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Abstract
•Let g be a general complex Kac–Moody Lie algebra, with

root system ∆ and simple roots Π. The partial sum property
(PSP) for ∆ says: every positive root is an ordered sum of
simple roots, with each partial sum also a root.

•We show a parabolic generalization of the PSP, which we
call as the parabolic-PSP: Suppose we have ∅ 6= S ⊆ Π
and a positive root β involving some simple roots from S
in its expansion. Then: β is an ordered sum of roots, each
involving exactly one simple root from S and such that each
partial sum of the ordered sum is also a root.

•We show three applications of the parabolic-PSP to weights
of highest weight g-modules V :
(1) A minimal description for weights of all simple V .
(2) A uniform formula for weights of arbitrary V .
(3) Determining and showing the equivalence of weak faces

and ({2}; {1, 2})-closed subsets of weight-sets of all V .

Notations for Kac–Moody algebras
All the vector spaces are over complex numbers C. Throughout, g stands
for a general Kac–Moody Lie algebra over C. We fix for g:

• Cartan subalgebra h (with dual h∗), root system ∆ = ∆+ t∆− ⊂ h∗.

• Simple roots Π = {αi | i ∈ I} ⊂ ∆ and co-roots Π∨ = {α∨i | i ∈ I}
⊂ h, Chevalley generators: ei (raising), fi (lowering), α∨i ∀ i ∈ I, and
Weyl group W = 〈si | i ∈ I〉 generated by the simple reflections si.

• I = {nodes in Dynkin diagram of g} = {indices of simple roots}.
Example: when g = sl3(C) we set I = {1, 2}, and when g is affine, say
ŝl3(C), we set I = {0, 1, 2}.
• Triangular decomposition n− ⊕ h ⊕ n+, and root space decomposition
h⊕

⊕
β∈∆ gβ, for root spaces gβ := {x ∈ g | h · x = β(h)x ∀ h ∈ h}.

We say g is of finite type, if it is a finite-dimensional simple Lie algebra.

Parabolic partial sum property
Begin by recalling the well-known fundamental property of root systems ∆:

Partial sum property
Every root in ∆ is an ordered sum of simple roots, such that all the partial
sums are also roots.

We show a novel parabolic-generalization of the PSP, with applications to
weights of highest weight g-modules.

Two examples in type E6 demonstrating the parabolic-PSP
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Figure 1: Dynkin diagram of g of type E6, with I = {1, . . . , 6} and
I = {2, 3, 5} in red colour.

Example 1: α1 + α3 + α4 + α5 + α6 = (α1 + α3 + α4) + (α5 + α6).

Example 2: α1 + α2 + α3 + 2α4 + 2α5 + α6
= (α1 + α2 + α3 + α4 + α5) + (α4 + α5 + α6)
= (α1 + α2) + (α3) + (α4 + α5) + (α4 + α5 + α6).

To state the parabolic-PSP for ∅ 6= I ⊆ I we need:
•A generalized height function– htI(

∑
i∈I ciαi) :=

∑
i∈I ci for ci ∈ C.

• The set of unit-I-heights roots– ∆I,1 := {β ∈ ∆ | htI(β) = 1} ⊆ ∆+.

Theorem 1: Parabolic partial sum property (Teja, [1], 2020)
Let ∆ be a Kac–Moody root system, and fix ∅ 6= I ⊆ I. Suppose β is a
positive root with m = htI(β) > 0.

1. Then there exist roots γ1, . . . , γm ∈ ∆I,1 such that

β =

m∑
j=1

γj and
i∑

j=1

γj ∈ ∆+ for all 1 ≤ i ≤ m.

In other words, every root with positive I-height is an ordered sum of
roots, each with unit I-height, and with each partial sum also a root.

2. In fact, the root space gβ is spanned by the right normed Lie words[
eγm, [· · · , [eγ2, eγ1] · · · ]

]
for γt ∈ ∆I,1, eγt ∈ gγt ∀ t, and

m∑
t=1

γt = β.

Three Applications of the parabolic-PSP

For this, we need to define parabolic Verma modules M(λ, J).

Notations for highest weight modules
• Fix λ ∈ h∗. The integrable directions for λ are Jλ := {j ∈ I | λ(α∨j ) ∈ Z≥0}.
•M(λ) and L(λ) are the Verma module and the simple highest weight module

over g with highest weight λ.

•M(λ) � V denotes a nonzero highest weight g-module V with highest weight λ.

• Fix M(λ) � V . For µ ∈ h∗ the µ-weight space of V , and the weight-set of V :

Vµ := {v ∈ V | h · v = µ(h)v ∀ h ∈ h}, and wtV := {µ ∈ h∗ | Vµ 6= 0}.
The convex hull over (reals) R of wtV is denoted conv(wtV ).

• The parabolic Lie subalgebra of g corresponding to J ⊆ I is pJ := n++h+n−J ,
with n−J the subalgebra of n− generated by fj ∀ j ∈ J and negative roots ∆−J .

• For J ⊆ Jλ, the maximum integrable highest weight pJ-module with highest
weight λ is denoted Lmax

J (λ).

• The key objects in the weight-formulas below for simples, are the parabolic
Verma modules M(λ, J) for J ⊆ Jλ:

M(λ, J) := U(g)⊗U(pJ) L
max
J (λ) ' M(λ)∑

j∈J U(g)f
λ(α∨j )+1

j M(λ)λ

. (1)

These are universal among J-integrable modules – Weyl character formula:

charM(λ, J) =
∑
w∈WJ

(−1)`(w)ew•λ∏
α∈∆+(1− e−α)dim gα

, ∀λ ∈ h∗, J ⊆ Jλ.

Appln. 1: Minimal description for wtL (λ)

The definition of parabolic Verma modules implies the weight-formula:

Minkowski decomposition: wtM(λ, J) = wtLmax
J (λ)−Z≥0(∆+\∆+

J ). (2)

Here, given subsets C,D of a vector space, their Minkowski sum/difference is
C ±D := {c± d | c ∈ C, d ∈ D}. If C = {λ}, we write C ±D = λ±D.

•Weights of integrable L(λ) (λ dominant & integral: Jλ = I) were well-known.

•Weights of non-integrable L(λ) are recently computed:

Theorem 2 (Khare [J. Alg., 2016] and Dhillon–Khare [J. Alg., 2022])

For all λ ∈ h∗, wtL(λ) = wtM(λ, Jλ) = wtLmax
Jλ

(λ)−Z≥0(∆+\∆+
Jλ

). (3)

The parabolic-PSP yields minimal generators for the Z≥0-cones above, and thereby:

Theorem 3: A minimal description for weights of highest weight simples
(Teja, [1], 2020)

∆+ \∆+
J ⊂ Z≥0∆J c,1 ∀ J ⊆ I. So, Z≥0(∆+ \∆+

J ) = Z≥0∆J c,1. (4)

Hence, wtM(λ, J) = wtLmax
J (λ)− Z≥0∆J c,1. (5)

In particular, wtL(λ) = wtLmax
Jλ

(λ)− Z≥0∆J cλ,1
. (6)

This is novel even in finite type.

Appln. 2: Weight-formula for all wtV
This extends (6) from L(λ) to all highest weight modules:

Theorem 4: A weight-formula for all highest weight modules (Teja, [1], 2020)

wtV =
[
wtV ∩ (λ− Z≥0ΠJλ)

]
− Z≥0∆J cλ,1

, for all M(λ) � V. (7)

This reduces the problem of determining weights for arbitrary M(λ) � V , to
finding those with λ dominant and integral.

This too is novel in finite type – e.g. even for g = sl4(C).

Weak faces & ({2}; {1, 2})-closed sets
Fix subsets ∅ 6= Y ⊆ X of a real vector space, henceforth.

• Recall forX convex: Y is a face ofX if given vectors y1, . . . , yn ∈ Y
and x1, . . . , xm ∈ X , and scalars ri, tj ∈ R≥0, the following holds
n∑
i=1

riyi =

m∑
j=1

tjxj and
n∑
i=1

ri =

m∑
j=1

tj > 0 =⇒ xj ∈ Y ∀tj 6= 0.

(For polyhedra X , same as exposed faces – maximizers of linear
functionals.)

•Now let 0 6= A ⊆ (R,+) be an additive subgroup, andX be arbitrary.
We define a weak face of X to be Y as above, with R≥0 replaced by
A≥0 := A ∩ R≥0 – for any A.

Upshot: Weak faces are discrete combinatorial analogues of faces.

•We say Y is a ({2}; {1, 2})-closed subset of X if

(y1)+(y2) = (x1)+(x2) for y1, y2 ∈ Y, x1, x2 ∈ X =⇒ x1, x2 ∈ Y.

Combinatorial interpretation for ({2}; {1, 2})-closed subsets:
• Say X is the set of lattice points in a lattice polytope,

and Y ⊆ X is a subset of “infected” lattice points, such that
if y ∈ Y is the average of two points in X ,
then the two points catch the “infection” from y.

•More precisely, if two pairs of points have the same average, and
one pair is colored, then the color spreads to the other pair.

•We aim at understanding the extent to which the spread happens.

Origins of weak faces and ({2}; {1, 2})-closed subsets: Introduced by
Chari and co-authors in 2000s – applications in representation theory:

• Constructing Koszul algebras.

• Constructing nilpotent ideals in parabolic subalgebras of g.

•Obtaining character formulas of Kirillov–Reshetikhin modules over
untwisted quantum affine algebras Uq(ĝ) at the specialization q = 1.

Appln. 3: Weak faces, ({2}; {1, 2})-closed
subsets of roots and weights

The first part here easily follows from the definitions:

Proposition 5 (Khare, [J. Alg., 2016])
Suppose ∅ 6= Y ⊆ X in a real vector space.

1. Each of the following implies the next:

(i) Y is an exposed face of X – i.e., maximizes a linear functional.
(ii) Y is a face of X – i.e., a weak R-face.

(iii) Y is a weak face of X , for some A ⊆ (R,+).
(iv) Y is ({2}; {1, 2})-closed in X .

However, (ii) does not imply (i) even for convex X ⊂ R2.

2. Say g is of finite type, and M(λ) � V is any simple highest
weight module or parabolic Verma module. SettingX = wtV , the
subsets satisfying (i)–(iii) are equivalent, and are also precisely:

(v) w
[(
λ− Z≥0ΠI

)
∩ wtV

]
for all w ∈ WIV , I $ I. (8)

Here, IV is the integrability of V , i.e. IV = {j ∈ Jλ | f
λ(α∨j )+1
j Vλ = 0}.

Questions:

• (When) Is (iv) also equivalent to (i)–(iii), (v)?

•What happens for other highest weight modules?

•What if g is of infinite (affine, Kac–Moody) type?

Now proved in complete generality:

Theorem 6: Weak faces & ({2}; {1, 2})-closed subsets of weights
(Teja, [2], 2021)
For any Kac–Moody g, any λ ∈ h∗, and any module M(λ) � V :

1. For X = wtV , the five classes of subsets of wtV in (i)–(v) above,
are equivalent.

2. For X = conv(wtV ), the classes of subsets of wtV in (i)–(iv)
above, are equivalent – and they are equivalent to:
(v′) the convex hulls of the subsets in (8) in (v).

3. Similar equivalences hold for root systems: X = ∆, ∆ t {0}.
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