Weak faces and a weight-formula for highest weight modules, via parabolic-PSP for roots

G. V. Krishna Teja (Indian Institute of Science)

Abstract

- Let \mathfrak{g} be a general complex Kac-Moody Lie algebra, with root system Δ and simple roots Π. The partial sum property (PSP) for Δ says: every positive root is an ordered sum of simple roots, with each partial sum also a root.
- We show a parabolic generalization of the PSP, which we call as the parabolic-PSP: Suppose we have $\emptyset \neq S \subseteq \Pi$ and a positive root β involving some simple roots from S in its expansion. Then: β is an ordered sum of roots, each involving exactly one simple root from S and such that each partial sum of the ordered sum is also a root.
- We show three applications of the parabolic-PSP to weights of highest weight \mathfrak{g}-modules V
(1) A minimal description for weights of all simple V
(2) A uniform formula for weights of arbitrary V.
(3) Determining and showing the equivalence of weak faces and (\{2\};\{1,2\})-closed subsets of weight-sets of all V

Notations for Kac-Moody algebras

All the vector spaces are over complex numbers \mathbb{C}. Throughout, \mathfrak{g} stands for a general Kac-Moody Lie algebra over \mathbb{C}. We fix for \mathfrak{g} :

- Cartan subalgebra \mathfrak{h} (with dual \mathfrak{h}^{*}), root system $\Delta=\Delta^{+} \sqcup \Delta^{-} \subset \mathfrak{h}^{*}$. - Simple roots $\Pi=\left\{\alpha_{i} \mid i \in \mathcal{I}\right\} \subset \Delta$ and co-roots $\Pi^{\vee}=\left\{\alpha_{i}^{\vee} \mid i \in \mathcal{I}\right\}$ $\subset \mathfrak{h}$, Chevalley generators: e_{i} (raising), f_{i} (lowering), $\alpha_{i}^{\vee} \forall i \in \mathcal{I}$, and Weyl group $W=\left\langle s_{i} \mid i \in \mathcal{I}\right\rangle$ generated by the simple reflections s_{i}.
- $\mathcal{I}=\{$ nodes in Dynkin diagram of $\mathfrak{g}\}=\{$ indices of simple roots $\}$. Example: when $\mathfrak{g}=\mathfrak{s l}_{3}(\mathbb{C})$ we set $\mathcal{I}=\{1,2\}$, and when \mathfrak{g} is affine, say $\widehat{\mathfrak{s l}}_{3}(\mathbb{C})$, we set $\mathcal{I}=\{0,1,2\}$.
- Triangular decomposition $\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}^{+}$, and root space decomposition $\mathfrak{h} \oplus \bigoplus_{\beta \in \Delta} \mathfrak{g}_{\beta}$, for root spaces $\mathfrak{g}_{\beta}:=\{x \in \mathfrak{g} \mid h \cdot x=\beta(h) x \forall h \in \mathfrak{h}\}$.
We say \mathfrak{g} is of finite type, if it is a finite-dimensional simple Lie algebra.

Parabolic partial sum property

Begin by recalling the well-known fundamental property of root systems Δ :

We show a novel parabolic-generalization of the PSP, with applications to weights of highest weight \mathfrak{g}-modules.
Two examples in type E_{6} demonstrating the parabolic-PSP
Figure 1: Dynkin diagram of \mathfrak{g} of type E_{6}, with $\mathcal{I}=\{1, \ldots, 6\}$ and

| $I=\{2,3,5\}$ |
| ---: | :--- |
| in red colour. |

Example 1: $\alpha_{1}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}=\left(\alpha_{1}+\alpha_{3}+\alpha_{4}\right)+\left(\alpha_{5}+\alpha_{6}\right)$.
Example 2: $\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+\alpha_{6}$
$=\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right)+\left(\alpha_{4}+\alpha_{5}+\alpha_{6}\right)$

$=\left(\alpha_{1}+\alpha_{2}\right)+\left(\alpha_{3}\right)+\left(\alpha_{4}+\alpha_{5}\right)+\left(\alpha_{4}+\alpha_{5}+\alpha_{6}\right)$.

To state the parabolic-PSP for $\emptyset \neq I \subseteq \mathcal{I}$ we need:

- A generalized height function- $\operatorname{ht}_{I}\left(\sum_{i \in \mathcal{I}} c_{i} \alpha_{i}\right):=\sum_{i \in I} c_{i}$ for $c_{i} \in \mathbb{C}$. - The set of unit- I-heights roots- $\Delta_{I, 1}:=\left\{\beta \in \Delta \mid \operatorname{ht}_{I}(\beta)=1\right\} \subseteq \Delta^{+}$.

Theorem 1: Parabolic partial sum property (Teja, [1], 2020)

Let Δ be a Kac-Moody root system, and fix $\emptyset \neq I \subseteq \mathcal{I}$. Suppose β is a positive root with $m=\operatorname{ht}_{I}(\beta)>0$.

1. Then there exist roots $\gamma_{1}, \ldots, \gamma_{m} \in \Delta_{I, 1}$ such that

$$
\beta=\sum_{j=1}^{m} \gamma_{j} \quad \text { and } \quad \sum_{j=1}^{i} \gamma_{j} \in \Delta^{+} \quad \text { for all } 1 \leq i \leq m
$$

In other words, every root with positive I-height is an ordered sum of roots, each with unit I-height, and with each partial sum also a root. 2. In fact, the root space \mathfrak{g}_{β} is spanned by the right normed Lie words
$\left[e_{\gamma_{m}},\left[\cdots,\left[e_{\gamma_{2}}, e_{\gamma_{1}}\right] \cdots\right]\right]$ for $\gamma_{t} \in \Delta_{I, 1}, e_{\gamma_{t}} \in \mathfrak{g}_{\gamma_{t}} \forall t$, and $\sum_{t=1}^{m} \gamma_{t}=\beta$

Three Applications of the parabolic-PSP

For this, we need to define parabolic Verma modules $M(\lambda, J)$.

Notations for highest weight modules

- Fix $\lambda \in \mathfrak{h}^{*}$. The integrable directions for λ are $J_{\lambda}:=\left\{j \in \mathcal{I} \mid \lambda\left(\alpha_{j}^{\vee}\right) \in \mathbb{Z}_{\geq 0}\right\}$.
- $M(\lambda)$ and $L(\lambda)$ are the Verma module and the simple highest weight module over \mathfrak{g} with highest weight λ.
- $M(\lambda) \rightarrow V$ denotes a nonzero highest weight \mathfrak{g}-module V with highest weight λ. \bullet Fix $M(\lambda) \rightarrow V$. For $\mu \in \mathfrak{h}^{*}$ the μ-weight space of V, and the weight-set of V : $V_{\mu}:=\{v \in V \mid h \cdot v=\mu(h) v \forall h \in \mathfrak{h}\}$, and $\mathrm{wt} V:=\left\{\mu \in \mathfrak{h}^{*} \mid V_{\mu} \neq 0\right\}$. The convex hull over (reals) \mathbb{R} of $\mathrm{wt} V$ is denoted $\operatorname{conv}(\mathrm{wt} V)$.
- The parabolic Lie subalgebra of \mathfrak{g} corresponding to $J \subseteq \mathcal{I}$ is $\mathfrak{p}_{J}:=\mathfrak{n}^{+}+\mathfrak{h}+\mathfrak{n}_{J}^{-}$, with \mathfrak{n}_{J}^{-}the subalgebra of \mathfrak{n}^{-}generated by $f_{j} \forall j \in J$ and negative roots Δ_{J}^{-}.
- For $J \subseteq J_{\lambda}$, the maximum integrable highest weight \mathfrak{p}_{J}-module with highest weight λ is denoted $L_{J}^{\max }(\lambda)$.
- The key objects in the weight-formulas below for simples, are the parabolic Verma modules $M(\lambda, J)$ for $J \subseteq J_{\lambda}$:

$$
\begin{equation*}
M(\lambda, J):=U(\mathfrak{g}) \otimes_{U\left(\mathfrak{p}_{J}\right)} L_{J}^{\max }(\lambda) \simeq \frac{M(\lambda)}{\sum_{j \in J} U(\mathfrak{g}) f_{j}^{\lambda\left(\alpha_{j}^{\vee}\right)+1} M(\lambda)_{\lambda}} . \tag{1}
\end{equation*}
$$

These are universal among J-integrable modules - Weyl character formula:

$$
\operatorname{char} M(\lambda, J)=\sum_{w \in W_{J}} \frac{(-1)^{\ell(w)} e^{w \bullet \lambda}}{\prod_{\alpha \in \Delta^{+}}\left(1-e^{-\alpha}\right)^{\operatorname{dim}} \mathfrak{g}_{\alpha}}, \quad \forall \lambda \in \mathfrak{h}^{*}, J \subseteq J_{\lambda} .
$$

Appln. 1: Minimal description for wt $L(\lambda)$

This is novel even in finite type.
Appln. 2: Weight-formula for all $\mathrm{wt} V$
This extends (6) from $L(\lambda)$ to all highest weight modules:
Theorem 4: A weight-formula for all highest weight modules (Teja, [1], 2020)
$\mathrm{wt} V=\left[\mathrm{wt} V \cap\left(\lambda-\mathbb{Z}_{\geq 0} \Pi_{J_{\lambda}}\right)\right]-\mathbb{Z}_{\geq 0} \Delta_{J_{\lambda}^{c}, 1}, \quad$ for all $M(\lambda) \rightarrow V . \quad$ (7) This reduces the problem of determining weights for arbitrary $M(\lambda) \rightarrow V$, to finding those with λ dominant and integral.

This too is novel in finite type - e.g. even for $\mathfrak{g}=\mathfrak{s l}_{4}(\mathbb{C})$.

Weak faces \& (\{2\}; \{1, 2\})-closed sets

Fix subsets $\emptyset \neq Y \subseteq X$ of a real vector space, henceforth.

- Recall for X convex: Y is a face of X if given vectors $y_{1}, \ldots, y_{n} \in Y$ and $x_{1}, \ldots, x_{m} \in X$, and scalars $r_{i}, t_{j} \in \mathbb{R}_{\geq 0}$, the following holds $\sum_{i=1}^{n} r_{i} y_{i}=\sum_{j=1}^{m} t_{j} x_{j}$ and $\sum_{i=1}^{n} r_{i}=\sum_{j=1}^{m} t_{j}>0 \Longrightarrow x_{j} \in Y \forall t_{j} \neq 0$. (For polyhedra X, same as exposed faces - maximizers of linear functionals.)
- Now let $0 \neq \mathbb{A} \subseteq(\mathbb{R},+)$ be an additive subgroup, and X be arbitrary. We define a weak face of X to be Y as above, with $\mathbb{R}_{\geq 0}$ replaced by $\mathbb{A}_{\geq 0}:=\mathbb{A} \cap \mathbb{R}_{\geq 0}$ - for any \mathbb{A}.
Upshot: Weak faces are discrete combinatorial analogues of faces.
- We say Y is a $(\{2\} ;\{1,2\})$-closed subset of X if
$\left(y_{1}\right)+\left(y_{2}\right)=\left(x_{1}\right)+\left(x_{2}\right)$ for $y_{1}, y_{2} \in Y, x_{1}, x_{2} \in X \Longrightarrow x_{1}, x_{2} \in Y$

Combinatorial interpretation for ($\{2\} ;\{1,2\}$)-closed subsets:

- Say X is the set of lattice points in a lattice polytope,
and $Y \subseteq X$ is a subset of "infected" lattice points, such that
if $y \in Y$ is the average of two points in X,
then the two points catch the "infection" from y.
- More precisely, if two pairs of points have the same average, and
one pair is colored, then the color spreads to the other pair.
- We aim at understanding the extent to which the spread happens.

Origins of weak faces and $(\{2\} ;\{1,2\})$-closed subsets: Introduced by Chari and co-authors in 2000s - applications in representation theory: - Constructing Koszul algebras.

- Constructing nilpotent ideals in parabolic subalgebras of \mathfrak{g}.
- Obtaining character formulas of Kirillov-Reshetikhin modules over untwisted quantum affine algebras $U_{q}(\widehat{\mathfrak{g}})$ at the specialization $q=1$.

Appln. 3: Weak faces, $(\{2\} ;\{1,2\})$-closed subsets of roots and weights

The first part here easily follows from the definitions:

Proposition 5 (Khare, [J. Alg., 2016])

Suppose $\emptyset \neq Y \subseteq X$ in a real vector space.

1. Each of the following implies the next:
(i) Y is an exposed face of X - i.e., maximizes a linear functional.
(ii) Y is a face of X - i.e., a weak \mathbb{R}-face.
(iii) Y is a weak face of X, for some $\mathbb{A} \subseteq(\mathbb{R},+)$.
(iv) Y is $(\{2\} ;\{1,2\})$-closed in X.

However, (ii) does not imply (i) even for convex $X \subset \mathbb{R}^{2}$.
2. Say \mathfrak{g} is of finite type, and $M(\lambda) \rightarrow V$ is any simple highest weight module or parabolic Verma module. Setting $X=\mathrm{wt} V$, the subsets satisfying (i)-(iii) are equivalent, and are also precisely:
(v) $\quad w\left[\left(\lambda-\mathbb{Z}_{\geq 0} \Pi_{I}\right) \cap \mathrm{wt} V\right] \quad$ for all $w \in W_{I_{V}}, I \varsubsetneqq \mathcal{I}$. (8)

Here, I_{V} is the integrability of V, i.e. $I_{V}=\left\{j \in J_{\lambda} \mid f_{j}^{\lambda\left(\alpha_{j}^{\vee}\right)+1} V_{\lambda}=0\right\}$
Questions:

- (When) Is (iv) also equivalent to (i)-(iii), (v)?
- What happens for other highest weight modules?
- What if \mathfrak{g} is of infinite (affine, Kac-Moody) type?

Now proved in complete generality:
Theorem 6: Weak faces \& $(\{2\} ;\{1,2\})$-closed subsets of weights
(Teja, [2], 2021)
For any Kac-Moody \mathfrak{g}, any $\lambda \in \mathfrak{h}^{*}$, and any module $M(\lambda) \rightarrow V$:

1. For $X=\mathrm{wt} V$, the five classes of subsets of $\mathrm{wt} V$ in (i)-(v) above, are equivalent.
2. For $X=\operatorname{conv}(\mathrm{wt} V)$, the classes of subsets of $\mathrm{wt} V$ in (i)-(iv) above, are equivalent - and they are equivalent to:
(v^{\prime}) the convex hulls of the subsets in (8) in (v).
3. Similar equivalences hold for root systems: $X=\Delta, \Delta \sqcup\{0\}$.

References

[1] G.V. Krishna Teja, Moving between weights of weight modules,
Preprint, arXiv.2012.07775, 2020.
[2] G.V. Krishna Teja, Weak faces of highest weight modules and root systems, Preprint, arXiv:2106.14929, 2021.

