Biclosed sets in affine root systems

Grant Barkley¹ and David Speyer²

¹Harvard University

²University of Michigan

July 19, 2022

Biclosed sets in affine root systems

Grant Barkley and David Speyer

∃ ► < ∃ ►</p>

Fix a real vector space V and a set of vectors $\Phi^+ \subseteq V$.

Definition (Dyer, Edgar, Papi)

 $B \subseteq \Phi^+$ is **biclosed** if it satisfies the following two properties for all $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ for some a, b > 0: (Closed) If $\alpha \in B$ and $\beta \in B$, then $\gamma \in B$. (Coclosed) If $\alpha \notin B$ and $\beta \notin B$, then $\gamma \notin B$.

Definition $B \subseteq \Phi^+$ is **biclosed** if it satisfies the following two properties for all $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ for some a, b > 0: (Closed) If $\alpha \in B$ and $\beta \in B$, then $\gamma \in B$. (Coclosed) If $\alpha \notin B$ and $\beta \notin B$, then $\gamma \notin B$.

Example:
$$\Phi^+ = \{ lpha, eta, lpha + eta \}$$

Definition $B \subseteq \Phi^+$ is **biclosed** if it satisfies the following two properties for all $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ for some a, b > 0: (Closed) If $\alpha \in B$ and $\beta \in B$, then $\gamma \in B$. (Coclosed) If $\alpha \notin B$ and $\beta \notin B$, then $\gamma \notin B$.

Example:
$$\Phi^+ = \{\alpha, \beta, \alpha + \beta\}$$

Biclosed sets in affine root systems

Grant Barkley and David Speyer

ヨトイヨト

Definition $B \subseteq \Phi^+$ is **biclosed** if it satisfies the following two properties for all $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ for some a, b > 0: (Closed) If $\alpha \in B$ and $\beta \in B$, then $\gamma \in B$. (Coclosed) If $\alpha \notin B$ and $\beta \notin B$, then $\gamma \notin B$.

Example:
$$\Phi^+ = \{\alpha, \beta, \alpha + \beta\}$$

B N A B N

Definition $B \subseteq \Phi^+$ is **biclosed** if it satisfies the following two properties for all $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ for some a, b > 0: (Closed) If $\alpha \in B$ and $\beta \in B$, then $\gamma \in B$. (Coclosed) If $\alpha \notin B$ and $\beta \notin B$, then $\gamma \notin B$.

Example:
$$\Phi^+ = \{\alpha, \beta, \alpha + \beta\}$$

-

医下颌 医下颌

Definition $B \subseteq \Phi^+$ is **biclosed** if it satisfies the following two properties for all $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ for some a, b > 0: (Closed) If $\alpha \in B$ and $\beta \in B$, then $\gamma \in B$. (Coclosed) If $\alpha \notin B$ and $\beta \notin B$, then $\gamma \notin B$.

Biclosed sets in affine root systems

Definition $B \subseteq \Phi^+$ is **biclosed** if it satisfies the following two properties for all $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ for some a, b > 0: (Closed) If $\alpha \in B$ and $\beta \in B$, then $\gamma \in B$. (Coclosed) If $\alpha \notin B$ and $\beta \notin B$, then $\gamma \notin B$.

Biclosed sets in affine root systems

Root systems

Fix a symmetric bilinear form (-, -) on V. If $\alpha \in V$ is such that $(\alpha, \alpha) > 0$, then the reflection over α is the linear map

$$t_{\alpha}: V \to V$$

 $\beta \mapsto \beta - 2 \frac{(\alpha, \beta)}{(\alpha, \alpha)} \alpha.$

Let $\alpha_1, \ldots, \alpha_n$ be a basis for V (call these simple roots). We assume $(\alpha_i, \alpha_i) > 0$.

Definition

A subset Φ of V is called a (real) **root system** if the following hold:

Biclosed sets in affine root systems

Definition

A subset Φ of V is called a (real) **root system** if the following hold:

1.
$$\{\alpha_1, \ldots, \alpha_n\} \subseteq \Phi$$

2. If $\alpha, \beta \in \Phi$, then $(\alpha, \alpha) > 0$ and $t_{\alpha}\beta \in \Phi$.
3. If $\alpha = \sum_{i=1}^n a_i \alpha_i \in \Phi$, then either $a_i \in \mathbb{Z}_{\geq 0}$ for all *i*, or $a_i \in \mathbb{Z}_{\leq 0}$ for all *i*.

Biclosed sets in affine root systems

Grant Barkley and David Speyer

э

▶ ∢ ⊒ ▶

Definition

A subset Φ of V is called a (real) **root system** if the following hold:

The **positive roots** $\Phi^+ \subset \Phi$ are the roots for which $a_i \ge 0$.

э

글 🖌 🔺 글 🕨

Definition

A subset Φ of V is called a (real) **root system** if the following hold:

1.
$$\{\alpha_1, \ldots, \alpha_n\} \subseteq \Phi$$

2. If $\alpha, \beta \in \Phi$, then $(\alpha, \alpha) > 0$ and $t_{\alpha}\beta \in \Phi$.
3. If $\alpha = \sum_{i=1}^n a_i \alpha_i \in \Phi$, then either $a_i \in \mathbb{Z}_{\geq 0}$ for all *i*, or $a_i \in \mathbb{Z}_{\leq 0}$ for all *i*.

The **positive roots** $\Phi^+ \subset \Phi$ are the roots for which $a_i \ge 0$. The **Coxeter arrangement** is the set of hyperplanes dual to vectors in Φ .

- 3 b - 4 3 b

Definition

A subset Φ of V is called a (real) **root system** if the following hold:

1.
$$\{\alpha_1, \ldots, \alpha_n\} \subseteq \Phi$$

2. If $\alpha, \beta \in \Phi$, then $(\alpha, \alpha) > 0$ and $t_{\alpha}\beta \in \Phi$.
3. If $\alpha = \sum_{i=1}^n a_i \alpha_i \in \Phi$, then either $a_i \in \mathbb{Z}_{\geq 0}$ for all i , or $a_i \in \mathbb{Z}_{\leq 0}$ for all i .

The **positive roots** $\Phi^+ \subset \Phi$ are the roots for which $a_i \ge 0$. The **Coxeter arrangement** is the set of hyperplanes dual to vectors in Φ . The **Weyl group** *W* is the subgroup of *GL*(*V*) generated by $\{t_\alpha : \alpha \in \Phi\}$.

Definition

The Weyl group W of Φ is the subgroup of GL(V) generated by $\{t_{\alpha} : \alpha \in \Phi\}$.

The reflections $S = \{t_{\alpha_1}, \ldots, t_{\alpha_n}\}$ already generate W; they are called **simple generators**. The pair (W, S) (turns out to be) a **Coxeter system**.

Definition

Given $w \in W$, the **inversion set** of w is

$$N(w) \coloneqq \{ \alpha \in \Phi^+ \mid w^{-1} \alpha \notin \Phi^+ \}.$$

The weak order on W is the partial order such that $v \le w$ iff $N(v) \subseteq N(w)$.

Biclosed sets in affine root systems

イロト イポト イヨト ・ヨー

The weak order on S_3

The Weyl group of the A_2 root system is S_3 .

Biclosed sets in affine root systems

Theorem (Dyer [2])

If Φ is a root system, then the inversion sets N(w) for $w \in W$ are exactly the *finite* biclosed sets in Φ^+ . If Φ is finite, then these are in bijection with the regions of the Coxeter arrangement.

Grant Barkley and David Speyer

Example: The type \widetilde{A}_1 root system

Set $\delta = \alpha_1 + \alpha_2$. The following is a root system¹, the "affine A_1 root system".

 $\Phi = \{\alpha_1 + n\delta, \alpha_2 + n\delta \mid n \in \mathbb{Z}\}.$

The Weyl group of Φ is isomorphic to $\mathbb{Z}/2 * \mathbb{Z}/2$, generated by the two elements $a := t_{\alpha_1}$ and $b := t_{\alpha_2}$.

¹using a bilinear form such that $(\alpha_1, \alpha_2) = -\sqrt{(\alpha_1, \alpha_1)(\alpha_2, \alpha_2)} = 1$ Biclosed sets in affine root systems Grant Barkley and David Speyer Example: The type \widetilde{A}_1 root system

Biclosed sets in affine root systems

Comparison of weak orders

Biclosed sets in affine root systems

Grant Barkley and David Speyer

★ E ► ★ E ►

< • • • **6**

Comparison of weak orders

Theorem (Björner–Edelman–Ziegler, Björner)

Weak order on W is a lattice if and only if W (or Φ) is finite. In general, weak order is a **meet-semilattice**.

Comparison of weak orders

Theorem (Björner–Edelman–Ziegler, Björner)

Weak order on W is a lattice if and only if W (or Φ) is finite. In general, weak order is a **meet-semilattice**.

What happened to the top half of the Hasse diagram for A_1 ?

∃ ► < ∃ ►</p>

Extended weak order

Definition

The **extended weak order** on W is the poset of *all* biclosed sets under inclusion.

(E)

Extended weak order

Definition

The **extended weak order** on W is the poset of *all* biclosed sets under inclusion.

Now we have a lattice! Even a complete lattice!

Biclosed sets in affine root systems

Grant Barkley and David Speyer

∃ ► < ∃ ►</p>

Is extended weak order always a lattice?

Biclosed sets in affine root systems

Grant Barkley and David Speyer

★ ∃ ► < ∃ ►</p>

Is extended weak order always a lattice?

That's a good question.

Biclosed sets in affine root systems

Grant Barkley and David Speyer

∃ ► < ∃ ►</p>

That's a good question.

Conjecture (Dyer [2])

Extended weak order is always a lattice.

Biclosed sets in affine root systems

Grant Barkley and David Speyer

That's a good question.

Conjecture (Dyer [2]) Extended weak order is always a lattice.

One of our goals is to solve this conjecture.

Biclosed sets in affine root systems

Conjecture (Dyer [2])

For any root system Φ , extended weak order is a complete lattice.

Biclosed sets in affine root systems

Grant Barkley and David Speyer

∃ ► < ∃ ►</p>

Conjecture (Dyer [2])

For any root system Φ , extended weak order is a complete lattice.

Theorem (Björner [1])

The finite biclosed sets (i.e. the weak order) in any root system form a meet-semilattice.

∃ ► < ∃ ►</p>

Grant Barkley and David Speyer

Biclosed sets in affine root systems

Conjecture (Dyer [2])

For any root system Φ , extended weak order is a complete lattice.

Theorem (Björner [1])

The finite biclosed sets (i.e. the weak order) in any root system form a meet-semilattice.

Theorem (Wang [3])

The rank 3 affine root systems $(\widetilde{A}_2, \widetilde{C}_2, \widetilde{G}_2)$ satisfy Dyer's conjecture.

An affine root system Φ is a root system where there is a unique nonzero vector $\delta \in V$ (up to rescaling) such that $(\delta, \delta) = 0$. This is the "least infinite" type of infinite root system. If Φ is affine, then there is a finite root system Φ_0 such that

$$\Phi = \{ \alpha + n\delta \mid \alpha \in \Phi_0, \ n \in \mathbb{Z} \}.$$

Grant Barkley and David Speyer

4 3 4 3 4

An **affine root system** Φ is a root system where there is a unique nonzero vector $\delta \in V$ (up to rescaling) such that $(\delta, \delta) = 0$. This is the "least infinite" type of infinite root system. If Φ is affine, then there is a finite root system Φ_0 such that

$$\Phi = \{ \alpha + n\delta \mid \alpha \in \Phi_0, \ n \in \mathbb{Z} \}.$$

Theorem (B.–Speyer)

Biclosed sets in Φ^+ have "asymptotic behavior" which is parametrized by faces of the Coxeter arrangement of Φ_0 .

An **affine root system** Φ is a root system where there is a unique nonzero vector $\delta \in V$ (up to rescaling) such that $(\delta, \delta) = 0$. This is the "least infinite" type of infinite root system. If Φ is affine, then there is a finite root system Φ_0 such that

$$\Phi = \{ \alpha + n\delta \mid \alpha \in \Phi_0, \ n \in \mathbb{Z} \}.$$

Theorem (B.–Speyer)

Biclosed sets in Φ^+ have "asymptotic behavior" which is parametrized by faces of the Coxeter arrangement of Φ_0 .

Theorem (B.–Speyer)

Biclosed sets in types $\widetilde{A}_n, \widetilde{B}_n, \widetilde{C}_n, \widetilde{D}_n$ ("classical affine types") have explicit combinatorial models in terms of orderings of the integers.

イロト 不得 トイヨト イヨト 二日

An **affine root system** Φ is a root system where there is a unique nonzero vector $\delta \in V$ (up to rescaling) such that $(\delta, \delta) = 0$. This is the "least infinite" type of infinite root system. If Φ is affine, then there is a finite root system Φ_0 such that

$$\Phi = \{ \alpha + n\delta \mid \alpha \in \Phi_0, \ n \in \mathbb{Z} \}.$$

Theorem (B.–Speyer)

Biclosed sets in Φ^+ have "asymptotic behavior" which is parametrized by faces of the Coxeter arrangement of Φ_0 .

Theorem (B.–Speyer)

Biclosed sets in types $\widetilde{A}_n, \widetilde{B}_n, \widetilde{C}_n, \widetilde{D}_n$ ("classical affine types") have explicit combinatorial models in terms of orderings of the integers.

Theorem (B.–Speyer)

When Φ is any affine root system, Dyer's conjecture is true: the extended weak order of W is a complete lattice.

Biclosed sets in affine root systems

A sample

Let S_{∞} denote the group of permutations of \mathbb{Z} which fix all but finitely many points. This is the Weyl group of a root system Φ in a countably-infinite dimensional space.

The weak order on S_∞ is not a complete lattice.

Example issue: Joining

$$\pi_0 = \dots, -3, -2, -1, \mathbf{0}, 1, 2, 3\dots$$

$$\pi_1 = \dots, -3, -2, \mathbf{0}, -1, 1, 2, 3\dots$$

$$\pi_2 = \dots, -3, \mathbf{0}, -2, -1, 1, 2, 3\dots$$

$$\pi_3 = \dots, \mathbf{0}, -3, -2, -1, 1, 2, 3\dots$$

gives us an object in which 0 is inverted with all negative integers. We might expect this to look like

$$0, \ldots, -3, -2, -1, 1, 2, 3, \ldots$$

Grant Barkley and David Speyer

イロト イポト イヨト イヨト 三日

A sample

Let S_{∞} denote the group of permutations of \mathbb{Z} which fix all but finitely many points. This is the Weyl group of a root system Φ in a countably-infinite dimensional space.

The weak order on S_∞ is not a complete lattice.

Example issue: Joining

$$\pi_0 = \dots, -3, -2, -1, \mathbf{0}, 1, 2, 3\dots$$

$$\pi_1 = \dots, -3, -2, \mathbf{0}, -1, 1, 2, 3\dots$$

$$\pi_2 = \dots, -3, \mathbf{0}, -2, -1, 1, 2, 3\dots$$

$$\pi_3 = \dots, \mathbf{0}, -3, -2, -1, 1, 2, 3\dots$$

gives us an object in which 0 is inverted with all negative integers. We might expect this to look like

$$0, \ldots, -3, -2, -1, 1, 2, 3, \ldots$$

This isn't a permutation!

Biclosed sets in affine root systems

Grant Barkley and David Speyer

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

A sample

Let S_{∞} denote the group of permutations of \mathbb{Z} which fix all but finitely many points. This is the Weyl group of a root system Φ in a countably-infinite dimensional space.

The weak order on S_∞ is not a complete lattice.

Example issue: Joining

$$\pi_{0} = \dots, -3, -2, -1, \mathbf{0}, 1, 2, 3\dots$$

$$\pi_{1} = \dots, -3, -2, \mathbf{0}, -1, 1, 2, 3\dots$$

$$\pi_{2} = \dots, -3, \mathbf{0}, -2, -1, 1, 2, 3\dots$$

$$\pi_{3} = \dots, \mathbf{0}, -3, -2, -1, 1, 2, 3\dots$$

gives us an object in which 0 is inverted with all negative integers. We might expect this to look like

$$0, \ldots, -3, -2, -1, 1, 2, 3, \ldots$$

This isn't a permutation! But it is an ordering of the integers.

Proposition

Biclosed sets for S_{∞} can be identified with total orderings of \mathbb{Z} . The extended weak order of S_{∞} becomes the "weak order" on total orders of \mathbb{Z} .

Grant Barkley and David Speyer

∃ ► < ∃ ►</p>

Proposition

Biclosed sets for S_{∞} can be identified with total orderings of \mathbb{Z} . The extended weak order of S_{∞} becomes the "weak order" on total orders of \mathbb{Z} .

Proposition

The extended weak order on S_{∞} is a complete lattice.

Proposition

Biclosed sets for S_{∞} can be identified with total orderings of \mathbb{Z} . The extended weak order of S_{∞} becomes the "weak order" on total orders of \mathbb{Z} .

Proposition

The extended weak order on S_{∞} is a complete lattice.

Try this one at home!

Biclosed sets in affine root systems

Grant Barkley and David Speyer

э

< 3 > 4 3 > -

Thank you!

Biclosed sets in affine root systems

Grant Barkley and David Speyer

э

< 注 > < 注 >

< □ > < 向

Questions and conjectures

Question

In finite Coxeter groups, the weak order is a **semidistributive** lattice (elements have canonical join and meet factorizations into irreducible elements).

Does the analogous statement hold for extended weak order?

Problem

Use the extended weak order to construct extended **Cambrian lattices** and **frameworks** for affine type cluster algebras.

Conjecture (Dyer [2])

If B is a biclosed set in Φ_+ , then there is a **reflection order** \prec on Φ_+ such that B is an order ideal for \prec .

And of course, it remains to answer Dyer's lattice conjecture for any Coxeter group!

Bibliography

Anders Bjorner.

ORDERINGS OF COXETER GROUPS.

Contemporary Mathematics, 1984.

Matthew Dyer.

On the Weak Order of Coxeter Groups.

Canadian Journal of Mathematics, 71(2):299–336, apr 2019.

W. Wang.

Infinite reduced words, lattice property and braid graph of affine Weyl groups.

Journal of Algebra, 536:170-214, mar 2019.

ヨトイヨト