Toggling Independent Sets of a Cycle Graph

Colin Defant (Princeton \rightarrow MIT), Michael Joseph (Dalton State), Matthew Macauley (Clemson), Alex McDonough* (UC Davis)

Independent Sets of a Cycle Graph

Let \mathscr{C}_n denote the cycle graph with *n* vertices, where $n \ge 2$. An *independent set* of the graph \mathscr{C}_n is a subset of \mathscr{C}_n containing no pair of adjacent vertices. We associate each independent set of \mathscr{C}_n with its *binary representation*, a cyclic binary string v_1, v_2, \ldots, v_n such that no two adjacent entries are both 1 (where "cyclic" means v_1 and v_n are considered adjacent).

Toggle Groups

▶ Many actions of interest in dynamical algebraic combinatorics can be expressed as compositions of toggles, detailed in [Str18]. Let \mathscr{L} be a collection of "allowed" subsets of a set *E*. For each $k \in E$, the *toggle at k* is the function $\tau_k : \mathscr{L} \to \mathscr{L}$ defined as

 $\tau_k(E) = \begin{cases} E \cup \{k\} & \text{if } k \notin E \text{ and } E \cup \{k\} \in \mathscr{L} \\ E \setminus \{k\} & \text{if } k \in E \text{ and } E \setminus \{k\} \in \mathscr{L} \end{cases}$

Snakes																			Co)-SI	iak	es	
For live entry (i,j) , another live entry is either: in position $(i,j+2)$ (called a 2 step), or in position $(i+1,j+1)$ (called a <i>D</i> step). The <i>successor</i> function $s : \text{Live}(S) \to \text{Live}(S)$ sends (i,j) to the unique element of														For in in The sence	live en n posi n posi <i>co-su</i> ls (<i>i</i> , <i>j</i>)	ntry tion tion cce) to	r (i, n (i n (i sso the	j), z + 2 + 2 r fu un	ano , j - , j - inct iqu	the: - 1) - 2) ion e el	r liv (ca (ca <i>c</i> : em	re e llec llec Liv∉ ent	nt 1 a 1 a e(
$\{(i,j+2), (i+1,j+1)\} \cap Live(S).$ The orbits of the action $\langle s \rangle$ on Live(S) are called <i>snakes</i> .														The	{(i orbits nakes	i+2 s of	2, <i>j</i> - the	-2), (<i>i</i> tion	+2	2, <i>j</i> -	– 1) L Liv)} /e
	V	$ v_2 $	v_3	v_4	v_5	v_6	<i>v</i> ₇	v_8	V9	v_{10}	<i>v</i> ₁₁			00 5		$ _{\mathcal{V}_1}$	v_2	V3	v_{4}	V5	$ v_6 $	\mathcal{V}_7	v
$\overline{x^{(0)}}$) 1	0	1	0	0	0	0	1	0	1	0	=			$x^{(0)}$	1	0	1	0	0	0	0	
$\mathcal{X}^{(1)}$) (0	0	1	0	1	0	0	0	0	1				$x^{(1)}$	0	0	0	1	0	1	0	(
$x^{(2)}$	2) C	1	0	0	0	0	1	0	1	0	0	_			$x^{(2)}$	0	1	0	0	0	0	1	(
<i>x</i> ⁽²⁾	5) C	0	1	0	1	0	0	0	0	1	0	_			$x^{(3)}$	0	0	1	0	1	0	0	(
$x^{(2)}$	•) 1	0	0	0	0	1	0	1	0	0	0				$x^{(4)}$	1	0	0	0	0	1	0]
<u>x(</u>) (1	0	1	0	0	0	0	1	0	1				$x^{(5)}$	0	1	0	1	0	0	0	(
$\frac{x^{(e)}}{(e)}$) (C	0	0	0	1	0	1	0	0	0	0	_			$x^{(6)}$	0	0	0	0	1	0	1	(
$\frac{x^{(1)}}{2}$		0	1	0	0	0	0	1	0	1	0				$x^{(7)}$	1	0	1	0	0	0	0]
$\frac{\mathcal{X}^{(2)}}{\mathcal{X}^{(2)}}$) (C	0	0	1	0	1	0	0	0	0					$x^{(8)}$	0	0	0	1	0	1	0	(

try is either: an *S* step), or an L step). $(S) \rightarrow \text{Live}(S)$

 $\cap Live(S).$

e(S) are called

	v_1	v_2	v_3	v_4	v_5	v_6	\mathcal{V}_7	v_8	V9	v_{10}	v_{11}
$x^{(0)}$	1	0	1	0	0	0	0	1	0	1	0
$x^{(1)}$	0	0	0	1	0	1	0	0	0	0	1
$x^{(2)}$	0	1	0	0	0	0	1	0	1	0	0
$x^{(3)}$	0	0	1	0	1	0	0	0	0	1	0
$x^{(4)}$	1	0	0	0	0	1	0	1	0	0	0
$x^{(5)}$	0	1	0	1	0	0	0	0	1	0	1
$x^{(6)}$	0	0	0	0	1	0	1	0	0	0	0
$x^{(7)}$	1	0	1	0	0	0	0	1	0	1	0
$x^{(8)}$	0	0	0	1	0	1	0	0	0	0	1
$x^{(9)}$	0	1	0	0	0	0	1	0	1	0	0
(10)			1		1		Ο		\cap	1	0

otherwise.

- ▶ In this work, our set \mathscr{L} of allowed subsets is the set of independent sets of \mathscr{C}_n , with vertex set $E = [n] = \{1, 2, ..., n\}$. The *toggle group* is the group generated by $\{\tau_1, \tau_2, ..., \tau_n\}$.
- ► Over the years, we have observed interesting properties for toggle actions on order ideals of various posets and independent sets of various graphs. Toggling independent sets of a path graph is analyzed in [JR18], making the similar action on the cycle graph natural to study.
- Our action $\tau: \mathscr{L} \to \mathscr{L}$ applies the toggles left-to-right (in the binary representation of the independent set) $au := au_n \circ \cdots \circ au_2 \circ au_1.$

 $001010 \xrightarrow[\tau_1]{} 101010 \xrightarrow[\tau_2]{} 101010 \xrightarrow[\tau_3]{} 100010 \xrightarrow[\tau_4]{} 100010 \xrightarrow[\tau_5]{} 100000 \xrightarrow[\tau_6]{} 100000$ au

An Example Orbit and the Original Conjecture

- ► Given an initial string $x^{(0)}$, let $x^{(1)} = \tau(x^{(0)})$, $x^{(2)} = \tau(x^{(1)})$, and so on. Eventually, after some number *m* steps, we will return to our original string. That is, $x^{(m+i)} = x^{(i)}$ for all *i*.
- ▶ In the example on the right, n = 12 and m = 15.

Theorem and Original Conjecture (DJMM)

- ▶ In any orbit, the period of the sum vector is odd.
- Given an odd r > 1, there exists an orbit with

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	V9	v_{10}	<i>v</i> ₁₁	v_{12}
$x^{(0)}$	1	0	1	0	1	0	0	0	1	0	1	0
$x^{(1)}$	0	0	0	0	0	1	0	0	0	0	0	1
$x^{(2)}$	0	1	0	1	0	0	1	0	1	0	0	0
$x^{(3)}$	0	0	0	0	1	0	0	0	0	1	0	1
$x^{(4)}$	0	1	0	0	0	1	0	1	0	0	0	0
$x^{(5)}$	0	0	1	0	0	0	0	0	1	0	1	0
$x^{(6)}$	1	0	0	1	0	1	0	0	0	0	0	0
$x^{(7)}$	0	1	0	0	0	0	1	0	1	0	1	0
$x^{(8)}$	0	0	1	0	1	0	0	0	0	0	0	1
$x^{(9)}$	0	0	0	0	0	1	0	1	0	1	0	0
$x^{(10)}$	1	0	1	0	0	0	0	0	0	0	1	0
$x^{(11)}$	0	0	0	1	0	1	0	1	0	0	0	1
$x^{(12)}$	0	1	0	0	0	0	0	0	1	0	0	0
$x^{(13)}$	0	0	1	0	1	0	1	0	0	1	0	1
$x^{(14)}$	0	0	0	0	0	0	0	1	0	0	0	0
Sum:	3	4	5	3	4	5	3	4	5	3	4	5

Slithers and Co-Slithers

- Consider a live entry (i,j). The *slither* is the sequence of steps 2 and D following the successor function of (i,j) until one reaches a position on the same co-snake as (i,j).
- Consider a live entry (i,j). The *co-slither* is the sequence of steps S and L following the co-successor function of (i,j) until one reaches a position on the same snake as (i,j).
- Slithers and co-slithers are equivalence classes up to cyclic shift, so $(2D)^3$ can also be written $(D2)^3$.
- ▶ The exponent on the slither (resp. co-slither) is called the *degree* deg(S) (resp. *co-degree* codeg(S)) of the scroll S. It is the number of times the smallest periodic string is repeated to form the slither (resp. co-slither). In the example, deg(S) = 3 and codeg(S) = 2.
- The *scale* of a scroll, written Scale(S), is the minimal (ticker tape) distance between live entries on the same snake and the same co-snake.

Proposition (DJMM)

All snakes have the same slither. All co-snakes have the same co-slither.

Theorem (DJMM)

The slither of any scroll has an odd number of *D*'s.

Theorem (DJMM)

• The set Live(S) is a torsor for the *snake group*, which has presentation

$\langle s, c \mid sc = cs, s^{\beta} = c^{\alpha} \rangle$

where S has α snakes and β co-snakes. That is, the snake group acts freely and transitively on Live(S). ▶ Furthermore, for any $i \in Live(S)$, $s^{\beta}(i) - i = c^{\alpha}(i) - i = \text{Scale}(S).$

sum vector period r if and only if $r \mid n$ and $n \ge 4r$.

Orbits by Period of Sum Vector

п	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
number of orbits	1	1	1	2	2	3	3	5	5	10	18	17	19	35	37	64	94	133	379	433	333	590	848	1355
sum vector period 1	1	1	1	2	2	3	3	5	5	10	9	17	19	29	37	64	73	133	114	211	333	590	701	1240
sum vector period 3	0	0	0	0	0	0	0	0	0	0	9	0	0	6	0	0	21	0	0	222	0	0	147	0
sum vector period 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	265	0	0	0	0	115

Scrolls and Ticker Tapes

- **b** Given a starting independent set $x^{(0)}$, the *scroll* S is the vertically bi-infinite table where each row is an independent set $x^{(i)}$. The set of entries of S containing 1 (called *live entries*) is denoted Live(S).
- ▶ We use the coordinates (i,j) to refer to the row $x^{(i)}$ and column v_j . For notation convenience, when $n < i \le 2n$, we say (i,j) = (i - n, j + 1).
- ▶ The *ticker tape* is the sequence of entries read left to right and top to bottom (like a book).
- ▶ The (i,j) entry of the scroll corresponds to the (ni+j) entry of the ticket tape.
- ► The ticker tape of the orbit shown on the left below is

Orbit Tables and Ouroboroi

- ► An *orbit table* is a partial scroll where toggling maps the bottom string to the top string.
- ▶ The image of a snake (resp. co-snake) when allowed to wrap from top to bottom is called an *ouroboros* (resp. *co-ouroboros*)
- ▶ The name was inspired by the ancient symbol of a snake swallowing its tail (drawing from 1478 alchemy text drawing by Theodoros Pelecanos, image taken from Wikipedia).
- ▶ Below to the right, the two snakes form one ouroboros and the six co-snakes form two co-ouroboroi.

Determining all Scrolls/ Ticker Tapes/ Orbit Tables for a Given *n*

	β_T	α_{S}	α_L	β_D	Slither	Co-slither	
	5	0	1	1	22222D	L	_
Theorem (DJMM)	3	0	2	3	222 <i>DDD</i>	LL	
	3	0	2	3	22D2DD	LL	
For a fixed <i>n</i> , we can construct all scrolls/ orbit tables/ ticker	3	0	2	3	22 <i>DD</i> 2 <i>D</i>	LL	
apes that begin with a live entry through the following	3	0	2	3	2D2D2D	LL	
procedure:	1	0	3	5	2DDDDD	LLL	
L. Take a solution to the equation:	4	2	0	3	2222 <i>DDD</i>	SS	
$2\beta_T + 3\alpha_S + 4\alpha_L = n+1$	4	2	0	3	222D2DD	SS	
with β or $\alpha > 0$ and $\alpha > 0$	4	2	0	3	222DD2D	SS	
with $p_T, \alpha_S, \alpha_L \ge 0$ and $\alpha_S + \alpha_L > 0$.	4	2	0	3	22D22DD	SS	
2. Choose any sequence of $\beta_D = 2(\alpha_S + \alpha_L) - 1$ instances of	4	2	0	3	22D2D2D	SS	
D and β_T instances of 2. This gives the slither of each	2	2	1	5	22 <i>DDDDD</i>	SSL	
snake.	2	2	1	5	2D2DDDD	SSL	
3. Choose any sequence of α_S instances of <i>S</i> and α_L instances	2	2	1	5	2DD2DDD	SSL	
of <i>L</i> . This gives the co-slither of each co-snake.	0	2	2	7	DDDDDDD	SSLL	
	0	2	2	7	DDDDDDD	SLSL	

$\dots, X_{-6}, X_{-5}, X_{-4}, X_{-3}, X_{-5}$	$X_{-2}, X_{-1}, X_0, X_1, X_2, X_3, X_4, X_6$	X_5, X_6, X_7	X_8, X_8, X	$(9, X_1)$	$0, X_{1}$	$1, X_1$	$_{2}, X_{1}$	$_3, X_1$	14	•					
1,0,1,0,0,0,0	1,0,1,0,0,0,	0,0,0 1,0,1,0,0,0													
$\begin{vmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \end{vmatrix}$ 1	$v_6 v_7 v_8 v_9 v_{10} v_{11}$	V	$v_1 \mid v_2$	<i>v</i> ₃	v_4	v_5	v_6	v_7	v_8	<i>V</i> 9	v_{10}	<i>v</i> ₁₁	<i>v</i> ₁₂		
$x^{(0)}$ 1 0 1 0 0	0 0 1 0 1 0	$x^{(0)}$ 1	1 0	1	0	1	0	0	0	1	0	1	0		
$x^{(1)}$ 0 0 0 1 0	1 0 0 0 1	$x^{(1)}$ (0 0	0	0	0	1	0	0	0	0	0	1		
$x^{(2)}$ 0 1 0 0 0	0 1 0 1 0 0	$x^{(2)}$ () 1	0	1	0	0	1	0	1	0	0	0		
$x^{(3)}$ 0 0 1 0 1	0 0 0 0 1 0	$x^{(3)}$ (0 0	0	0	1	0	0	0	0	1	0	1		
$x^{(4)}$ 1 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$x^{(4)}$ () 1	0	0	0	1	0	1	0	0	0	0		
$x^{(5)}$ 0 1 0 1 0	0 0 0 1 0 1	$x^{(5)}$ (0 (1	0	0	0	0	0	1	0	1	0		
$x^{(6)}$ 0 0 0 0 1	0 1 0 0 0 0	$x^{(6)}$ 1	1 0	0	1	0	1	0	0	0	0	0	0		
••• ••• ••• ••• •••	••• ••• ••• •••	$x^{(7)}$ () 1	0	0	0	0	1	0	1	0	1	0		
period of tick	ker tape: 7	$x^{(8)}$ (0 0	1	0	1	0	0	0	0	0	0	1		
•	•	$x^{(9)}$ (0 0	0	0	0	1	0	1	0	1	0	0		
Theorem ()	(D.IMM)	$x^{(10)}$ 1	1 0	1	0	0	0	0	0	0	0	1	0		
		$x^{(11)}$ (0 0	0	1	0	1	0	1	0	0	0	1		
Let S be a scroll. The perio	od of the ticker tape is	$x^{(12)}$ () 1	0	0	0	0	0	0	1	0	0	0		
Scale((8)	$x^{(13)}$ (0 0	1	0	1	0	1	0	0	1	0	1		
$\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$	$\frac{(0)}{2}$	$x^{(14)}$ (0 0	0	0	0	0	0	1	0	0	0	0		
ucg(0) col	Jucg (0)	•••	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		
(definitions given later).				pe	riod	of t	icke	r tap	e: 4	5					

References

- [DJMM] C. Defant, M. Joseph, M. Macauley, and A. McDonough. Torsors from toggling independent sets. *In preparation.*
- [JR18] M. Joseph and T. Roby. Toggling independent sets of a path graph. *Electron J. Combin.*, 25(1)1–18, 2018.
- [Str18] J. Striker. Rowmotion and generalized toggle groups. *Discrete Mathematics & Theoretical* Computer Science, 20, 2018.