Peaks are Preserved under Run-Sorting Surprising consequences of the Run-sort function! Per Alexandersson Stockholm University per.w.alexandersson@gmail.com Olivia Nabawanda Mbarara University of Science & Technology onabawanda@must.ac.ug

Background

- \blacksquare By Run-sort, we mean rearranging the runs of a permutation $\sigma \in S_n$ in lexicographical order. Example 1.
- Next we describe the bijection $\eta: S_n \to S_n$, where $PKV(\sigma) =$ $SPV(\eta(\sigma)).$
- For any $n \ge 1$, there is a bijection

$\mathcal{C}: \{\emptyset, 1, 2, \dots, n-1\} \times S_{n-1} \to S_n$

which has the following properties (C is not $Stay_a(\sigma)$ in general!) (1) If $a = \emptyset$, then $SPV(\pi') = SPV(\pi)$. (2) If a is the last entry of runsort(π), then SPV(π') = SPV(π). (3) If $a \in SPV(\pi)$, then

Lemma 5. $R_n(t)$ satisfies the recurrence

 $R_n(t) = tR'_{n-1}(t) + t(n-2)R_{n-2}(t), R_1(t) = R_2(t) = t.$ (2)

From Equation 2, we then prove Theorem 6 using a result by Wagner, See, [Wag92, Sec. 3] as a main tool.

 $runsort(29\ 7\ 368\ 5\ 14) = 14\ 29\ 368\ 5\ 7$

 \blacksquare We study permutations whose runs are run-sorted, i.e., run-sorted permutations (resp. $\mathcal{RSP}(n)$).

- Refer A bijection on permutations over $[n] = \{1, 2, \ldots, n\},\$ which keeps track of the peak-values before and after applying the run-sort function.
- We further show that the descent generating polynomials, $A_n(t)$ for $\mathcal{RSP}(n)$ are real rooted, and satisfy an interlacing property.

Definition 2. A peak of a permutation $\sigma \in S_n$, is an integer i, 1 < i < n such that $\sigma(i-1) < \sigma(i) > \sigma(i+1)$ and the corresponding $\sigma(i)$ is a peak-value of σ .

Given a permutation σ , we let runsort(σ) denote the permutation obtained by rearranging the runs of σ lexicographically. Hence, if $\sigma \in S_n$, then $\operatorname{runsort}(\sigma) \in \mathcal{RSP}(n)$. We let $PKV(\sigma)$ denote the set of peak-values of the permutation σ , and $SPV(\sigma) \coloneqq PKV(runsort(\sigma)).$

A recursion for permutations

We recursively construct permutations of length n, from those of length n-1, by inserting n somewhere.

Let $a \in \{\emptyset, 1, 2, ..., n-1\}, \sigma \in S_{n-1}$. Then

 $SPV(\pi') = (SPV(\pi) \setminus \{a\}) \cup \{n\}.$

(4) If $k \in SPV(\pi)$, then

 $SPV(\pi') = (SPV(\pi) \setminus \{k\}) \cup \{n\}.$

(5) If a is not the last entry of runsort(π), and neither a or k are in $SPV(\pi)$, then

 $SPV(\pi') = SPV(\pi) \cup \{n\}.$

Table showing examples of how η works

σ $\eta(\sigma)$	σ $\eta(\sigma)$	$\sigma \eta(\sigma)$	$\sigma \eta(\sigma)$
12 12	1234 1234	2314 2413	3412 3124
21 21	1243 1243	2341 2134	3421 3241
123 123	$1324 \ 1324$	2413 2314	4123 4123
132 132	$1342 \ 1342$	$2431 \ 2143$	$4132 \ 4132$
213 231	$1423 \ 1423$	3124 3412	4213 4231
231 213	$1432 \ 1432$	3142 3142	4231 4213
312 312	2134 2341	3214 3421	4312 4312
321 321	2143 2431	3241 3214	4321 4321

Coopman and Rubey, see [CR21] have recently found more properties of permutations using the runsort function.

Probabilistic statements

Let $\sigma \in S_n$ be a uniformly chosen permutation, and let $\sigma' \coloneqq \operatorname{runsort}(\sigma)$. As $n \to \infty$ does this curve approach some limit curve?

Theorem 6. The polynomials

satisfy $R_{n-1} \ll R_n$ for all $n \ge 1$. In particular, they are all real-rooted.

Finally, we end with a recursion for a multivariate extension of $A_n(t)$.

Theorem 7. For all integers $n \ge 1$, let

 $A_n(\mathbf{x}) \coloneqq \sum \qquad \prod \qquad x_{n-j}.$ $\pi \in \mathcal{RSP}(n) \ j \in DES(\pi)$

Then

 $A_n(\mathbf{x}) = 1 + \sum_{i=1}^{n-2} \left(\binom{n-1}{i} - 1 \right) x_i A_i(\mathbf{x})$

by indexing of the descent set from the end.

This solves the problem posed in [NRB20] for the exponential generating function of the $A_n(t)$.

Below, we illustrate $A_5(\mathbf{x})$ where $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$ for all $\pi \in \mathcal{RSP}(5).$ We have that

 $A_5(\mathbf{x}) = 1 + 3x_3 + 5x_2 + 3x_1 + 3x_3x_1$

Note: We never consider $a = \emptyset$ as an entry in the permutation. It is just a label. Then we have the map $\mathcal{B}: \{\emptyset, 1, 2, \dots, n-1\} \times S_{n-1} \to S_n$, i.e., $f(a, \sigma) = \operatorname{Stay}_{a}(\sigma)$.

Question: Can we track peak-values?

Recursively constructing permutations while tracking peaks

```
For simplicity, we set \pi' \coloneqq \operatorname{Stay}_{a}(\pi) and we let k be the value
 immediately succeeding a in \pi (unless a is the last entry in \pi).
 Then we have the following choices.
(1) a = \emptyset, so PKV(\pi') = PKV(\pi).
(2) a is the last entry of \pi, so PKV(\pi') = PKV(\pi).
(3) a \in \text{PKV}(\pi). Then \text{PKV}(\pi') = (\text{PKV}(\pi) \setminus \{a\}) \cup \{n\}.
(4) k \in \text{PKV}(\pi). Then \text{PKV}(\pi') = (\text{PKV}(\pi) \setminus \{k\}) \cup \{n\}.
(5) Otherwise PKV(\pi') = PKV(\pi) \cup \{n\}.
 Example 3. Consider a permutation \pi = 21574368 \in S_8. Then
Stay(\pi) = 921574368
Stay<sub>8</sub>(\pi) = 215743689
Stay<sub>7</sub>(\pi) = 215794368
```

Stay₅(π) = 215974368.

Runsort function

Figure 1: A random permutation matrix σ' after runsort, for n = 20000. The entries equal to 1 are shaded black.

This question has recently been answered in the affirmative by Alon, Defant and Kravitz, see [ADK22].

Real-rootedness interlacing and roots

Definition 4 ([Wag92]). Let g be a polynomial of degree n with non-positive roots $g_1 \leq g_2 \leq \cdots \leq g_n$. If f is a degree n-1polynomial with non-positive roots $f_1 \leq f_2 \leq \cdots \leq f_{n-1}$, we say that the roots of f interlace those of q, if

 $g_1 \le f_1 \le g_2 \le f_2 \le \dots \le f_{n-1} \le g_n \le 0.$

we show that the polynomials

$$A_n(t) \coloneqq \sum_{\sigma \in \mathcal{RSP}(n)} t^{\operatorname{des}(\sigma)}$$

are real-rooted. Moreover, the roots of $A_{n-1}(t)$ interlace the roots of $A_n(t)$.

We let $f_{n,k}$ be the number of run-sorted permutations of [n]having k runs. In [NRB20], it was proved that the numbers $f_{n,k}$ satisfy the recurrence relation

1	12345
x_3	13245, 14235, 15234
x_2	12435, 12534, 13425, 13524, 14523
x_1	12354, 12453, 13452
$x_{3}x_{1}$	13254, 14253, 15243

Acknowledgement

A NUNERCITY

Stockholm University

References

- [ADK22] Noga Alon, Colin Defant, and Noah Kravitz. The runsort permuton. Advances in Applied Mathematics, 139:102361, 2022.
- Michael Coopman and Martin Rubey. An equidistri-[CR21]bution involving invisible inversions. arXiv preprint arXiv:2111.02973, 2021.
- [NRB20] Olivia Nabawanda, Fanja Rakotondrajao, and Alex Samuel Bamunoba. Run distribution over flat-

• Let runsort : $S_n \to \mathcal{RSP}(n)$ (not injective!) • Let $SPV(\sigma) \coloneqq PKV(runsort(\sigma))$ • Surprise! (see title)

 $f_{n,k} = k f_{n-1,k} + (n-2) f_{n-2,k-1}$ whenever $1 \le k < n$.

Hence we have that

$$tA_n(t) = \sum_{\pi \in \mathcal{RSP}(n)} t^{\operatorname{des}(\pi)+1} = \sum_{k \ge 1} t^k f_{n,k}.$$
 (1)

From Equation 1, let us set $R_n(t) \coloneqq tA_n(t)$.

tened partitions. Journal of Integer Sequences, 23, 2020. URL: https://cs.uwaterloo.ca/journals/ JIS/VOL23/Nabawanda/naba5.html.

[Wag92] David G Wagner. Total positivity of Hadamard products. Journal of Mathematical Analysis and Applications, 163(2):459-483, January 1992. doi:10.1016/ 0022-247x(92)90261-b.