Lattices and canonical join representations ${\tt 000000}$

Weak order on permutations and arcs $_{\rm OOOOO}$

Canonical complexes

The canonical complex of the weak order

Doriann Albertin

Université Gustave Eiffel

doriann.albertin@u-pem.fr

FPSAC 2022 - Bengaluru

2022-07-19

Joint work with Vincent Pilaud (CNRS & École Polytechnique)

Lattices and canonical join representations • 0 0 0 0 0	Weak order on permutations and arcs	Canonical complexes
Lattices		

Definition

A (finite) lattice L is a (finite) poset where every family X of elements of L has a join $\bigvee X$ (smallest upper bound) and a meet $\bigwedge X$ (greatest lower bound).

Definition

The **canonical join representation** of an element x is a subset $J \subseteq L$ such that:

•
$$\bigvee J = x$$
,

•
$$J' \subsetneq J \Rightarrow \bigvee J' \neq x$$
,

• J is *lowest* in L with these properties.

When it always exist, we call the lattice join semidistributive.

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes
Irreducibility		

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes
Irreducibility		

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes
Irreducibility		
, a		

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes
Irreducibility		
• 		

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes
Irreducibility		

Definition

The elements that are their own canonical join representation are the **join irreducibles**. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.

Doriann Albertin

Lattices	and	canonical	join	representations
000000				

Canonical join complex

Definition (Reading '15, Barnard '19, '20)

The **canonical join complex** associated to a join semidistributive lattice *L* is the simplicial complex CJC(L) with:

- vertices := {join irreducibles},
- faces := {canonical join representations}.

Lattices	and	canonical	join	representations
000000				

Canonical join complex

Definition (Reading '15, Barnard '19, '20)

The **canonical join complex** associated to a join semidistributive lattice *L* is the simplicial complex CJC(L) with:

- vertices := {join irreducibles},
- faces := {canonical join representations}.

Theorem (Reading '15)

It is a flag simplicial complex.

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes 00000000
Canonical join complex		

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes
Canonical join complex		

Canonical join complex CJC(L)

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes
Canonical join complex		

Canonical join complex CJC(L)

Weak order on permutations and arcs $_{\rm OOOOO}$

Canonical complexes

Lattice congruences

Definition

A lattice congruence is an equivalence relation \equiv on *L* such that $x \equiv x'$ and $y \equiv y'$ implies $x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$.

Weak order on permutations and arcs $_{\rm OOOOO}$

Canonical complexes

Lattice congruences

Definition

A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x'$ and $y \equiv y'$ implies $x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$. Its classes are intervals of the lattice.

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

Definition

A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x'$ and $y \equiv y'$ implies $x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$. Its classes are intervals of the lattice.

The **quotient lattice** associated to a congruence is the natural lattice on the classes of the congruence.

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

Definition

A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x'$ and $y \equiv y'$ implies $x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$. Its classes are intervals of the lattice.

The **quotient lattice** associated to a congruence is the natural lattice on the classes of the congruence.

Theorem (Reading '16)

A lattice congruence is characterized by the join irreducibles it contracts (merge with the one they cover). More precisely, there is a poset on join irreducibles called **forcing order** such that all ideals of this poset correspond to a lattice congruence.

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

Definition

A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x'$ and $y \equiv y'$ implies $x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$. Its classes are intervals of the lattice.

The **quotient lattice** associated to a congruence is the natural lattice on the classes of the congruence.

Theorem (Reading '16)

A lattice congruence is characterized by the join irreducibles it contracts (merge with the one they cover). More precisely, there is a poset on join irreducibles called **forcing order** such that all ideals of this poset correspond to a lattice congruence.

Theorem (Reading '15)

The canonical join complex behaves well with lattice congruences.

Doriann Albertin

Lattices and	canonical jo	in representations
00000		

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

Doriann Albertin

Lattices and	canonical jo	in representations
000000		

Weak order on permutations and arcs

С

Canonical complexes

Lattice congruences

Doriann Albertin

The canonical complex of the weak order

Lattices and	canonical join	representations
00000		

Weak order on permutations and arcs

С

Canonical complexes

Lattice congruences

Doriann Albertin

The canonical complex of the weak order

The canonical complex of the weak order

Lattices and canonical join representations

Weak order on permutations and arcs $_{\odot \odot \odot \odot \odot}$

Canonical complexes

Weak order on permutations

Proposition

The (right) weak order is a semidistributive lattice on permutations ordered by containment of their inversion sets.

 $\begin{array}{l} \mathsf{inv}(132) = \{(2,3)\} \subseteq \{(1,3),(2,3)\} = \mathsf{inv}(312) \\ 132 \preccurlyeq 312 \end{array}$

Doriann Albertin

The canonical complex of the weak order

Lattices and canonical join representations ${\tt 000000}$

Weak order on permutations and arcs ${\circ}{\bullet}{\circ}{\circ}{\circ}{\circ}$

Canonical complexes

A nice bijection

$$\sigma = 526413$$

Weak order on permutations and arcs ${\circ}{\bullet}{\circ}{\circ}{\circ}{\circ}$

Canonical complexes

A nice bijection

 $\sigma = 526413$

Permutation table: $\{(\sigma_i, i) \mid i \in [n]\}.$

Lattices and canonical join representations ${\tt 000000}$

Weak order on permutations and arcs ${\circ}{\bullet}{\circ}{\circ}{\circ}{\circ}$

Canonical complexes

A nice bijection

 $\sigma = 526413$

Permutation table: $\{(\sigma_i, i) \mid i \in [n]\}.$

Weak order on permutations and arcs ${\circ}{\bullet}{\circ}{\circ}{\circ}{\circ}$

Canonical complexes

A nice bijection

 $\sigma =$ 526413

Weak order on permutations and arcs ${\circ}{\bullet}{\circ}{\circ}{\circ}{\circ}{\circ}$

Canonical complexes

A nice bijection

 $\sigma =$ 526413

Weak order on permutations and arcs $_{\odot \odot \odot \odot \odot}$

Canonical complexes

A nice bijection

 $\sigma={\rm 526413}$

Weak order on permutations and arcs ${\circ}{\bullet}{\circ}{\circ}{\circ}{\circ}{\circ}$

Canonical complexes

A nice bijection

 $\sigma={\rm 526413}$

Weak order on permutations and arcs $_{\odot \bullet \odot \odot \odot}$

Canonical complexes

A nice bijection

 $\sigma={\rm 526413}$

Permutation table: $\{(\sigma_i, i) \mid i \in [n]\}.$

Highlight descents.

Weak order on permutations and arcs $_{\odot \bullet \odot \odot \odot}$

Canonical complexes

A nice bijection

 $\sigma={\rm 526413}$

Permutation table: $\{(\sigma_i, i) \mid i \in [n]\}.$

Highlight descents.

Weak order on permutations and arcs $_{\odot \bullet \odot \odot \odot}$

Canonical complexes

A nice bijection

 $\sigma={\rm 526413}$

Permutation table: $\{(\sigma_i, i) \mid i \in [n]\}.$

Highlight descents.

Weak order on permutations and arcs $_{\odot \bullet \odot \odot \odot}$

Canonical complexes

A nice bijection

 $\sigma={\rm 526413}$

Permutation table: $\{(\sigma_i, i) \mid i \in [n]\}.$

Highlight descents.

Weak order on permutations and arcs $_{\odot \bullet \odot \odot \odot}$

Canonical complexes

A nice bijection

 $\sigma={\rm 526413}$

Permutation table: $\{(\sigma_i, i) \mid i \in [n]\}.$

Highlight descents.

Weak order on permutations and arcs ${\circ}{\bullet}{\circ}{\circ}{\circ}{\circ}{\circ}$

Canonical complexes

A nice bijection

 $\sigma={\rm 526413}$

Permutation table: $\{(\sigma_i, i) \mid i \in [n]\}.$

Highlight descents.

Weak order on permutations and arcs 0000

Canonical complexes

A nice bijection

 $\sigma = 526413$

Permutation table: $\{(\sigma_i, i) \mid i \in [n]\}.$

Highlight descents.

Flatten !

Theorem (Reading '15)

This is a bijection between permutations and Non-Crossing Arc Diagrams (NCADs).

Weak order on permutations and arcs 0000

Canonical complexes

A nice bijection

 $\sigma =$ 526413

Permutation table: $\{(\sigma_i, i) \mid i \in [n]\}.$

Highlight descents.

Flatten !

Theorem (Reading '15)

This is a bijection between permutations and Non-Crossing Arc Diagrams (NCADs).

$$\times_{x} <_{x} >_{x} \checkmark_{x}$$

Why nice ?

Theorem (Reading '15)

Canonical complexes

Why nice ?

Theorem (Reading '15)

Canonical complexes

Why nice ?

Theorem (Reading '15)

Canonical complexes

Why nice ?

Theorem (Reading '15)

Lattices and canonical join representations 000000

Weak order on permutations and arcs ${\circ}{\circ}{\circ}{\circ}{\circ}{\circ}{\circ}$

Canonical complexes

Non-crossing complex

Theorem (Reading '15)

The canonical join complex of the weak order is isomorphic to the **non-crossing complex**.

Lattices and canonical join representations $_{\rm OOOOOO}$

Weak order on permutations and arcs $\circ \circ \circ \circ \bullet$

Canonical complexes

Forcing on arcs

Proposition (Reading '15)

The forcing on arcs corresponds to the extension of arcs.

Weak order on permutations and arcs $_{\rm OOOOO}$

Canonical complexes

And what about meet?

Some time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.

Weak order on permutations and arcs 00000

Canonical complexes

And what about meet?

Some time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.

Weak order on permutations and arcs $_{\rm OOOOO}$

Canonical complexes

And what about meet?

Some time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.

Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes 0000000

And what about meet?

Some time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.

Doriann Albertin

The canonical complex of the weak order

Weak order on permutations and arcs

Canonical complexes

Representations of intervals

Definition (A., Pilaud '22+)

Canonical representation of an interval:

 $\operatorname{cr}([x,y]) := \operatorname{cjr}(x) \sqcup \operatorname{cmr}(y).$

Canonical complex CC(L) of a semidistributive lattice *L*:

- vertices := {join irreducibles} ⊔ {meet irreducibles},
- faces $:= J \sqcup M$ such that:
 - J is a canonical join representation,
 - *M* is a canonical meet representation,
 - $\bigvee J \leq \bigwedge M$.

Theorem (A., Pilaud '22+)

The canonical complex is a well defined flag simplicial complex. It contains the canonical join and meet complexes. It behaves as well as those with respect to taking quotients of the lattice.

Doriann Albertin

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes ○○●○○○○○
Back to our example		
$a \lor e$ $d \qquad e$ $a \lor b \lor c$ $a \lor b \lor c \qquad b \lor c$ $a \lor b \qquad a \lor c \qquad b \lor c$ $a \qquad b \qquad c \qquad b \lor c$ $b \qquad c \qquad b \lor c$ $b \qquad c \qquad b \lor c$ $b \qquad c \qquad b \lor c$	$ \begin{array}{c} g \\ g \\ h \\ g \\ h \\ d \\ e \end{array} $	e $d \wedge e$ $ $ $g e \wedge h$

UGE - LIGM 14 / 19

UGE - LIGM 14 /

Doriann Albertin

UGE - LIGM 14 / 1

Weak order on permutations and arcs 00000

Canonical complexes

The canonical complex of the weak order

To the interval [526413, 564231],

Weak order on permutations and arcs

Canonical complexes

The canonical complex of the weak order

Theorem (A., Pilaud '22+)

This is a bijection between intervals of the weak order and Semi-Crossing Arc Bidiagrams (SCABs).

Weak order on permutations and arcs

Canonical complexes

The canonical complex of the weak order

Theorem (A., Pilaud '22+)

This is a bijection between intervals of the weak order and **Semi-Crossing Arc Bidiagrams** (SCABs).

Weak order on permutations and arcs

Canonical complexes

The canonical complex of the weak order

Theorem (A., Pilaud '22+)

This is a bijection between intervals of the weak order and **Semi-Crossing Arc Bidiagrams** (SCABs).

Weak order on permutations and arcs

Canonical complexes

The canonical complex of the weak order

Theorem (A., Pilaud '22+)

This bijection between intervals of the weak order and SCABs provides a combinatorial model for the canonical complex of the weak order: the semi-crossing complex.

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes
Kreweras complement		

Problem

Given a congruence \equiv of the weak order and the canonical meet representation of the top element of a class, find the canonical join representation of the bottom element of this class.

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes ○○○○○●○
Kreweras complement		

Problem

Given a congruence \equiv of the weak order and the canonical meet representation of the top element of a class, find the canonical join representation of the bottom element of this class.

When \equiv contracts all arcs but those shaped like **4 b**, we recover the classical Kreweras complement on non-crossing partitions:

Lattices and canonical join representations	Weak order on permutations and arcs	Canonical complexes ○○○○○●○
Kreweras complement		

Problem

Given a congruence \equiv of the weak order and the canonical meet representation of the top element of a class, find the canonical join representation of the bottom element of this class.

When \equiv contracts all arcs but those shaped like \checkmark , we recover the classical Kreweras complement on non-crossing partitions:

Lattices and canonical join representations 000000

Weak order on permutations and arcs $_{\rm OOOOO}$

Canonical complexes

