Harmonic Polynomials on Perfect Matchings

Yuval Filmus

Department of Computer Science
Technion, Israel

Nathan Lindzey

Department of Computer Science
University of Colorado at Boulder, USA

Abstract

- We show that functions over perfect matchings of complete graphs admit unique (canonical) presentations as harmonic polynomials annihilated by certain differential operators (Theorem 1).
- Using the theory of Jack polynomials, we give a concrete description of these harmonic polynomials by computing the unique harmonic presentation of the standard basis of Specht polynomials (Theorem 2).
- We prove a perhaps new combinatorial identity that equates the product of the top row of lower hook lengths of λ to a weighted sum of so-called tableau transversals of λ (Theorem 3).
In this poster presentation, we focus just on perfect matchings of the complete bipartite graph $K_{n, n}$, that is, the symmetric group S_{n}.
Polynomial Presentations of Functions
Let $f \in \mathbb{R} S_{n}$ be a real-valued function on the symmetric group. Let $p \in \mathbb{R}[X]$ be a polynomial in the variables

$$
X=\left(\begin{array}{c}
X_{1,1}, \cdots, X_{1, n} \\
1, \cdots, 1 \\
X_{n, 1}, \cdots, X_{n, n}
\end{array}\right)
$$

Let $P_{\sigma} \in G L_{n}$ be the permutation matrix of $\sigma \in S_{n}$.
We say $p \in \mathbb{R}[X]$ is a presentation of $f \in \mathbb{R} S_{n}$ if

$$
f(\sigma)=p\left(P_{\sigma}\right) \quad \text { for all } \sigma \in S_{n},
$$

and we write $f \equiv p$.
Note that $X_{i, j} X_{i, k} \equiv 0$ and $X_{i, k} X_{j, k} \equiv 0$ for all $1 \leq i, j, k \leq n$. A polynomial p is succinct if its monomial terms are not multiples of $X_{i, j} X_{i, k}$ or $X_{i, k} X_{j, k}$ for all $1 \leq i, j, k \leq n$.
We can still present $0 \in \mathbb{R} S_{n}$ as a succinct polynomial z :

$$
z(X)=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(l_{i}+r_{j}\right) X_{i, j} \text { such that } \sum_{i=1}^{n} l_{i}+\sum_{j=1}^{n} r_{j}=0
$$

thus there is no unique succinct presentation of any $f \in \mathbb{R} S_{n}$.
Is there a canonical succinct presentation of each $f \in \mathbb{R} S_{n}$?
Yes, if we further insist the polynomial is harmonic.

Harmonic Polynomials

We say that a succinct polynomial $p \in \mathbb{R}[X]$ is harmonic if

$$
\begin{gathered}
\Delta_{i, *} p:=\sum_{j=1}^{n} \partial p / \partial X_{i, j}=0 \quad \forall 1 \leq i \leq n, \text { and } \\
\Delta_{*, j} p:=\sum_{i=1}^{n} \partial p / \partial X_{i, j}=0 \quad \forall 1 \leq j \leq n .
\end{gathered}
$$

Theorem 1 Any $f \in \mathbb{R} S_{n}$ can be presented uniquely as a succinct harmonic polynomial $p \in \mathbb{R}[X]$. Moreover, the unique succinct harmonic presentation of the \perp-projection $f^{=d}$ of f onto V_{d} (see below) equals the dth homogeneous part $p^{=d}$ of p.

$$
\mathbb{R} S_{n} \cong \bigoplus_{d=0}^{n-1} V^{d}, \quad V^{d}:=\bigoplus_{\lambda \vdash n: \lambda_{1}=n-d} V^{\lambda}
$$

The proof features a class of incidence matrices that we call the matching inclusion matrices $W_{\ell, n}$ whose rows are indexed by partial matchings of size ℓ, columns indexed by perfect matchings, defined such that

$$
W_{\ell, n}[m, M]= \begin{cases}1 & \text { if } m \subseteq M \\ 0 & \text { otherwise }\end{cases}
$$

-The matching-analogue of the celebrated set incidence matrices. - Experimental data shows the nonzero elementary divisors of $W_{\ell, n}$ for all $\ell \leq n \leq 6$ are 1 . Is this true for all n ?

Jack Polynomials

For any $\alpha \in \mathbb{R}$, the (integral form) Jack polynomals J_{λ} are defined as the unique family satisfying the following relations:

- Orthogonality: $\left\langle J_{\lambda}, J_{\mu}\right\rangle_{\alpha}=0$ whenever $\lambda \neq \mu$.
- Triangularity: $J_{\lambda}=\sum_{\mu \unlhd \lambda} c_{\lambda \mu} m_{\mu}$
- Normalization: $\left[m_{\left.1^{1}\right]} J_{\lambda}=n!\right.$.

Let $a_{\lambda}(i, j)$ and $l_{\lambda}(i, j)$ be the arm length and leg length of a cell $(i, j) \in \lambda$, i.e., the number of cells in row i to the right of (i, j), and the number of cells in column j below (i, j).
Let $h_{\lambda}^{*}(i, j):=a_{\lambda}(i, j) \alpha+l_{\lambda}(i, j)+1$ be the lower hook length. Let H_{T}^{*} be the product of the lower hook lengths of a shape T.

Specht Polynomials and Differential Operators
Let $\left\{f_{s, t} \in \mathbb{R}[X]: s, t\right.$ standard λ-tableaux, $\left.\lambda \vdash n\right\}$ be the Specht polynomial basis of $\mathbb{R} S_{n}$ defined such that

$$
f_{s, t}(X):=\sum_{\tau \in R_{s}} \sum_{\sigma \in C_{t}} \operatorname{sgn}(\sigma) X(\tau s, \sigma t), \quad X(s, t):=\prod_{(i, j) \in \lambda} X_{s_{i, j}, t_{i, j}}
$$

where $C_{t}\left(R_{t}\right)$ is the column (row) stabilizer of t. They are a sum of λ_{1}-many products of determinants corresponding to the pairs of columns of s, t.

What is the canonical presentation of each $f_{s, t} \in \mathbb{R} S_{n}$?
Let $I=i_{1}, \ldots, i_{d} \in[n]$ be distinct and $J=j_{1}, \ldots, j_{d} \in[n]$ be distinct. Let X be the $d \times d$ matrix with $X_{a, b}=X_{i_{a}, j_{b}}$. Define the quasi-determinant as

$$
q(I, J)(X):=\sum_{i \in I, j \in J} \frac{\partial}{\partial X_{i, j}} \operatorname{det} X=\sum_{i \in I, j \in J} \frac{\partial}{\partial X_{i, j}} \sum_{\pi \in S_{d}} \operatorname{sgn}(\pi) \prod_{s \in[d]} X_{i_{s}, j_{\pi(s)}} .
$$

Let $f_{s, t}^{\prime}(X)$ be the quasi-Specht polynomials defined such that

$$
f_{s, t}^{\prime}(X):=\sum_{\tau \in R_{s}} \prod_{i=1}^{\lambda_{1}} q\left((\tau s)_{i}, t_{i}\right)
$$

The $f_{s, t}^{\prime}(X)$'s are harmonic. Define the differential operator

$$
D_{k}:=\left(\sum_{i, j=1}^{n} \partial / \partial X_{i, j}\right)^{k} / k!.
$$

Theorem 2 Let s, t be standard Young tableaux of shape λ. The canonical presentation of $f_{s, t}$ is $p_{s, t}(X):=d_{\lambda}(1)^{-1} f_{s, t}^{\prime}=d_{\lambda}(1)^{-1} D_{\lambda_{1}} f_{s, t}$ where $d_{\lambda}(1)$ is the product of the hook lengths along the top row of λ.
We show the product of the lower hook lengths along the top row of λ are equal to weighted sums of so-called tableau traversals of λ.
A tableau transversal T of λ is a set of cells that forms a transversal of the columns of λ, e.g.,

$$
00
$$

$$
00^{0} 0
$$

$$
H_{T}^{*}=\prod_{i=0}^{4}(i \alpha+1) \prod_{i=0}^{3}(i \alpha+1)(\alpha+1)^{2}
$$

Let $w_{\alpha}(\lambda):=\sum_{T} H_{T}^{*}$ where T ranges over all tableau transversals of λ.
Theorem 3 For all λ, we have $\prod_{j=1}^{\lambda_{1}} h_{\lambda}^{*}(1, j)=w_{\alpha}(\lambda)$.

