Our Results

- We introduce a new basis of quasisymmetric functions, the row-strict dual immaculate functions, with a cyclic, indecomposable 0-Hecke algebra module.
- We uncover the remarkable properties of the immaculate Hecke poset induced by the 0 -Hecke action on standard immaculate tableaux, revealing other submodules and quotient modules, cyclic and indecomposable. - We complete the combinatorial and representationtheoretic picture by showing that the generating func tions of all the possible variations of tableaux occur as characteristics of 0 -Hecke modules, all captured in the immaculate Hecke poset.

Quasisymmetric functions, 0 -Hecke algebra

A composition α of n is a sequence of positive integers summing to n. Write $\alpha \vDash n$.

Ex The diagram of $\alpha=(3,2,4) \vDash 9$ is
Compositions α of n

- map to subsets of $[n-1]=\{1,2, \ldots, n-1\}$
- are partially ordered by refinement: β refines α if each part of α is a sum of consecutive parts of β.
The monomial quasisymmetric function indexed by α : $M_{\alpha}=\sum_{\substack{\left(i_{1}, i_{2}, \ldots, i_{k}\right) \\ i_{1}<i_{2}<\ldots<i_{k}}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}$.
The fundamental quasisymmetric function indexed by α :
$F_{\alpha}:=\sum_{\beta \text { refines } \alpha} M_{\beta}$.
$\operatorname{Defn}\left\{M_{\alpha}: \alpha \vDash n\right\}$ and $\left\{F_{\alpha}: \alpha \vDash n\right\}$ are bases for the degree- n homogeneous component QSym $_{n}$ of the algebra of quasisymmetric functions, the monomial basis and the fundamental basis.
Defn The 0-Hecke algebra $H_{n}(0)$ is a deformation of the group algebra of the symmetric group, of dimension n ! Thm (Norton1979) $H_{n}(0)$ admits exactly 2^{n-1} simple modules L_{α}, one for each $\alpha \vDash n$, all one-dimensional. For finite-dimensional $H_{n}(0)$-modules M, there is an ana logue of the Frobenius characteristic:
$M \mapsto \operatorname{ch}(M)=\sum_{\alpha \in \mathcal{C}(M)} F_{\alpha} \in \operatorname{QSym}$,
where $\mathcal{C}(M)$ is a subset of compositions associated to M $\operatorname{Ex} \operatorname{ch}\left(L_{\alpha}\right)=F_{\alpha}$, the fundamental quasiysmmetric.

Standard Immaculate Tableaux
Defn (Berg-Bergeron-Saliola-Serrano-Zabrocki2014) A standard immaculate tableau (SIT) of shape $\alpha \vDash n$ has n distinct entries taken from $[n]$, such that

1. The leftmost column increases bottom to top
2. All rows increase, left to right.
$\operatorname{Ex} \alpha=(3,2,4), \quad T=\begin{array}{lll}4 & 5 & 8 \\ 3 & 7\end{array}$

Thm(NSvWVW2022) Define a partial order $S \prec_{\mathcal{R} \mathcal{G}_{a}^{*}} T \Longleftrightarrow$ $\boldsymbol{T}=\boldsymbol{s}_{\boldsymbol{i}}(\boldsymbol{S})$ on $\operatorname{SIT}(\alpha) ; s_{i}(S)$ switches i and $i+1$ in S. The immaculate Hecke poset $P \mathcal{R} \mathfrak{S}_{\alpha}^{*}$ has rank $\binom{|\alpha|}{2}+\binom{\ell(\alpha)}{3}-\sum_{i=1}^{\ell(\alpha)}\binom{\alpha_{i}+(i-1)}{2}$, with bottom element S_{α}^{0} and top element $S_{\alpha}^{\text {row }}$
For any $T \in \operatorname{SIT}(\alpha)$, there are saturated chains from S_{α}^{0} to T, and from T to $S_{\alpha}^{r o w}$

The Immaculate Hecke Poset $\alpha=223$

Berg-Bergeron-Saliola-Serrano-Zabrocki-2014

 Dual Immaculate BasisDefn An immaculate tableau of shape $\alpha \vDash n$ satisfies: 1. The leftmost column increases strictly, bottom to top. 2. All rows increase weakly, left to right.

The dual immaculate function $\mathfrak{S}_{\alpha}^{*}$ indexed by $\alpha \vDash n$ is the generating function for these tableaux.
$\operatorname{Thm}\left\{\mathfrak{S}_{\alpha}^{*}\right\}_{\alpha \neq n}$ is a basis of QSym_{n}

$$
\mathfrak{S}_{12}^{*}: \frac{22}{1}+\frac{23}{1}+\frac{33}{1}+\frac{3}{2}
$$

Defn The \mathfrak{S}^{*}-descent set $\operatorname{Des}_{\mathfrak{N}^{*}}(S)$ of a standard immac ulate tableau S is
$\operatorname{Des}_{\mathcal{S}^{*}}(S):=\{i: i+1$ appears strictly above i in $S\}$
Thm The set $\left\{\mathfrak{S}_{\alpha}^{*}\right\}_{\alpha \models n}$ is a basis for QSym_{n}
The dual immaculate function expands positively in the fundamental basis as $\mathfrak{S}_{\alpha}^{*}=\sum_{S} F_{\left.\text {comp } \operatorname{Des}_{\mathrm{c}^{*}}(S)\right)}$, sum over all SIT S of shape α. For $\alpha=(1,3)$, the unique SIT

Row-strict Dual Immaculate Basis

Defn(NSvWVW 2022) A row-strict immaculate tableau of shape $\alpha \vDash n$ satisfies

1. The leftmost column increases weakly, bottom to top. 2. The rows increase strictly, left to right

The row-strict dual immaculate function $\mathcal{R} \mathfrak{S}_{\alpha}^{*}$ indexed by $\alpha \vDash n$ is the generating function for these tableaux
$\operatorname{Thm}\left\{\mathcal{R} \mathfrak{S}_{\alpha}^{*}\right\}_{\alpha F n}$ a basis of QSym_{n}
$\mathcal{R} \mathfrak{S}_{12}^{*}: \frac{1}{1} 2+\frac{1}{1} 3+\frac{23}{1}+\frac{23}{2}+$
Defn The $\mathcal{R} \mathfrak{S}^{*}$-descent set $\operatorname{Des}_{\mathcal{R} \mathbb{S}^{*}}(S)$ of a SIT S is
$\operatorname{Des}_{\mathcal{R G}^{*}}(S):=\{i: i+1$ appears weakly below i in $S\}$.

Thm The row-strict dual immaculate function ex pands positively in the fundamental basis as $\mathcal{R} \mathfrak{S}_{\alpha}^{*}$ $\sum_{S} F_{\text {comp }^{\left(\operatorname{Des}_{R e^{*}}(S)\right)}}$, sum over all SIT S of shape α. For $\alpha=(1,3)$,the unique SIT | 2 | 3 | 4 |
| :--- | :--- | :--- |
| has | $\mathcal{R} \mathfrak{S}^{*}$-descent | | set $\{2,3\} ; \mathcal{R S}_{(1,3)}^{*}=F_{\operatorname{comp}\{2,3\}}=F_{(2,1,1)}$.

Defn There is an involution ψ on QSym: $\psi\left(F_{\alpha}\right)=$ where $\operatorname{set}\left(\alpha^{c}\right)$ is the complement in $[n-1]$ of $\operatorname{set}(\alpha)$ Thm $\mathcal{R} \mathfrak{S}_{\alpha}^{*}=\psi\left(\mathfrak{S}_{\alpha}^{*}\right)$

0-Hecke modules for $\mathfrak{S}_{\alpha}^{*}$ and $\mathcal{R} \mathfrak{S}_{\alpha}^{*}$

Thm(BBSSZ2015) There is an indecomposable cyclic 0Hecke algebra module $\mathcal{W}_{\alpha}=\left\langle S_{\alpha}^{r o w}\right\rangle$, defined via the \mathfrak{S}^{*} descent set, whose characteristic is the dual immaculate function $\mathfrak{S}_{\alpha}^{*}: \operatorname{ch}\left(\mathcal{W}_{\alpha}\right)=\mathfrak{S}_{\alpha}^{*}$.
$\mathbf{T h m}(N S v W V W 2022)$ There is an indecomposable cyclic 0 -Hecke algebra module $\mathcal{V}_{\alpha}=\left\langle S_{\alpha}^{0}\right\rangle$, defined via the $\mathcal{R} \mathfrak{S}^{*}$ descent set, whose characteristic is the row-strict dual immaculate function $\mathcal{R S}_{\alpha}^{*}: \operatorname{ch}\left(\mathcal{V}_{\alpha}\right)=\mathcal{R} \mathfrak{S}_{\alpha}^{*}$.

Row-strict extended Schur functions Let $\operatorname{SET}(\alpha)$ be the subset of $\operatorname{SIT}(\alpha)$ with ALL columns increasing. Let $S_{\alpha}^{c o l}$ be the column superstandard tableau.
Thm $\operatorname{SET}(\alpha)$ is the interval $\left[S_{\alpha}^{\text {col }}, S_{\alpha}^{\text {row }}\right]$ of the Hecke poset;
it is a basis for an indecomposable, cyclic

- submodule \mathcal{Z}_{α} of $\mathcal{V}_{\alpha}=\left\langle S_{\alpha}^{0}\right\rangle$, with characteristic $\mathcal{R} \mathcal{E}_{\alpha}$
- quotient module $\left\langle S_{223}^{\text {row }}\right\rangle /\langle S I T(\alpha) \backslash \operatorname{SET}(\alpha)\rangle$ of \mathcal{W}_{α}
$\left\langle S_{223}^{\mathrm{row}}\right\rangle$, with characteristic \mathcal{E}_{α}.
$\left\{\mathcal{R} \mathcal{E}_{\alpha}\right\}_{\alpha F n}\left(\right.$ resp. $\left.\left\{\mathcal{E}_{\alpha}\right\}_{\alpha \neq n}\right)$ are bases for QSym $_{n}$; when α is a partition $\lambda, \mathcal{R} \mathcal{E}_{\alpha}=s_{\lambda^{t}}$ (resp. $\mathcal{E}_{\alpha}=s_{\lambda}$) (Schur function).
Thm The row-strict extended Schur function $\mathcal{R} \mathcal{E}_{\alpha}$ is the generating function for tableaux of shape α with all rows strictly increasing, and ALL columns weakly increasing.

Thm (Campbell-Feldman-Light-Shuldiner-Xu 2014) The extended Schur function \mathcal{E}_{α} is the generating function for tableaux with all rows weakly increasing, ALL columns strictly increasing.
\mathcal{E}_{α} also in Assaf-Searles (2019); Searles (2020) obtains (differently) a 0 -Hecke module.

More 0-Hecke modules

$\operatorname{SIT}^{*}(\alpha)$ is the set of tableaux in $\operatorname{SIT}(\alpha)$ with first column consisting of the smallest integers; $S_{\alpha}^{\text {row }} \in$ $\operatorname{SIT}^{*}(\alpha)$ has its remaining cells filled consecutively along rows, bottom to top, left to right.
$\left\langle S_{223}^{\text {row* }}\right\rangle$ is an invariant submodule of the \mathfrak{S}^{*}-action with basis $\operatorname{SIT}^{*}(223)$. The quotient $\left.\left\langle S_{223}^{\text {row }}\right\rangle /\left\langle S_{223}^{\text {row }}\right\rangle\right\rangle$ is cyclic and indecomposable.

More descent sets

Defn For $T \in \operatorname{SIT}(\alpha)$ define:
$\operatorname{Des}_{\mathcal{A}^{*}}(T):=\{i: i+1$ is strictly below i in $T\} ;$
$(T):=\{i: i+1$ is weakly above i in $T\}$.
Thm There is a cyclic $H_{n}(0)$-module \mathcal{A}_{α}^{*}, generated by the least element S_{α}^{0} of the poset $P \mathcal{R} \mathfrak{S}^{*}(\alpha)$, with quasisymmetric characteristic
\mathcal{A}_{α}^{*} is the generating function for all tableaux of shape α with first column and all rows weakly increasing.
Thm There is a cyclic $H_{n}(0)$-module $\overline{\mathcal{A}}_{\alpha}^{*}$, generated by the top element $S_{\alpha}^{\text {row }}$ of the poset $P \mathcal{R} \mathfrak{S}^{*}(\alpha)$, with quasisymmetric characteristic
$\overline{\mathcal{A}}_{\alpha}^{*}$ is the generating function for all tableaux of shape α with first column and all rows strictly increasing.
Note that, as is the case with $\mathfrak{S}_{\alpha}^{*}$ and $\mathcal{R} \mathfrak{S}_{\alpha}^{*}$, the two characteristics are related by the involution ψ $\psi\left(\operatorname{ch}\left(\overline{\mathcal{A}}_{\alpha}^{*}\right)\right)=\operatorname{ch}\left(\mathcal{\mathcal { A }}_{\alpha}^{*}\right)$

Partial order via $\mathcal{A}^{*}-\& \overline{\mathcal{A}}^{*}$-actions
Thm All four actions are captured in the same Hecke poset on $\operatorname{SIT}(\alpha)$.

Order ideals give 0-Hecke-submodules;
order filters give 0 -Hecke-quotient modules.

All descent sets and tableaux

The unified combinatorial picture for the semistandard tableaux:

The complete picture

The eight flavours of tableaux, their 0-Hecke modules, with characteristics related in pairs by the involution ψ, from the four descent sets. The double arrow-head indicates a quotient module, and the hooked arrow indicates a submodule.

[^0]
[^0]: E. Niese, S. Sundaram, S. van Willigenburg, J. Vega, S. Wang: 0 -Hecke modules for row-strict dual immaculate functions, arXiv:2202.00708

