Weak faces and a weight-formula for highest weight modules, via parabolic-PSP for roots

G. V. Krishna Teja (Indian Institute of Science)

Abstract

- Let g be a general complex Kac–Moody Lie algebra, with root system Δ and simple roots Π . The partial sum property (PSP) for Δ says: every positive root is an ordered sum of simple roots, with each partial sum also a root.
- We show a parabolic generalization of the PSP, which we call as the parabolic-PSP: Suppose we have $\emptyset \neq S \subseteq \Pi$ and a positive root β involving some simple roots from S in its expansion. Then: β is an ordered sum of roots, each involving exactly one simple root from S and such that each partial sum of the ordered sum is also a root.

Three Applications of the parabolic-PSP

For this, we need to define parabolic Verma modules $M(\lambda, J)$.

Notations for highest weight modules

- Fix $\lambda \in \mathfrak{h}^*$. The integrable directions for λ are $J_{\lambda} := \{j \in \mathcal{I} \mid \lambda(\alpha_j^{\vee}) \in \mathbb{Z}_{\geq 0}\}.$
- $M(\lambda)$ and $L(\lambda)$ are the Verma module and the simple highest weight module over \mathfrak{g} with highest weight λ .

Weak faces & $(\{2\}; \{1, 2\})$ -closed sets

Fix subsets $\emptyset \neq Y \subseteq X$ of a real vector space, henceforth.

- Recall for X convex: Y is a face of X if given vectors $y_1, \ldots, y_n \in Y$ and $x_1, \ldots, x_m \in X$, and scalars $r_i, t_j \in \mathbb{R}_{>0}$, the following holds
- $\sum_{i=1}^{n} r_i y_i = \sum_{j=1}^{m} t_j x_j \text{ and } \sum_{i=1}^{n} r_i = \sum_{j=1}^{m} t_j > 0 \implies x_j \in Y \,\forall t_j \neq 0.$

(For polyhedra X, same as exposed faces – maximizers of linear

- We show three applications of the parabolic-PSP to weights of highest weight \mathfrak{g} -modules V:
- (1) A minimal description for weights of all simple V.
- (2) A uniform formula for weights of arbitrary V.
- (3) Determining and showing the equivalence of weak faces and $(\{2\}; \{1, 2\})$ -closed subsets of weight-sets of all V.

Notations for Kac–Moody algebras

All the vector spaces are over complex numbers \mathbb{C} . Throughout, \mathfrak{g} stands for a general Kac–Moody Lie algebra over \mathbb{C} . We fix for \mathfrak{g} :

- Cartan subalgebra \mathfrak{h} (with dual \mathfrak{h}^*), root system $\Delta = \Delta^+ \sqcup \Delta^- \subset \mathfrak{h}^*$.
- Simple roots $\Pi = \{ \alpha_i \mid i \in \mathcal{I} \} \subset \Delta$ and co-roots $\Pi^{\vee} = \{ \alpha_i^{\vee} \mid i \in \mathcal{I} \}$ $\subset \mathfrak{h}$, Chevalley generators: e_i (raising), f_i (lowering), $\alpha_i^{\vee} \forall i \in \mathcal{I}$, and Weyl group $W = \langle s_i \mid i \in \mathcal{I} \rangle$ generated by the simple reflections s_i .
- $\mathcal{I} = \{\text{nodes in Dynkin diagram of } \mathfrak{g}\} = \{\text{indices of simple roots}\}.$ **Example:** when $\mathfrak{g} = \mathfrak{sl}_3(\mathbb{C})$ we set $\mathcal{I} = \{1, 2\}$, and when \mathfrak{g} is affine, say $\mathfrak{sl}_3(\mathbb{C})$, we set $\mathcal{I} = \{0, 1, 2\}$.
- Triangular decomposition $\mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$, and root space decomposition $\mathfrak{h} \oplus \bigoplus_{\beta \in \Delta} \mathfrak{g}_{\beta}$, for root spaces $\mathfrak{g}_{\beta} := \{x \in \mathfrak{g} \mid h \cdot x = \beta(h)x \forall h \in \mathfrak{h}\}.$

We say \mathfrak{g} is of finite type, if it is a finite-dimensional simple Lie algebra.

- $M(\lambda) \rightarrow V$ denotes a nonzero highest weight \mathfrak{g} -module V with highest weight λ . • Fix $M(\lambda) \rightarrow V$. For $\mu \in \mathfrak{h}^*$ the μ -weight space of V, and the weight-set of V: $V_{\mu} := \{ v \in V \mid h \cdot v = \mu(h)v \,\forall h \in \mathfrak{h} \}, \text{ and } wtV := \{ \mu \in \mathfrak{h}^* \mid V_{\mu} \neq 0 \}.$ The convex hull over (reals) \mathbb{R} of wtV is denoted conv(wtV).
- The parabolic Lie subalgebra of \mathfrak{g} corresponding to $J \subseteq \mathcal{I}$ is $\mathfrak{p}_J := \mathfrak{n}^+ + \mathfrak{h} + \mathfrak{n}_I^-$, with \mathfrak{n}_{J}^{-} the subalgebra of \mathfrak{n}^{-} generated by $f_{j} \forall j \in J$ and negative roots Δ_{J}^{-} . • For $J \subseteq J_{\lambda}$, the maximum integrable highest weight \mathfrak{p}_{J} -module with highest weight λ is denoted $L_I^{\max}(\lambda)$.
- The key objects in the weight-formulas below for simples, are the parabolic Verma modules $M(\lambda, J)$ for $J \subseteq J_{\lambda}$:

$$M(\lambda, J) := U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_J)} L_J^{\max}(\lambda) \simeq \frac{M(\lambda)}{\sum_{j \in J} U(\mathfrak{g}) f_j^{\lambda(\alpha_j^{\vee}) + 1} M(\lambda)_{\lambda}}.$$
 (1)

These are universal among *J*-integrable modules – *Weyl character formula*:

$$\operatorname{char} M(\lambda, J) = \sum_{w \in W_J} \frac{(-1)^{\ell(w)} e^{w \bullet \lambda}}{\prod_{\alpha \in \Delta^+} (1 - e^{-\alpha})^{\dim \mathfrak{g}_{\alpha}}}, \quad \forall \lambda \in \mathfrak{h}^*, \ J \subseteq J_{\lambda}.$$

Appln. 1: Minimal description for wt $L(\lambda)$

The definition of parabolic Verma modules implies the weight-formula: Minkowski decomposition: wt $M(\lambda, J) = \text{wt}L_J^{\max}(\lambda) - \mathbb{Z}_{>0}(\Delta^+ \setminus \Delta_J^+)$. (2)

Here, given subsets C, D of a vector space, their Minkowski sum/difference is $C \pm D := \{c \pm d \mid c \in C, d \in D\}$. If $C = \{\lambda\}$, we write $C \pm D = \lambda \pm D$.

tunctionals.)

• Now let $0 \neq \mathbb{A} \subseteq (\mathbb{R}, +)$ be an additive subgroup, and X be arbitrary. We define a weak face of X to be Y as above, with $\mathbb{R}_{>0}$ replaced by $\mathbb{A}_{>0} := \mathbb{A} \cap \mathbb{R}_{>0}$ -for any \mathbb{A} .

Upshot: Weak faces are discrete combinatorial analogues of faces.

• We say Y is a $(\{2\}; \{1,2\})$ -closed subset of X if

 $(y_1)+(y_2) = (x_1)+(x_2)$ for $y_1, y_2 \in Y, x_1, x_2 \in X \implies x_1, x_2 \in Y$.

Combinatorial interpretation for $({2}; {1,2})$ -closed subsets:

- Say X is the set of lattice points in a lattice polytope, and $Y \subseteq X$ is a subset of "infected" lattice points, such that if $y \in Y$ is the average of two points in X, then the two points catch the "infection" from y.
- More precisely, if two pairs of points have the same average, and one pair is colored, then the color spreads to the other pair.
- We aim at understanding the extent to which the spread happens.

Origins of weak faces and $(\{2\}; \{1, 2\})$ -closed subsets: Introduced by Chari and co-authors in 2000s – applications in representation theory:

- Constructing Koszul algebras.
- Constructing nilpotent ideals in parabolic subalgebras of g.
- Obtaining character formulas of Kirillov–Reshetikhin modules over untwisted quantum affine algebras $U_q(\widehat{\mathfrak{g}})$ at the specialization q = 1.

Parabolic partial sum property

Begin by recalling the well-known fundamental property of root systems Δ :

Partial sum property

Every root in Δ is an ordered sum of simple roots, such that all the partial sums are also roots.

We show a novel parabolic-generalization of the PSP, with applications to weights of highest weight g-modules.

Two examples in type E_6 demonstrating the parabolic-PSP Figure 1: Dynkin diagram of \mathfrak{g} of type E_6 , with $\mathcal{I} = \{1, \ldots, 6\}$ and $I = \{2, 3, 5\}$ in red colour. **Example 1:** $\alpha_1 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 = (\alpha_1 + \alpha_3 + \alpha_4) + (\alpha_5 + \alpha_6).$ **Example 2:** $\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6$ $= (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5) + (\alpha_4 + \alpha_5 + \alpha_6)$ $= (\alpha_1 + \alpha_2) + (\alpha_3) + (\alpha_4 + \alpha_5) + (\alpha_4 + \alpha_5 + \alpha_6).$ To state the parabolic-PSP for $\emptyset \neq I \subseteq \mathcal{I}$ we need:

• A generalized height function $\operatorname{ht}_{I}(\sum_{i \in \mathcal{I}} c_{i} \alpha_{i}) := \sum_{i \in I} c_{i} \text{ for } c_{i} \in \mathbb{C}.$ • The set of unit-*I*-heights roots- $\Delta_{I,1} := \{\beta \in \Delta \mid ht_I(\beta) = 1\} \subseteq \Delta^+$.

• Weights of integrable $L(\lambda)$ (λ dominant & integral: $J_{\lambda} = \mathcal{I}$) were well-known. • Weights of non-integrable $L(\lambda)$ are recently computed:

Theorem 2 (Khare [J. Alg., 2016] and Dhillon–Khare [J. Alg., 2022]) For all $\lambda \in \mathfrak{h}^*$, wt $L(\lambda) = \operatorname{wt} M(\lambda, J_{\lambda}) = \operatorname{wt} L_{J_{\lambda}}^{\max}(\lambda) - \mathbb{Z}_{\geq 0}(\Delta^+ \setminus \Delta_{J_{\lambda}}^+)$. (3)

The parabolic-PSP yields minimal generators for the $\mathbb{Z}_{>0}$ -cones above, and thereby:

Theorem 3: A minimal description for weights of highest weight simples (Teja, [1], 2020)

 $\Delta^{+} \setminus \Delta^{+}_{J} \subset \mathbb{Z}_{\geq 0} \Delta_{J^{c},1} \quad \forall J \subseteq \mathcal{I}. \quad \text{So, } \mathbb{Z}_{\geq 0} (\Delta^{+} \setminus \Delta^{+}_{J}) = \mathbb{Z}_{\geq 0} \Delta_{J^{c},1}. \quad (4)$ Hence, wt $M(\lambda, J) = \text{wt}L_J^{\max}(\lambda) - \mathbb{Z}_{>0}\Delta_{J^c,1}$. (5) In particular, wt $L(\lambda) = \text{wt}L_{J_{\lambda}}^{\max}(\lambda) - \mathbb{Z}_{>0}\Delta_{J_{\lambda}^{c},1}$. (6)

This is novel even in finite type.

Appln. 2: Weight-formula for all wtV

This extends (6) from $L(\lambda)$ to all highest weight modules:

Theorem 4: A weight-formula for all highest weight modules (Teja, [1], 2020) $wtV = \left[wtV \cap (\lambda - \mathbb{Z}_{\geq 0}\Pi_{J_{\lambda}})\right] - \mathbb{Z}_{\geq 0}\Delta_{J_{\lambda}^{c},1}, \quad \text{for all } M(\lambda) \twoheadrightarrow V.$ (7) This reduces the problem of determining weights for arbitrary $M(\lambda) \rightarrow V$, to finding those with λ dominant and integral.

Appln. 3: Weak faces, $(\{2\}; \{1, 2\})$ -closed

subsets of roots and weights

The first part here easily follows from the definitions:

Proposition 5 (Khare, [J. Alg., 2016])

Suppose $\emptyset \neq Y \subseteq X$ in a real vector space. 1. Each of the following implies the next: (i) Y is an exposed face of X – i.e., maximizes a linear functional. (ii) *Y* is a face of X – i.e., a weak \mathbb{R} -face. (iii) Y is a weak face of X, for some $\mathbb{A} \subseteq (\mathbb{R}, +)$. (iv) Y is $(\{2\}; \{1, 2\})$ -closed in X. However, (ii) does not imply (i) even for convex $X \subset \mathbb{R}^2$.

2. Say g is of finite type, and $M(\lambda) \rightarrow V$ is any simple highest weight module or parabolic Verma module. Setting X = wtV, the subsets satisfying (i)–(iii) are equivalent, and are also precisely: (v) $w\left[\left(\lambda - \mathbb{Z}_{\geq 0}\Pi_{I}\right) \cap \operatorname{wt}V\right]$ for all $w \in W_{I_{V}}, I \not\subseteq \mathcal{I}.$ (8)

Here, I_V is the integrability of V, i.e. $I_V = \{j \in J_\lambda \mid f_i^{\lambda(\alpha_j^{\vee})+1} V_\lambda = 0\}.$

Questions:

- (When) Is (iv) also equivalent to (i)–(iii), (v)?
- What happens for other highest weight modules?
- What if g is of infinite (affine, Kac–Moody) type?

Theorem 1: Parabolic partial sum property (Teja, [1], 2020)

Let Δ be a Kac–Moody root system, and fix $\emptyset \neq I \subseteq \mathcal{I}$. Suppose β is a positive root with $m = ht_I(\beta) > 0$.

1. Then there exist roots $\gamma_1, \ldots, \gamma_m \in \Delta_{I,1}$ such that

$$\beta = \sum_{j=1}^{m} \gamma_j$$
 and $\sum_{j=1}^{i} \gamma_j \in \Delta^+$ for all $1 \le i \le m$.

In other words, every root with positive *I*-height is an ordered sum of roots, each with unit *I*-height, and with each partial sum also a root. 2. In fact, the root space \mathfrak{g}_{β} is spanned by the right normed Lie words $[e_{\gamma_m}, [\cdots, [e_{\gamma_2}, e_{\gamma_1}] \cdots]]$ for $\gamma_t \in \Delta_{I,1}, e_{\gamma_t} \in \mathfrak{g}_{\gamma_t} \forall t$, and $\sum_{t=1}^m \gamma_t = \beta$. *This too is novel in finite type* – *e.g. even for* $\mathfrak{g} = \mathfrak{sl}_4(\mathbb{C})$ *.*

Now proved in complete generality:

Theorem 6: Weak faces & $(\{2\}; \{1,2\})$ -closed subsets of weights (Teja, [2], 2021)

For any Kac–Moody \mathfrak{g} , any $\lambda \in \mathfrak{h}^*$, and any module $M(\lambda) \twoheadrightarrow V$: 1. For X = wtV, the five classes of subsets of wtV in (i)–(v) above, are equivalent.

- 2. For X = conv(wtV), the classes of subsets of wtV in (i)–(iv) above, are equivalent – and they are equivalent to:
 - (v') the convex hulls of the subsets in (8) in (v).

3. Similar equivalences hold for root systems: $X = \Delta, \Delta \sqcup \{0\}$.

References

[1] G.V. Krishna Teja, *Moving between weights of weight modules*, Preprint, arXiv.2012.07775, 2020.

[2] G.V. Krishna Teja, Weak faces of highest weight modules and root systems, Preprint, arXiv:2106.14929, 2021.