Chromatic Quasisymmetric Class Functions of linearized combinatorial Hopf monoids

Jacob A. White
Unvestivy of eves Rio ciande valey

Quasisymmetric Class Functions

A quasisymmetric class function is a function $\Psi: \mathfrak{G} \rightarrow$ Qsym that is constant on conjugacy classes.
Given an integer composition $\alpha \models n$ with k parts, we define the monomial quasisymmetric function

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\ldots<i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}
$$

Given a quasisymmetric class function Ψ of degree n, we write

Then ψ_{α} are class functions, and we can write $\Psi=\sum_{\alpha \models n} \psi_{\alpha} M_{\alpha}$.

Coloring Mixed Graphs

Given a finite set N, an acyclic mixed graph is a triple (N, U, \vec{D}) with a undirected edge set U, a directed edge set \vec{D}, and no directed cycles. An automorphism of G is a bijection $\mathfrak{g}: G \rightarrow G$ that preserves edges (of both types). Let \mathfrak{G} be a group of automorphisms of G.

Figure 1. an acyclic mixed graph.
A (weak / strong) coloring of G is a function $f: N \rightarrow \mathbb{N}$ subject to:

1. For every $u v \in U$, we have $f(u) \neq f(v)$.
2. For every $(u, v) \in D$, we have $f(u) \leq f(v)$.
3. For every $(u, v) \in D$, we have $f(u)<f(v)$.

Let $\mathcal{F}(G)(\overline{\mathcal{F}}(G))$ denote the set of weak/strong colorings.
Chromatic Quasisymmetric Class Function
If $\mathfrak{G} \curvearrowright G$, then $\mathfrak{G} \curvearrowright \mathcal{F}(G)$ and $\mathfrak{G} \curvearrowright \overline{\mathcal{F}}(G)$ via $\mathfrak{g} f=f \circ \mathfrak{g}^{-1}$, where $f \in \mathcal{F}(G)$ and $\mathfrak{g} \in \mathfrak{G}$.
Given commuting indeterminates x_{1}, x_{2}, \ldots and $\mathfrak{g} \in \mathfrak{G}$, we define

$$
X(G, \mathfrak{G}, \mathbf{x} ; \mathfrak{g})=\sum_{f \in \mathcal{F}(G): \mathfrak{g} f=f} \prod_{v \in N} x_{f(v)} .
$$

and

$$
\bar{X}(G, \mathfrak{G}, \mathbf{x} ; \mathfrak{g})=\sum_{f \in \overline{\mathcal{F}}(G): \mathfrak{g} f=f} \prod_{v \in N} x_{f(v)} .
$$

Thus $X(G, \mathfrak{G}, \mathbf{x})$ is the weak chromatic quasisymmetric class function of (G, \mathfrak{G}), and $\bar{X}(G, \mathfrak{G}, \mathbf{x})$ is the strong chromatic quasisymmetric class function.
The orbital chromatic polynomials $\chi(G, \mathfrak{G}, x)$ and $\bar{\chi}(G, \mathfrak{G}, x)$ count the number of orbits of proper colorings with largest color at most

Figure 2. various colorings, where white < orange < magenta < cyan
There are two irreducible characters for $\mathbb{Z} / 2 \mathbb{Z}$. We let det denote the nontrivial character, and ρ denote the regular character. For our example mixed graph, we have
$X(G, \mathfrak{G}, \mathbf{x})=M_{1,3}+M_{2,2}+\rho M_{1,2,1}+\rho M_{2,1,1}+M_{1,1,2}+\rho M_{1,1,1,1}$ $=F_{1,3}+F_{2,2}+\operatorname{det} F_{1,2,1}+\operatorname{det} F_{2,1,1}-F_{1,1,2}-\operatorname{det} F_{1,1,1,1}$

Given two group characters χ and ψ, we write $\chi \leq_{\mathfrak{G}} \psi$ if $\psi-\chi$ is a group character. Given a quasisymmetric class function Ψ, we let $\left[M_{\alpha}\right] \Psi$ be the coefficient of M_{α} in Ψ, which is a class function.

Theorem

We have $X(G, \mathfrak{G}, \mathbf{x})$ and $\bar{X}(G, \mathfrak{G}, \mathbf{x})$ are quasisymmetric class functions. Moreover, for any $\alpha \models|N|$, then $\left[M_{\alpha}\right] X(G, \mathfrak{G}, \mathbf{x})$ and $\left[M_{\alpha}\right] \bar{X}(G, \mathfrak{G}, \mathbf{x})$ are permutation characters.
For α a coarsening of β, we have $\left[M_{\alpha}\right] X(G, \mathfrak{G}, \mathbf{x}) \quad \leq_{\mathfrak{G}}$ $\left[M_{\beta}\right] X(G, \mathfrak{G}, \mathbf{x})$ and $\left[M_{\alpha}\right] \bar{X}(G, \mathfrak{G}, \mathbf{x}) \leq \mathfrak{G}\left[M_{\beta}\right] \bar{X}(G, \mathfrak{G}, \mathbf{x})$.
Similarly, if we write $\chi(G, \mathfrak{G}, x)=\sum_{i=0}^{|N|} f_{i}\binom{x}{i}$, then we have:

1. For $i \leq j \leq|N|+1-i$, we have $f_{i} \leq f_{j}$.
2. For all $1 \leq i \leq j$, we have $\binom{|N|-1}{j-1} f_{i} \leq\binom{|N|-1}{i-1} f_{j}$.

If we write $\bar{\chi}(G, \mathfrak{G}, x)=\sum_{i=0}^{|N|} f_{i}\binom{x}{i}$, we obtain the same inequalities. For ordinary graphs, with trivial group action, the last inequality is new.

We say that $X(G, \mathfrak{G}, \mathbf{x})$ is M-increasing and $\chi(G, \mathfrak{G}, x)$ is strongly flawless.
Are there similar results for:

- P-partitions of a poset or double poset?
- generic functions on matroids, or generalized permutohedra?
- generalized colorings of a graph where every connected component of every monochromatic subgraph has a Hamilton path?
Idea: work with linearized combinatorial Hopf monoids in species.

1. The Hopf algebra / monoid structure allows us to define 'colorings',
2. The species structure allows us to define group actions.

Species and group actions

- Set species = an endofunctor F : Set \rightarrow Set on the category of finite sets with bijections. Given a finite set N, we obtain a set F_{N} such that $\mathfrak{S}_{N} \curvearrowright \mathrm{~F}_{N}$.
- Linear species = a functor $\mathcal{F}: S e t \rightarrow V e c$ to the category of finite dimensional vector spaces over a field \mathbb{K} and linear transformations.
- Given \mathbf{F}, the linearization $\mathbb{K} \mathbf{F}$ is defined by letting $(\mathbb{K} \mathbf{F})_{N}$ be the vector space with basis \mathbf{F}_{N}.

Examples:

- If we let $\mathbf{E}_{N}=\{1\}$ for every finite set N, then we obtain the exponential species.
- If we let MG_{N} denote the set of acyclic mixed graphs on N, we obtain a species.
- We can also consider the subspecies of graphs \mathbf{G} or posets \mathbf{P} of MG.

Figure 3. Acyclic mixed graphs
Given $\mathfrak{f} \in \mathrm{F}_{N}$, and $\mathfrak{g} \in \mathfrak{S}_{N}$, we say \mathfrak{g} is an automorphism of \mathfrak{f} if $\mathfrak{g f}=\mathrm{f}$.

Linearized combinatorial Hopf monoids

A connected Hopf monoid is a linear species \mathcal{H} with maps

1. $\mu_{S, T}: \mathcal{H}_{S} \otimes \mathcal{H}_{T} \rightarrow \mathcal{H}_{S \sqcup T}$
2. $\Delta_{S, T}: \mathcal{H}_{S \sqcup T} \rightarrow \mathcal{H}_{S} \otimes \mathcal{H}_{T}$
for every pair of disjoint sets S, T, subject to axioms:
3. Associativity: For all disjoint A, B, C, we have $\mu_{A, B \sqcup C} \circ\left(1_{A} \otimes \mu_{B, C}\right)=\mu_{A \sqcup B, C} \circ\left(\mu_{A, B} \otimes 1_{C}\right)$.
4. Coassociativity: For all disjoint A, B, C, we have
$\left(1_{A} \otimes \Delta_{B, C}\right) \circ \Delta_{A, B \sqcup C}=\left(\Delta_{A, B} \otimes 1_{C}\right) \circ \Delta_{A \sqcup B, C}$.
5. Compatibility: For all disjoint sets A, B, C, D, we have
$\Delta_{A \sqcup C, B \sqcup D} \circ \mu_{A \sqcup B, C \sqcup D}=$
$\left(\mu_{A, C} \otimes \mu_{B, D}\right) \circ\left(1_{A} \otimes \beta_{B, C} \otimes 1_{D}\right) \circ\left(\Delta_{A, B} \otimes \Delta_{C, D}\right)$ where
$\beta_{B, C}(x \otimes y)=y \otimes x$.
6. Connectedness: $\operatorname{dim} \mathcal{H}_{\emptyset}=1$.

A linearized Hopf monoid is a set species \mathbf{H}, such that $\mathbb{K}(\mathbf{H})$ is a Hopf monoid, and furthermore, for every pair of disjoint finite sets M and N, we have the following:

1. For every $\mathrm{x} \in \mathbf{H}_{M}, \mathbf{y} \in \mathbf{H}_{N}$, we have $\mu(\mathbf{x} \otimes \mathrm{y}) \in \mathbf{H}_{M \cup N}$.
2. For every $\mathbf{h} \in \mathbf{H}_{M \sqcup N}$, if $\Delta_{M, N}(\mathbf{h}) \neq 0$ then there exists $\mathrm{h} \backslash N \in \mathbf{H}_{M}$ and $\mathrm{h} / M \in \mathbf{H}_{N}$ such that $\Delta_{M, N}(\mathbf{h})=\mathbf{h} \backslash N \otimes \mathbf{h} / M$.

For MG, the product is disjoint union of mixed graphs. Given disjoint sets M, N, and a mixed graph $\mathrm{g} \in \mathrm{MG}_{M \cup N}$, we define

$$
\Delta_{M, N}(\mathrm{~g})= \begin{cases}0 & \text { if there exists } m \in M, n \in N,(n, m) \in \mathrm{g} \\ \left.\left.\mathrm{~g}\right|_{M} \otimes \mathrm{~g}\right|_{N} & \text { otherwise }\end{cases}
$$ where $\left.\mathrm{g}\right|_{S}$ is the induced subgraph on S. Thus MG is a linearized Hopf monoid. It contains graphs G and posets P as Hopf submonoids.

Chromatic Quasisymmetric Class Function
A Hopf monoid character is a natural transformation $\varphi: \mathbb{K}(\mathbf{H}) \rightarrow$ $\mathbb{K}(\mathbf{E})$ such that, for all disjoint finite sets M and N, and all $x \in \mathbf{H}_{M}$ and all $y \in \mathbf{H}_{N}$, we have $\varphi_{M}(x) \cdot \varphi_{N}(y)=\varphi_{M \sqcup N}(x \cdot y)$.
It is linearized if $\varphi(\mathbf{h}) \in\{0,1\}$ for all $\mathbf{h} \in \mathbf{H}_{N}$ and all N.
For MG, we define

$$
\varphi(\mathrm{g})= \begin{cases}0 & \text { there exists } u v \in \mathrm{~g} \\ 1 & \text { otherwise }\end{cases}
$$

and
$\overline{\varphi(\mathrm{g})}= \begin{cases}1 & \mathrm{~g} \text { has no directed or undirected edges } \\ 0 & \text { otherwise }\end{cases}$
Given $\mathbf{H}, \mathbf{h} \in \mathbf{H}_{N}, i \in \mathbb{N}$, and $f: N \rightarrow \mathbb{N}$, we define monochromatic subobjects

$$
\mathbf{h}_{f, i}:=\mathbf{h} \backslash f^{-1}(\mathbb{N} \backslash[i]) / f^{-1}([i-1]) .
$$

Given φ, a φ-proper coloring is a function $f: N \rightarrow \mathbb{N}$ such that $\varphi\left(\mathrm{h}_{f, i}\right)=1$ for all $i \in \mathbb{N}$. Let $\mathcal{F}_{\varphi}(\mathbf{h})$ denote the set of φ-proper colorings. If $\mathfrak{G} \curvearrowright \mathrm{h}$ as automorphisms, then $\mathfrak{G} \curvearrowright \mathcal{F}_{\varphi}(\mathrm{h})$ via $\mathfrak{g} f=$ $f \circ \mathfrak{g}^{-1}$, where $f \in \mathcal{F}_{\varphi}(\mathbf{h})$ and $\mathfrak{g} \in \mathfrak{G}$.
Given commuting indeterminates x_{1}, x_{2}, \ldots and $\mathfrak{g} \in \mathfrak{G}$, we define

$$
\Psi_{\mathbf{H}, \varphi}(\mathbf{h}, \mathfrak{G}, \mathbf{x} ; \mathfrak{g})=\sum_{f \in \mathcal{F}_{\varphi}(\mathrm{h}): \mathfrak{g} f=f} \prod_{v \in N} x_{f(v)} .
$$

Thus $\Psi_{\mathbf{H}, \varphi}(\mathbf{h}, \mathfrak{G}, \mathbf{x})$ is the φ-chromatic quasisymmetric class function of (h, $\mathfrak{G})$.
The orbital chromatic polynomial $\Psi_{\mathbf{H}, \varphi}(\mathbf{h}, \mathfrak{G}, x)$ counts the number of orbits of proper colorings with largest color at most x.
Given $G \in \mathrm{MG}_{N}$, and $\mathfrak{G} \curvearrowright G$ as automorphisms, We have

1. $\Psi_{\mathrm{MG}, \varphi}(G, \mathfrak{G}, \mathbf{x})=X(G, \mathfrak{G}, \mathbf{x})$.
2. $\Psi_{\mathrm{MG}, \bar{\varphi}}(G, \mathfrak{G}, \mathbf{x})=\bar{X}(G, \mathfrak{G}, \mathbf{x})$.

Theorem

Let \mathbf{H} be a linearized Hopf monoid and φ be a linearized Hopf monoid character. Then the following are equivalent:

1. For every finite set N, every $\mathbf{h} \in \mathbf{H}_{N}$, and every group $\mathfrak{G} \curvearrowright \mathbf{h}$ as automorphisms, we have $\Psi_{\mathbf{H}, \varphi}(\mathbf{h}, \mathfrak{G}, \mathbf{x})$ is M-increasing.
2. For every finite set N, every $\mathbf{h} \in \mathbf{H}_{N}$, and every $k>0$ with For every finite set N, every $\mathrm{h} \in \mathbf{H}_{N}$, and every $k>0$ with
$k<|N|$, if $\varphi(\mathbf{h})=1$, then there exists $S \subset N$ with $|S|=k$ and $\varphi(\mathrm{h} \backslash S)=\varphi(\mathrm{h} /(N \backslash S))=1$.
Moreover, if $\Psi_{\mathbf{H}, \varphi}(\mathbf{h}, \mathfrak{G}, \mathbf{x})$ is M-increasing, then:
3. $\Psi_{\mathbf{H}, \varphi}(\mathbf{h}, \mathfrak{G}, x)$ is strongly flawless.
4. If we write $\Psi_{\mathbf{H}, \varphi}(\mathbf{h}, \mathfrak{G}, x)=\sum_{i=0}^{|N|} f_{i}\binom{x}{i}$, then for all $i \leq j$, we have $\binom{|N|-1}{j-1} f_{i} \leq\binom{|N|-1}{i-1} f_{j}$.

Wanted: A condition on \mathbf{H} and φ that ensures $\Psi_{\mathbf{H}, \varphi}(\mathbf{h}, \mathfrak{G}, \mathbf{x})$ is F-effective for all h. Here, F-effective means that $\left[\mathcal{F}_{\alpha}\right] \Psi_{\mathbf{H}, \varphi}(\mathbf{h}, \mathfrak{G}, \mathbf{x})$ is a character for all α.

References

[1] Marcelo Aguiar and Federico Ardila. Hopf monoids and generalized permutahedra. eprint arXiv:1709.07504.
[2] Marcelo Aguiar and Swapneel Mahajan. Monoidal functors, species and Hoop algebras, volume 29 of CRM Monograph Series. American Mathematical Society, Providence, RI, 201 With forewords by Kenneth Brown and Stephen Chase and André Joyal. Marcelo Aguiar and Swapneel Mahajan. Hopf mo
Contemporary Mathematics, 585:17-124, 2013. Matthias Beck, Daniel Blado, Joseph Crawford, Taina Jean-Louis, and Michael Young. On weak chromatic polynomials of mixed graphs. Graphs Combin., 31(1):91-98, 2015. Matthias Beck, Tristram Bogart, and Tu Pham. Enumeration of Golomb rulers and acyclic orientations of mixed graphs. Electron. J. Combin., 19(3):Paper 42, 13, 2012.
Fb Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like structures, F. Bergeron, G. Labele, and P. Leroux. Combinatorial species and tree-like structures,
volume 67 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1998. Translated from the 1994 French original by Margaret Readdy, With a foreword by Gian-Carlo Rota.
Louis J. Billera, Ning Jia, and Victor Reiner. A quasisymmetric function for matroids.
European J. Combin., 30(8):1727-1757. 0 . European J. Combin., 30(8):1727-1757, 2009.
Peter J. Cameron and K. K. Kayibi. Orbital chromatic and flow roots. Combin. Probab.
Comput., 16(3):401-407. 2007. Comput., 16(3):401-407, 2007.
19] Darij Grinberg. Double posets and the antipode of QSym. Electron. J. Combin., 24(2):Paper 2.22, 47, 2017.

10] Katharina Jochemko. Order polynomials and Pólya's enumeration theorem. Electron. J. Combin., 21(2):Paper 2.52, 11, 2014.
11] Martina Juhnke-Kubitzke and Dinh Van Le. Flawlessness of h-vectors of broken circuit complexes. Int. Math. Res. Not. IMRN, (5):1347-1367, 2018.
[12] Richard P. Stanley. A symmetric function generalization of the chromatic polynomial of a graph. Adv. Math., 111(1):166-194, 1995.
13] Richard P. Stanley. Graph colorings and related symmetric functions: ideas and applications a description of results, interesting applications, \& notable open problems. Discrete Math.
193(1-3):267-286, 1998. Selected papers in honor of Adriano Garsia (Taormina, 1994). [14] Jacob White. The chromatic quasisymmetric class function of a digraph. Ann. Comb. 2021

