^3 (i\alpha + 1) (\alpha + 1)^2$$

$$h_{\lambda}^*(1,j) = w_{\alpha}(\lambda).$$