Derangements and the *p*-adic incomplete gamma function Andrew O'Desky Princeton University, Harry Richman[†] University of Washington Motivation COMBINATORICS NUMBER THEORY \leftrightarrow • Combinatorics: counts of permutations and permutation-related objects, e.g. #(permutations on [n]) = n!• Upshot: Gamma function identity $n! = \Gamma(n+1)$ extends factorial $n! : \mathbb{N} \to \mathbb{N}$ to • Number theory: special functions, modular forms, e.g. $\Gamma(s) = \int_0^\infty t^s e^{-t} \frac{dt}{t}$ complex-valued function $x!: \mathbb{C} \to \mathbb{C}$ *p*-adic numbers Derangements A *p*-adic integer is a number of the form $a_0 + a_1p + a_2p^2 + a_3p^3 + \cdots$, $a_i \in \mathbb{Z}$. A derangement is a permutation on [n] with no fixed points. By inclusion-exclusion, the number of derangements on *n* elements is $d(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)!$ The topology on p-adic numbers is induced by the metric $|p^n a| \le \frac{1}{n^n}$ if $a \in \mathbb{Z}$.

n 0 1 2 3 4 5 6 7 8 9 10

 \mathbb{Z}_p denotes the set of p-adic integers, and \mathbb{Q}_p the set of p-adic rationals.

d(n)	1	0	1	2	9	44	265	1854	14833	133496	14684570
Table 1. Number of derangements on n elements.											

• Problem: What is value of $d(\infty)$? Or d(-1)? What "patterns" appear in d(n)?

A function f is pseudo-polynomial if $a \equiv b \mod n$ implies $f(a) \equiv f(b) \mod n$. Theorem (Hall, 1971)

If $a \equiv b \mod n$ then $(-1)^a d(a) \equiv (-1)^b d(b) \mod n$.

Note that
$$(-1)^n d(n) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} (n-k)! = \sum_{k=0}^\infty (-1)^k \binom{n}{k} k!$$

p-adic continuity

Problem: How to decide if function $f : \mathbb{N} \to \mathbb{Q}$ is *p*-adic continuous?

- Ex: $3n^2 + 5n + 1$ is *p*-adic continuous for every *p*.
- Ex: $(-1)^n$ is 2-adic continuous, but not 3-adic continuous.

The Mahler coefficients for a function $f : \mathbb{N} \to \mathbb{Q}$ are the constants c_k such that

Example: Is $f(n) = 10^n p$ -adic continuous for any p?

Theorem (Mahler, 1958)

The function $f: \mathbb{N} \to \mathbb{Q}_p$ is p-adic continuous if and only if $|c_k|_p \to 0$ as $k \to \infty$, where c_k are Mahler coefficients of f.

$$f(x) = c_0 + c_1 \begin{pmatrix} x \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} x \\ 2 \end{pmatrix} + c_3 \begin{pmatrix} x \\ 3 \end{pmatrix} + \cdots$$

• Ex: $3n^2 + 5n + 1 = 1 + 8\binom{n}{1} + 6\binom{n}{2}$. • Ex: $(-1)^n = 1 - 2\binom{n}{1} + 4\binom{n}{2} - 8\binom{n}{3} + \cdots$, $c_k = (-1)^k 2^k$.

Derangement-like sequences

- An arrangement on [n] is a choice of subset $S \subset [n]$ and a permutation on S.
- An r-cyclic derangement is an "r-signed permutation on [n]" with no fixed points. (Formally: action of $C_r \wr S_n$ on $[r] \times [n]$.)
- A cycle-restricted permutation is a permutation whose cycles lengths are in a pre-chosen set $L \subset \mathbb{N}$. Derangements are obtained from $L = \{2, 3, 4, \ldots\}$.

n	0	1	2	3	4	5	6	7	8	9	10
$d^L(n)$	1	1	1	3	9	21	81	351	1233	46089	434241
Table 2. Number of cycle restricted permutations, $L = \{1, 3, 9, 27, 81, \ldots\}$.											

Theorem (O'Desky-R, 2022)

Let $d^{L}(n)$ denote the number of cycle-restricted derangements with respect to L.

Mahler coefficients can be found using finite differences $c_0 = f(0), \quad c_1 = \Delta f(0) = f(1) - f(0), \quad c_2 = \Delta^2 f(0) = \Delta f(1) - \Delta f(0), \cdots$

Incomplete gamma function

The incomplete gamma function $\Gamma(s,z)$ is defined by $\Gamma(s,z) = \int_{-\infty}^{\infty} t^s e^{-t} \frac{dt}{t}$

Theorem (O'Desky-R, '22)

There exists a p-adic continuous $\Gamma_p: \mathbb{Z}_p \times (1 + p\mathbb{Z}_p) \to \mathbb{Z}_p$ such that $\Gamma_p(n,r) = \Gamma(n,r)$ where Γ is the incomplete gamma function.

Key observation: incomplete gamma values count *r*-cyclic derangements $\Gamma(n+1, 1/r) = e^{-1/r} r^{-n} d(n, r)$

1. If $1 \in L$, then $n \mapsto d^L(n)$ is p-adic continuous if and only if $p \in L$. 2. If $1 \notin L$, then $n \mapsto (-1)^n d^L(n)$ is *p*-adic continuous if and only if $p \notin L$.

Counting formulas:

arrangements

r-cyclic derangements

L cycle restricted permutations

Further questions

Factorial n! is not p-adic continuous. Morita defined a p-adic gamma function by

Problem: How is Γ_p^{Mor} related to our *p*-adic incomplete gamma function? Euler derived an evaluation of the divergent sum $d(-1) = -(0! + 1! + 2! + 3! + \cdots) \approx 0.697.$

Problem: Is there a combinatorial interpretation of this constant?

http://harryrichman.info

