The canonical complex of the weak order

Doriann Albertin

Université Gustave Eiffel
doriann.albertin@u-pem.fr

FPSAC 2022 - Bengaluru
2022-07-19

Joint work with Vincent Pilaud (CNRS \& École Polytechnique)

Definition

A (finite) lattice L is a (finite) poset where every family X of elements of L has a join $\bigvee X$ (smallest upper bound) and a meet $\wedge X$ (greatest lower bound).

Definition

The canonical join representation of an element x is a subset $J \subseteq L$ such that:

- $\bigvee J=x$,
- $J^{\prime} \subsetneq J \Rightarrow \bigvee J^{\prime} \neq x$,
- J is lowest in L with these properties.

When it always exist, we call the lattice join semidistributive.

Definition

The elements that are their own canonical join representation are the join irreducibles. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.

Definition (Reading '15, Barnard '19, '20)

The canonical join complex associated to a join semidistributive lattice L is the simplicial complex $\mathcal{C J C}(L)$ with:

- vertices $:=\{$ join irreducibles $\}$,
- faces $:=\{$ canonical join representations $\}$.

Definition (Reading '15, Barnard '19, '20)

The canonical join complex associated to a join semidistributive lattice L is the simplicial complex $\mathcal{C J C}(L)$ with:

- vertices $:=\{$ join irreducibles $\}$,
- faces $:=\{$ canonical join representations $\}$.

Theorem (Reading '15)

It is a flag simplicial complex.

Canonical join complex

Canonical join complex

Canonical join complex $\mathcal{C J C}(L)$

Canonical join complex

Canonical join complex $\mathcal{C J C}(L)$

Definition

A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ implies $x \vee y \equiv x^{\prime} \vee y^{\prime}$ and $x \wedge y \equiv x^{\prime} \wedge y^{\prime}$.

Definition

A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ implies $x \vee y \equiv x^{\prime} \vee y^{\prime}$ and $x \wedge y \equiv x^{\prime} \wedge y^{\prime}$. Its classes are intervals of the lattice.

Definition

A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ implies $x \vee y \equiv x^{\prime} \vee y^{\prime}$ and $x \wedge y \equiv x^{\prime} \wedge y^{\prime}$. Its classes are intervals of the lattice.
The quotient lattice associated to a congruence is the natural lattice on the classes of the congruence.

Definition

A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ implies $x \vee y \equiv x^{\prime} \vee y^{\prime}$ and $x \wedge y \equiv x^{\prime} \wedge y^{\prime}$. Its classes are intervals of the lattice.
The quotient lattice associated to a congruence is the natural lattice on the classes of the congruence.

Theorem (Reading '16)

A lattice congruence is characterized by the join irreducibles it contracts (merge with the one they cover). More precisely, there is a poset on join irreducibles called forcing order such that all ideals of this poset correspond to a lattice congruence.

Definition

A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ implies $x \vee y \equiv x^{\prime} \vee y^{\prime}$ and $x \wedge y \equiv x^{\prime} \wedge y^{\prime}$. Its classes are intervals of the lattice.
The quotient lattice associated to a congruence is the natural lattice on the classes of the congruence.

Theorem (Reading '16)

A lattice congruence is characterized by the join irreducibles it contracts (merge with the one they cover). More precisely, there is a poset on join irreducibles called forcing order such that all ideals of this poset correspond to a lattice congruence.

Theorem (Reading '15)

The canonical join complex behaves well with lattice congruences.

Lattice congruences

Lattice congruences

Lattice congruences

Lattice congruences

$$
\begin{aligned}
& c_{v}-\underbrace{-b_{v}}_{a v} \\
& d_{v} e_{e^{\prime}}^{\prime}
\end{aligned}
$$

Lattice congruences

$$
\begin{aligned}
& c_{v}-\underbrace{-b_{v}}_{a v} \\
& d_{v} e_{e^{\prime}}^{\prime}
\end{aligned}
$$

Lattice congruences

$$
\begin{aligned}
& c_{v}-\underbrace{-b_{v}}_{a v} \\
& d_{v} e_{e^{\prime}}^{\prime}
\end{aligned}
$$

Lattice congruences

$$
\begin{aligned}
& c_{v}=\underbrace{-b_{v}}_{a v} \\
& d_{v} e_{e^{\prime}}^{\prime}
\end{aligned}
$$

Lattice congruences

Lattice congruences

Proposition

The (right) weak order is a semidistributive lattice on permutations ordered by containment of their inversion sets.

$$
\operatorname{inv}(132)=\{(2,3)\} \subseteq\{(1,3),(2,3)\}=\operatorname{inv}(312)
$$

$132 \preccurlyeq 312$

$$
\sigma=526413
$$

$\sigma=526413$

Permutation table:

$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.

$\sigma=526413$

Permutation table:

$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.

$\sigma=526413$

Permutation table:

$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.

$\sigma=526413$

Permutation table:

$$
\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\} .
$$

$\sigma=526413$

Permutation table:

$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.

$\sigma=526413$

Permutation table:

$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.

$\sigma=526413$

Permutation table:

$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.
Highlight descents.

$\sigma=526413$

Permutation table:

$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.
Highlight descents.
Flatten!

$\sigma=526413$

Permutation table:

$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.
Highlight descents.
Flatten!

$\sigma=526413$

Permutation table:

$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.
Highlight descents.
Flatten!

$\sigma=526413$

Permutation table:

$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.
Highlight descents.
Flatten!

$\sigma=526413$

Permutation table:

$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.
Highlight descents.
Flatten!

A nice bijection

$\sigma=526413$
Permutation table:
$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.
Highlight descents.
Flatten!
Theorem (Reading '15)
This is a bijection between permutations and Non-Crossing Arc Diagrams (NCADs).

$\sigma=526413$
Permutation table:
$\left\{\left(\sigma_{i}, i\right) \mid i \in[n]\right\}$.
Highlight descents.
Flatten!
Theorem (Reading '15)
This is a bijection between permutations and Non-Crossing Arc Diagrams (NCADs).

Theorem (Reading '15)

The bijection between permutations and NCADs provides a combinatorial model for the canonical join representations in the weak order.

Theorem (Reading '15)

The bijection between permutations and NCADs provides a combinatorial model for the canonical join representations in the weak order.

σ

Theorem (Reading '15)

The bijection between permutations and NCADs provides a combinatorial model for the canonical join representations in the weak order.

Theorem (Reading '15)

The bijection between permutations and NCADs provides a combinatorial model for the canonical join representations in the weak order.

Theorem (Reading '15)

The canonical join complex of the weak order is isomorphic to the non-crossing complex.

Proposition (Reading '15)

The forcing on arcs corresponds to the extension of arcs.

Some time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.

Some time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.

Some time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.

And what about meet?

Some time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.

Definition (A., Pilaud '22+)

Canonical representation of an interval:

$$
\operatorname{cr}([x, y]):=\operatorname{cjr}(x) \sqcup \operatorname{cmr}(y) .
$$

Canonical complex $\mathcal{C C}(L)$ of a semidistributive lattice L :

- vertices := \{join irreducibles\} \sqcup \{meet irreducibles\},
- faces $:=J \sqcup M$ such that:
- J is a canonical join representation,
- M is a canonical meet representation,
- $V J \leq \Lambda M$.

Theorem (A., Pilaud '22+)

The canonical complex is a well defined flag simplicial complex. It contains the canonical join and meet complexes. It behaves as well as those with respect to taking quotients of the lattice.

Back to our example

Back to our example

Back to our example

Back to our example

Back to our example

Back to our example

Back to our example

Back to our example

The canonical complex of the weak order

To the interval [526413, 564231],

$\bullet \bullet \bullet \quad \bullet$
we associate the superimposition of diagrams:

Theorem (A., Pilaud '22+)
 This is a bijection between intervals of the weak order and Semi-Crossing Arc Bidiagrams (SCABs).

Theorem (A., Pilaud '22+)
This is a bijection between intervals of the weak order and Semi-Crossing Arc Bidiagrams (SCABs).

Theorem (A., Pilaud '22+)
This is a bijection between intervals of the weak order and Semi-Crossing Arc Bidiagrams (SCABs).

The canonical complex of the weak order

Theorem (A., Pilaud '22+)

This bijection between intervals of the weak order and SCABs provides a combinatorial model for the canonical complex of the weak order: the semi-crossing complex.

Problem

Given a congruence \equiv of the weak order and the canonical meet representation of the top element of a class, find the canonical join representation of the bottom element of this class.

Problem

Given a congruence \equiv of the weak order and the canonical meet representation of the top element of a class, find the canonical join representation of the bottom element of this class.

When \equiv contracts all arcs but those shaped like人,we recover the classical Kreweras complement on non-crossing partitions:

Problem

Given a congruence \equiv of the weak order and the canonical meet representation of the top element of a class, find the canonical join representation of the bottom element of this class.

When \equiv contracts all arcs but those shaped like d, we recover the classical Kreweras complement on non-crossing partitions:

