Independent Sets of a Cycle Graph

Let \mathscr{C}_{n} denote the cycle graph with n vertices, where $n \geq 2$. An independent set of the graph \mathscr{C}_{n} is a subset of \mathscr{C}_{n} containing no pair of adjacent vertices. We associate each independent set of \mathscr{C}_{n} with its binary representation, a cyclic binary string $v_{1}, v_{2}, \ldots, v_{n}$ such that no two adjacent entries are both 1 (where "cyclic" means v_{1} and v_{n} are considered adjacent)

Toggle Group

- Many actions of interest in dynamical algebraic combinatorics can be expressed as compositions of toggles detailed in [Str18]. Let \mathscr{L} be a collection of "allowed" subsets of a set E. For each $k \in E$, the toggle at k is the function $\tau_{k}: \mathscr{L} \rightarrow \mathscr{L}$ defined as

$$
\tau_{k}(E)= \begin{cases}E \cup\{k\} & \text { if } k \notin E \text { and } E \cup\{k\} \in \mathscr{L} \\ E \backslash\{k\} & \text { if } k \in E \text { and } E \backslash\{k\} \in \mathscr{L} \\ E & \text { otherwise } .\end{cases}
$$

- In this work, our set \mathscr{L} of allowed subsets is the set of independent sets of \mathscr{C}_{n}, with vertex set $E=[n]=\{1,2, \ldots, n\}$. The toggle group is the group generated by $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$.
- Over the years, we have observed interesting properties for toggle actions on order ideals of various posets and independent sets of various graphs. Toggling independent sets of a path graph is analyzed in [JR18], making the similar action on the cycle graph natural to study
- Our action $\tau: \mathscr{L} \rightarrow \mathscr{L}$ applies the toggles left-to-right (in the binary representation of the independent set) $\tau:=\tau_{n} \circ \cdots \circ \tau_{2} \circ \tau_{1}$

$$
001010 \underset{\tau_{1}}{\underset{\tau_{1}}{ }} 101010 \underset{\tau_{2}}{\underset{\tau_{3}}{\longrightarrow}} 101010 \underset{\tau_{4}}{\underset{\tau_{5}}{\longmapsto}} 10000000
$$

An Example Orbit and the Original Conjecture

Given an initial string $x^{(0)}$, let $x^{(1)}=\tau\left(x^{(0)}\right)$ $x^{(2)}=\tau\left(x^{(1)}\right)$, and so on. Eventually, after some number m steps, we will return to our original string. That is, $x^{(m+i)}=x^{(i)}$ for all i.
In the example on the right, $n=12$ and $m=15$

Theorem and Original Conjecture (DJMM)

- In any orbit, the period of the sum vector is odd.
- Given an odd $r>1$, there exists an orbit with sum vector period r if and only if $r \mid n$ and $n \geq 4 r$.

| | v_{1} | v_{2} | v_{3} | v_{4} | v_{5} | v_{6} | v_{7} | v_{8} | v_{9} | v_{10} | v_{11} | v_{12} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x^{(0)}$ | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| $x^{(1)}$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| $x^{(2)}$ | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| $x^{(3)}$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| $x^{(4)}$ | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| $x^{(5)}$ | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| $x^{(6)}$ | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| $x^{(7)}$ | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| $x^{(8)}$ | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| $x^{(9)}$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| $x^{(10)}$ | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| $x^{(11)}$ | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| $x^{(12)}$ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| $x^{(13)}$ | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| $x^{(14)}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| Sum: | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |

Orbits by Period of Sum Vector

n
number of orbits sum vector period 1

Scrolls and Ticker Tape

Given a starting independent set $x^{(0)}$, the scroll \mathcal{S} is the vertically bi-infinite table where each row is an independent set $x^{(i)}$. The set of entries of \mathcal{S} containing 1 (called live entries) is denoted Live (\mathcal{S}).

- We use the coordinates (i, j) to refer to the row $x^{(i)}$ and column v_{j}. For notation convenience, when $n<i \leq 2 n$, we say $(i, j)=(i-n, j+1)$.
The ticker tape is the sequence of entries read left to right and top to bottom (like a book)
- The (i, j) entry of the scroll corresponds to the $(n i+j)$ entry of the ticket tape.
- The ticker tape of the orbit shown on the left below is
$, \underbrace{X_{-6}, X_{-5}, X_{-4}, X_{-3}, X_{-2}, X_{-1}, X_{0}}, \underbrace{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}}, \underbrace{X_{8}, X_{9}, X_{10}, X_{11}, X_{12}, X_{13}, X_{14}}$

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}
$x^{(0)}$	1	0	1	0	0	0	0	1	0	1	0
$x^{(1)}$	0	0	0	1	0	1	0	0	0	0	1
$x^{(2)}$	0	1	0	0	0	0	1	0	1	0	0
$x^{(3)}$	0	0	1	0	1	0	0	0	0	1	0
$x^{(4)}$	1	0	0	0	0	1	0	1	0	0	0
$x^{(5)}$	0	1	0	1	0	0	0	0	1	0	1
$x^{(6)}$	0	0	0	0	1	0	1	0	0	0	0

Theorem (DJMM)
Let \mathcal{S} be a scroll. The period of the ticker tape is
$\frac{\text { Scale }(\mathcal{S})}{\operatorname{deg}(S) \operatorname{codeg}(S)}$
(definitions given later).

$x^{(0)}$
$x^{(1)}$
$x^{(2)}$
$x^{(3}$
$x^{(4)}$
$x^{(5)}$
$x^{(6)}$
$x^{(7)}$
$x^{(8)}$
$\frac{x^{(9)}}{x^{(1)}}$
$x^{(1)}$
$x^{(12)}$
$x^{(13)}$

1
:---
$x^{(1)}$
:---

 $x^{(4)}$\begin{tabular}{llllllllllllll}
\& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

\hline

$x^{(6)}$ \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0

\hline$x^{(6)}$ \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

$x^{(6)}$ \& 1 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline$x^{(7)}$ \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0

$x^{(8)}$ \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1

$x^{(9)}$ \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0

\hline$x^{(10)}$ \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0

$x^{(11)}$ \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0

\hline$x^{(12)}$ \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1

 $\begin{array}{lllllllllllll}x^{(12)} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ x^{(13)} & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$

$x^{(13)}$ \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1
\end{tabular} $x^{(14)}\left[\begin{array}{l|lllllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \hline\end{array}\right.$

For live entry (i, j), another live entry is either - in position $(i, j+2)$ (called a 2 step), or - in position $(i+1, j+1)$ (called a D step) The successor function $s: \operatorname{Live}(\mathcal{S}) \rightarrow \operatorname{Live}(\mathcal{S})$ send (i, j) to the unique element of

$$
\{(i, j+2),(i+1, j+1)\} \cap \operatorname{Live}(\mathcal{S}) .
$$

The orbits of the action $\langle s\rangle$ on Live (\mathcal{S}) are called snakes.

2 snakes slither: $(2 D)^{3}$

Co-snakes

For live entry (i, j), another live entry is either - in position $(i+2, j-1)$ (called an S step), or - in position $(i+2, j-2)$ (called an L step). The co-successor function $c: \operatorname{Live}(\mathcal{S}) \rightarrow \operatorname{Live}(\mathcal{S})$ sends (i, j) to the unique element of
$\{(i+2, j-2),(i+2, j-1)\} \cap \operatorname{Live}(\mathcal{S})$
The orbits of the action $\langle c\rangle$ on Live (\mathcal{S}) are called co-snakes.

Slithers and Co-Slithers

- Consider a live entry (i, j). The slither is the sequence of steps 2 and D following the successor function of (i, j) until one reaches a position on the same co-snake as (i, j).
- Consider a live entry (i, j). The co-slither is the sequence of steps S and L following the co-successor function of (i, j) until one reaches a position on the same snake as (i, j).
- Slithers and co-slithers are equivalence classes up to cyclic shift, so $(2 D)^{3}$ can also be written $(D 2)^{3}$
- The exponent on the slither (resp. co-slither) is called the degree deg (\mathcal{S}) (resp. co-degree codeg (\mathcal{S})) of the scroll \mathcal{S}. It is the number of times the smallest periodic string is repeated to form the slither (resp. co-slither) In the example, $\operatorname{deg}(\mathcal{S})=3$ and $\operatorname{codeg}(\mathcal{S})=2$.
- The scale of a scroll, written Scale (\mathcal{S}), is the minimal (ticker tape) distance between live entries on the same snake and the same co-snake

Proposition (DJMM)

All snakes have the same slither. All co-snakes have the same co-slither

Theorem (DJMM)

The slither of any scroll has an odd number of D 's.

Theorem (DJMM)

- The set Live (\mathcal{S}) is a torsor for the snake group, which has presentation

$$
\left\langle s, c \mid s c=c s, s^{\beta}=c^{\alpha}\right\rangle
$$

where \mathcal{S} has α snakes and β co-snakes. That is, the snake group acts freely and transitively on Live(\mathcal{S}). - Furthermore, for any $i \in \operatorname{Live}(\mathcal{S})$,

$$
s^{\beta}(i)-i=c^{\alpha}(i)-i=\operatorname{Scale}(\mathcal{S}) .
$$

Orbit Tables and Ouroboro

- An orbit table is a partial scroll where toggling maps the bottom string to the top string.
- The image of a snake (resp. co-snake) when allowed to wrap from top to bottom is called an ouroboros (resp. co-ouroboros)
- The name was inspired by the ancient symbol of a snake swallowing its tail (drawing from 1478 alchemy text drawing by Theodoros Pelecanos, image taken from Wikipedia).
- Below to the right, the two snakes form one ouroboros and the six co-snakes form two co-ouroboroi.

Determining all Scrolls/ Ticker Tapes/ Orbit Tables for a Given n

Theorem (DJMM)

For a fixed n, we can construct all scrolls/ orbit tables/ ticker tapes that begin with a live entry through the following procedure:

1. Take a solution to the equation:

$$
2 \beta_{T}+3 \alpha_{S}+4 \alpha_{L}=n+1
$$

with $\beta_{T}, \alpha_{S}, \alpha_{L} \geq 0$ and $\alpha_{S}+\alpha_{L}>0$.
2. Choose any sequence of $\beta_{D}=2\left(\alpha_{S}+\alpha_{L}\right)-1$ instances of D and β_{T} instances of 2 . This gives the slither of each snake.
3. Choose any sequence of α_{S} instances of S and α_{L} instances of L. This gives the co-slither of each co-snake.

β_{T}	α_{S}	α_{L}	β_{D}	Slither	Co-slithe
5	0	1	1	$22222 D$	L
3	0	2	3	$222 D D D$	$L L$
3	0	2	3	$22 D 2 D D$	$L L$
3	0	2	3	$22 D D 2 D$	$L L$
3	0	2	3	$2 D 2 D 2 D$	$L L$
1	0	3	5	$2 D D D D D$	$L L L$
4	2	0	3	$2222 D D D$	$S S$
4	2	0	3	$222 D 2 D D$	$S S$
4	2	0	3	$222 D D 2 D$	$S S$
4	2	0	3	$22 D 22 D D$	$S S$
4	2	0	3	$22 D 2 D 2 D$	$S S$
2	2	1	5	$22 D D D D D$	$S S L$
2	2	1	5	$2 D 2 D D D D$	$S S L$
2	2	1	5	$2 D D 2 D D D$	$S S L$
0	2	2	7	$D D D D D D D$	$S S L L$
0	2	2	7	$D D D D D D D$	$S L S L$

References

[DJMM] C. Defant, M. Joseph, M. Macauley, and A. McDonough. Torsors from toggling independent sets In preparation.
[JR18] M. Joseph and T. Roby. Toggling independent sets of a path graph. Electron J. Combin., 25(1)1-18, 2018.
[Str18] J. Striker. Rowmotion and generalized toggle groups. Discrete Mathematics \& Theoretical Computer Science, 20, 2018.

