Even subgraphs and Loop $O(1)$ as factors of IID
with Gourab Ray + Yinon Spinka

$$
\text { FPSAC } 2022
$$

Bangalore

Random even subgraphs

Random even subgraphs

G

Random even subgraphs

subgraphs of $G \Longleftrightarrow \mathbb{Z}_{2}^{E}$

Random even subgraphs

Even subgraphs are a subspace

$$
E \subset \mathbb{Z}_{2}^{E} \quad\binom{\text { also called the }}{\text { syce space }}
$$

Random even subgraphs
One way to pick a uniform $H \subset \varepsilon$:

- fix a basis B for ε
- take independent uniform $\varepsilon_{i} \in\{0,1\}$
- Take $H=\sum \varepsilon_{i} b_{i}$

Random even subgraphs
What if G is infinite?

Random even subgraphs
What if G is infinite?

Random even subgraphs
What if G is infinite?

Random even subgraphs
What if G is infinite?

Random even subgraphs
Free limit

- Take $G_{n} \subset G$ finite $G_{n} \nearrow G$
- Let $H_{n} \subset G_{n}$ be a unif even subgraph
- Take the limit (in dist.) of H_{n}

The the limit exists, does not depend on the choice of exhaustion.

Random even subgraphs
Wired limit

- Take $G_{n} \subset G$ finite, $G_{n} \supset G$

Let G_{n}^{*} be G with all of $G \backslash G_{n}$ contracted to a single vertex.

Random even subgraphs

Random even subgraphs
Wired limit

- Take $G_{n} \subset G$ finite, $G_{n} \nearrow G$

Let G_{n}^{*} be G with all of $G \backslash G_{n}$ contracted to a single vertex $H_{n} \subset G_{n}^{*}$ unit even subgraph. take distrib. limit.

Random even subgraphs
The the free and wired even subgraph limits exist, do nut depend on the choice of exhaustion
Note The limits may be equal or not It is not always obvious which.

Generating even subgraphs
$\varepsilon^{f}=$ free even subgraph space, spanned by cycles.
$\mathcal{E}^{w}=$ wired even subgraph space, includes also doubly infinite paths

Generating even subgraphs e.g. $G=$ reg. tree: $\quad \mathcal{E}^{f}=\{\phi\}$
\mathcal{E}^{w} includes paths:

Generating even subgraphs
e.g. $G=$ reg. tree: $\quad \varepsilon^{f}=\{\phi\}$
\mathcal{E}^{w} includes paths:
e.g. $G=\mathbb{Z}^{2}$

Is $\varepsilon^{f}=\varepsilon^{w}$?

Factors of lid
Consider processes $\left(X_{n}\right)_{n \in \mathbb{Z}},\left(Y_{n}\right)_{n \in \mathbb{Z}}$. X is a factor of Y if there is a func. φ st. $X=\varphi(y)$ and φ is translation equivariant.

$$
\varphi(\operatorname{shift}(y))=\operatorname{shift}(\varphi(y))
$$

Factors of ind If $\left(Y_{n}\right)$ are lid and X is a factor of Y we say X is a factor of iud (F\|D).

Factors of ind examples: $\quad X_{n}= \begin{cases}1 & Y_{n}>Y_{n+1} \\ 0 & Y_{n} \leqslant Y_{n+1}\end{cases}$

$$
\begin{aligned}
& X_{n}=\max \left(Y_{n-1}, Y_{n}, Y_{n+1}\right) \\
& X_{n}=\left\{\begin{array}{ll}
1 & Y_{n+m} \leqslant Y_{n}+|m| \\
0 & \text { if nut. }
\end{array} \quad V_{m}\right.
\end{aligned}
$$

Factors of ind
Finitary factor: reveal terms one by one; at some finite time X_{0} is determined.

$$
\begin{aligned}
& X_{n}=\max \left(Y_{n-1}, Y_{n}, Y_{n+1}\right) \\
& X_{n}=\left\{\begin{array}{ll}
1 & Y_{n+m} \leqslant Y_{n}+|m| \quad \forall m \\
0 & \text { if nut. }
\end{array} \quad\right. \text { (not fin, tang) }
\end{aligned}
$$

Factors of ind
Major problem : understanding which processes are factors of others, and what properties can the factor maps possess.

Factors of ind
Factors are of interest on any graph $G:\left(X_{r}\right)_{v \in G}$ is a proc.
$X=\varphi(y)$ with φ equivariant
note: X, Y can live on edges or vertices or both.

Factors of ind egg Let $G=\mathbb{Z}^{2}$. Let $H \subset \mathbb{Z}^{2}$ include each edge independently with prob. p.

Factors of ind egg. Let $G=\mathbb{Z}^{2}$. Let $H \subset \mathbb{Z}^{2}$ include each edge independently with prob. p.

colour each
cluster. $\%$
by a coin toss

Factors of ind
egg. Let $G=\mathbb{Z}^{2}$. Let $H \subset \mathbb{Z}^{2}$ include each edge independently with prob. p.
-••••. colour each
$\because \because$ •. cluster...
................ fit the
....... edges.

Factors of ind
$X_{v}=$ colour of v
Is X a factor of lid?

Factors of iid $X_{v}=$ colour of v. Is X a factor of lid?
If $p<P_{c}$ all clusters are finite \Rightarrow yes
If $p>p_{k}$ there is an ∞ cluster \Rightarrow NO.

Factors of ind
Qu: what about the same model on other graphs?
If there are no ∞ clusters: YEs unique ∞ cluster: No ∞ many ∞ clusters: unclear. (open in general)

The using model (magnetism, 1920's) configuration $\sigma \in\{ \pm 1\}^{V}$ distrib. $\quad P(\sigma) \propto e^{\beta \sum_{x \sim y} \sigma_{x} \sigma_{y}}$

The ling model
configuration $\sigma \in\{ \pm 1\}\}^{V}$
distrib. $\quad P(\sigma) \propto e^{\beta \sum_{x \sim y} \sigma_{x} \sigma_{y}}$
On an infinite graph we can take free or wired limits $\mu^{f} \mu^{\mu}, \mu^{-}$.
μ_{+}: limit wt th + boundary cons?

The ling model
Th (Ornstein-Weiss ; Adams) μ^{+}is FIID for $\forall \beta$ (On any amenable graph).
Harel-Spinka: This holds for "monotone" models.

The ling model
Th (Ornstein-Weiss ; Adams) μ^{+}is FIID for $\forall \beta$ (On any amenable graph).
The (van den Beg - Steif) $\partial_{n} \mathbb{Z}^{d}, \mu^{+}$is FFIID if and only if $\mu^{+}=\mu^{-} \quad$ (ie. $\beta \leqslant \beta_{c}$)
Key obstacle: Large deviation probabilities:

$$
\mu^{+}\left(\text {more - in }[n]^{d}\right) \geqslant \exp \left(-c n^{d-1}\right)
$$

but for $F F \| D$ it must be $\leqslant \exp \left(-c n^{d}\right)$.

The lsing model: Beyond \mathbb{Z}^{d}. On the regulon tree \mathbb{T}_{d} :

$$
\cdot \mu^{+} \text {is } a\left\{\begin{array}{ll}
F \| D & \forall \beta \\
\text { FFIID } & \text { if } \mu^{+}=\mu^{-} \\
\text {FFIID } & \text { for } \beta>\beta_{0}
\end{array} \text { (Harel-Ray-Spinka) }\right)
$$

The Using model: Using gradient
Let $\omega_{x y}= \begin{cases}1 & \sigma_{x} \neq \sigma_{y} \\ 0 & \sigma_{x}=\sigma_{y}\end{cases}$
$O_{n} \mathbb{Z}^{d},\left(w_{e}\right)$ is FFIID for all β (Ray-Spinka) requires new methods since it is not a monotone model.
A.-Ray-Spinka: also on planar lattices.

FK-Ising and Edwands-Sokal
On a finite graph, FK ising meas. on \{0,1\}

$$
P(\omega) \propto p^{\operatorname{open}(\omega)}(1-P)^{\operatorname{cosed}(\omega)} 2^{\operatorname{clustan}(\omega)}
$$

The free and wired limits are ϕ^{f}, ϕ^{ω}

FK-Ising and Edwands-Sotal
On a finite graph, FK ising meas on \{0, 1$\}$

$$
P(\omega) \propto P^{\operatorname{openc}(\omega)}(1-P)^{\operatorname{closed}(\omega)} 2^{\operatorname{clostan}(\omega)}
$$

The free and wired limits are ϕ^{f}, ϕ^{ω} Haggstrom-Jonasson - Lyons: ϕ^{f}, ϕ^{w} are FIID Harel-Spinka: if $\phi^{+}=\phi^{"}$ then FFIID if $\phi^{\omega} \neq \phi^{f}$ then ϕ^{ω} not FFIID (extern cord.)

FK-Ising and Edwands-Sotal
On a finite graph, FK ising meas on \{0,1\}

$$
P(\omega) \propto P^{\operatorname{Dien}(\omega)}(1-P)^{\operatorname{dosed}(\omega)} 2^{\operatorname{clustan}(\omega)}
$$

Edwards-Sokal: Assign each cluster in w a sign to get Using.

FK-Ising and Edwands-Sokal
On a finite graph, FK ising meas on \{0,1\}

$$
P(\omega) \propto p^{\operatorname{apen}(\omega)}(1-P)^{\operatorname{cosec}(\omega)} 2^{\operatorname{clostan}(\omega)}
$$

Edwards-Sokal: Assign each cluster in w a sign to get Using.

FK-Ising and Edwands-Sokal
On a finite graph, FK ising meas on \{0,1\}

$$
P(\omega) \propto p^{\operatorname{apen}(\omega)}(1-P)^{\operatorname{cosec}(\omega)} 2^{\operatorname{clostan}(\omega)}
$$

Edwards-Sokal: Assign each cluster in w a sign to get Using.

The Loop O(1) model
Meas. on config. $\eta \in\{0,1\}^{E u V}$
Parameters $x, y \geqslant 0 \quad x=\tanh \beta \quad y=\tanh h$
On finite graph:

$$
p(\eta) \propto x^{\sum \eta(e)} y^{\sum \eta(v)} 1_{\eta \text { even }}
$$

The: Free and wired limits exist: p^{f}, p^{w}. Special case: $x=1, y=0$: unif even subgraph.

The loop O(1) model
The (A.-Ray-Spinka) for $x, y \in[0,1], P^{w}$ is FIID unless $(x=1$ and $y=0$ and G is 2 -ended)

The loop O(1) model
The (A.-Ray-Spinka) for $x, y \in[0,1], P^{w}$ is FIID unless $(x=1$ and $y=0$ and G is 2 -ended)
Th $(A-R-S)$ pf is FIID in many cases:
$-y>0$

- G amenable or planar
- ϕ^{f} has $<\infty$ geodesic cycles through e

Conj: P^{f} is always $F \| D$

The loop O(1) model
Aizenman - Duminil Copin - Sidoravicius:
Loop $O(1) \Longleftrightarrow F K$ ling $p=\frac{2 x}{1+x} \quad q=\frac{2 y}{1+y}$
Given a Loup $O(1)$ config., add each edge(reat) with prob $x(y)$ to get F_{k} ling.
Given FK ling, take a uniform even subgraph
\Rightarrow Loop $O(1)$ can be a factor.

Generating even subgraphs
Want $H=\sum \varepsilon_{i} b_{i}$ for some spanning set of ε^{f} or ε^{w}.

* This is only defined if $\{b ;\}$ is Docally finite.
* For a factor, want $\left\{b_{i}\right\}$ to be chosen "invariatly".
egg. If G is planar, the faces span \mathcal{E}^{f}.

Recall : A ray is an ∞ simple path. 2 rays are equivalent if \forall finite sets they are eventually in same component of G\S.
\otimes An end is an equivalence class of rays.
eg. $\mathbb{Z}, \mathbb{Z}^{2}$, Trees

A tree $T C G$ is end-faithful if ends of T are in bijection with ends of G.
Claim: If T is an end faithful spanning tree then it gives a locally finite spanning set for ε^{f}.

$e \notin T \Leftrightarrow C_{e}$ cycle

Timani G amenable, unimodular, one-ended then G has a one-ended sp. tree as a FIID.
Benjamini-Lyons-Peres-Schramm: 2 ended
Q_{n}; what if G has ∞ ends?

Generating ε^{w}
Let F be a spanning forest with 1-ended trees.
For $e \notin F$ define C_{e}
 extend e to a cycle or bi-infinite path in F.
The wUsF is such a forest,
 and is a F\|D.

THANK YOU

