Deformation cone of hypergraphic polytopes

Arnau Padrol¹, Vincent Pilaud², **Germain Poullot**¹

Institut de Mathématiques de Jussieu - Paris Rive Gauche, Sorbonne Université, Paris, France

² CNRS & LIX, École Polytechnique, Palaiseau, France

Deformation of polytopes

deformation cone $\mathbb{DC}(P)$ = set of all polytopes whose normal fans coarsen the normal fan of P.

PROP. $\mathbb{DC}(P)$ is a closed convex cone (under dilation and Minkowski sum) and contains a lineality subspace of dimension d (translations). Standard permutohedron $\Pi_n = \text{conv}\{(\sigma(i))_{i \in [1,n]} : \sigma \in \mathcal{S}_n\}$. Here below: 5 deformations of Π_4 .

Deformed permutahedra and $\mathbb{DC}(\Pi_n)$

 $\mathbb{DC}(\Pi_n)$ = deformed permutahedra = cone of submodular functions dim $\mathbb{DC}(\Pi_n) = 2^n - n - 1$; number of facets of $\mathbb{DC}(\Pi_n) = 2^{n-2}\binom{n}{2}$. Remains to understand since the 70s: rays, faces...

Here below: 3D affine section of $\mathbb{DC}(\Pi_3)$ (4D-cone with 5 rays).

Hypergraphic polytopes P_H

Hypergraph on $V = \text{collection } H \text{ of } U \subseteq V \text{ such that } |U| \ge 2.$ Hypergraphic polytope $P_H = \sum_{U \in H} \Delta_U$ with $\Delta_U := \text{conv}\{e_u \mid u \in U\}$.

Here below: hypergraphic polytope for *H*:

 Δ_{134}

PROP. Q deformation of $P \Rightarrow \mathbb{DC}(Q)$ face of $\mathbb{DC}(P)$.

Hypergraphic fan coarsens braid fan (normal fan of Π_n) $\Rightarrow P_H \in \mathbb{DC}(\Pi_n)$ and $\mathbb{DC}(P_H)$ is a face of $\mathbb{DC}(\Pi_n)$. We study $\mathbb{DC}(P_H)$.

 Δ_{234}

Wall-crossing inequalities give a redundant description of $\mathbb{DC}(P_H)$.

THM. The deformation cone $\mathbb{DC}(P_H)$ is isomorphic to the set of polytopes $\{x \in \mathbb{R}^V \mid \sum_{u \in U} x_u - \sum_{v \notin U} x_v \le h_U \text{ for all } U \subseteq V \} \text{ for all } h \text{ in the cone}$ of $\mathbb{R}^{2^{V}}$ defined by the following **redundant** description:

• $h_{\varnothing} = -h_{V}$,

 Δ_{12}

- $h_{S \cup \{u\}} + h_{S \cup \{v\}} = h_S + h_{S \cup \{u,v\}}$ for each $S \subseteq V$ and each $\{u,v\} \subseteq V \setminus S$ such that $U \notin H$ for any $\{u, v\} \subseteq U \subseteq V \setminus S$,
- $h_{S\cup\{u\}} + h_{S\cup\{v\}} \ge h_S + h_{S\cup\{u,v\}}$ for each $\{u,v\} \subseteq U \in H$ and $S \subseteq V \setminus U$.

Dimension of $\mathbb{DC}(P_H)$

 $K \subseteq V$ induced clique = $\forall u, v \in K, \exists U \in H, \{u, v\} \subseteq U \subseteq K.$

THM. Span ($\mathbb{DC}(P_H)$) independent eqns:

• $h_{\varnothing} = -h_{V}$; $h_{S \cup \{u\}} + h_{S \cup \{v\}} = h_{S} + h_{S \cup \{u,v\}}$ for $\emptyset \neq S \subseteq V$ with $V \setminus S$ not an induced clique, $U \notin H$ for any $\{u, v\} \subseteq U \subseteq V \setminus S$.

CORO. The simplices \triangle_K for the induced cliques $K \neq \emptyset$ of H form a linear basis of the vector space spanned by $\mathbb{DC}(P_H)$.

 $\dim \mathbb{DC}(P_H) = \text{number induced cliques } K \neq \emptyset.$

For some classes of hypergraph, we have an irredundant description of $\mathbb{DC}(P_H)$: Graphical zonotopes and Nestohedra.

Want more details?

arXiv:2109.09200 arXiv:2111.12422 apadrol@imj-prg.fr vincent.pilaud@lix.polytechnique.fr germain.poullot@imj-prg.fr

Graphical zonotopes

Graphical zonotope = P_G when H = G a graph $(\forall U, |U| = 2)$

THM. Irredundant description $\mathbb{DC}(P_G)$:

- $h_{\varnothing} = -h_{V}$,
- $h_{S\setminus\{u\}} + h_{S\setminus\{v\}} = h_S + h_{S\setminus\{u,v\}}$ for each $\emptyset \neq S \subseteq V$ and any $\{u, v\} \in \binom{S}{2} \setminus E$,
- $h_{S\cup\{u\}}$ + $h_{S\cup\{v\}}$ \geq h_S + $h_{S\cup\{u,v\}}$ for each $\{u,v\} \in E$ and $S \subseteq N(u) \cap N(v)$.

CORO. $\mathbb{DC}(\mathsf{P}_G)$ simplicial $\Leftrightarrow G$ has no triangle (clique of size 3).

Nestohedra

Nestohedron = P_B when H = B a building set $(\forall U_1, U_2 \in H, U_1 \cap U_2 \neq \emptyset \Rightarrow U_1 \cup U_2 \in H)$ *U elementary*: max $W \subseteq U$, $W \in H$, are disjoint.

THM. Irredundant description $\mathbb{DC}(P_{\mathcal{B}})$:

- $\sum_{K \in \overline{\kappa}(\mathcal{B})} h_K = 0 \ (\overline{\kappa}(\mathcal{B}): \max U \in H \text{ and } \emptyset),$
- $\sum_{B \in \mu(P)} h_B \ge h_P$ for elementary $P \in H$, $h_A + h_B + \sum h_K \ge h_P + \sum h_K$ $K \in \kappa(P \setminus (A \cup B))$ $K \in \kappa(A \cap B)$ P not elementary, $A \neq B$ maximal in P.

CORO. $\mathbb{DC}(P_{\mathcal{B}})$ simplicial \Leftrightarrow all U with ≥ 3 distinct maximal subblocks are elementary.