The hypersimplex and the $m=2$ amplituhedron

Melissa Sherman-Bennett
University of Michigan \rightarrow MIT
joint work with Matteo Parisi and Lauren Williams arXiv:2104.08254

July 22, 2022

Totally nonnegative Grassmannian

$$
0<k<n,[n]:=\{1, \ldots, n\},\binom{[n]}{k}=\{I \subset[n]:|I|=k\} .
$$

- $G r_{k, n}:=\left\{V \subset \mathbb{R}^{n}: \operatorname{dim} V=k\right\}$
- $V \in G r_{k, n} \rightsquigarrow$ full rank $k \times n$ matrix A whose rows span V
- $I \in\binom{[n]}{k}$. Plücker coordinate $P_{I}(V)=$ max'l minor of A located in column set l.
- Lusztig, Postnikov: Totally nonnegative (TNN) Grassmannian

- Choose $\mathcal{M} \subset\binom{[n]}{k}$.
$S_{\mathcal{M}}=\left\{V \in G_{k, n}^{>0}: P_{I}(V)>0\right.$ if and only if $\left./ \in \mathcal{M}\right\}$
If $S_{\mathcal{M}} \neq \emptyset, \mathcal{M}$ is a positroid and $S_{\mathcal{M}}$ is a positroid cell.

positroids

Totally nonnegative Grassmannian

$$
0<k<n,[n]:=\{1, \ldots, n\},\binom{[n]}{k}=\{I \subset[n]:|I|=k\} .
$$

- $G r_{k, n}:=\left\{V \subset \mathbb{R}^{n}: \operatorname{dim} V=k\right\}$
- $V \in G r_{k, n} \rightsquigarrow$ full rank $k \times n$ matrix A whose rows span V
- $I \in\binom{[n]}{k}$. Plücker coordinate $P_{l}(V)=$ max'l minor of A located in column set l.
- Lusztig, Postnikov: Totally nonnegative (TNN) Grassmannian

$$
G r_{k, n}^{\geq 0}=\left\{V \in G r_{k, n}: P_{l}(V) \geq 0 \text { for all } I\right\} .
$$

- Choose $\mathcal{M} \subset\binom{[n]}{k}$.
\square

Totally nonnegative Grassmannian

$$
0<k<n,[n]:=\{1, \ldots, n\},\binom{[n]}{k}=\{I \subset[n]:|I|=k\} .
$$

- $G r_{k, n}:=\left\{V \subset \mathbb{R}^{n}: \operatorname{dim} V=k\right\}$
- $V \in G r_{k, n} \rightsquigarrow$ full rank $k \times n$ matrix A whose rows span V
- $I \in\binom{[n]}{k}$. Plücker coordinate $P_{I}(V)=$ max'l minor of A located in column set l.
- Lusztig, Postnikov: Totally nonnegative (TNN) Grassmannian

$$
G r_{k, n}^{\geq 0}=\left\{V \in G r_{k, n}: P_{l}(V) \geq 0 \text { for all } I\right\} .
$$

- Choose $\mathcal{M} \subset\binom{[n]}{k}$.

$$
S_{\mathcal{M}}=\left\{V \in G r_{k, n}^{\geq 0}: P_{l}(V)>0 \text { if and only if } I \in \mathcal{M}\right\}
$$

If $S_{\mathcal{M}} \neq \emptyset, \mathcal{M}$ is a positroid and $S_{\mathcal{M}}$ is a positroid cell.

Totally nonnegative Grassmannian

$$
0<k<n,[n]:=\{1, \ldots, n\},\binom{[n]}{k}=\{I \subset[n]:|I|=k\} .
$$

- $G r_{k, n}:=\left\{V \subset \mathbb{R}^{n}: \operatorname{dim} V=k\right\}$
- $V \in G r_{k, n} \rightsquigarrow$ full rank $k \times n$ matrix A whose rows span V
- $I \in\binom{[n]}{k}$. Plücker coordinate $P_{I}(V)=$ max'l minor of A located in column set l.
- Lusztig, Postnikov: Totally nonnegative (TNN) Grassmannian

$$
G r_{k, n}^{\geq 0}=\left\{V \in G r_{k, n}: P_{l}(V) \geq 0 \text { for all } I\right\} .
$$

- Choose $\mathcal{M} \subset\binom{[n]}{k}$.

$$
S_{\mathcal{M}}=\left\{V \in G r_{k, n}^{\geq 0}: P_{l}(V)>0 \text { if and only if } I \in \mathcal{M}\right\} .
$$

If $S_{\mathcal{M}} \neq \emptyset, \mathcal{M}$ is a positroid and $S_{\mathcal{M}}$ is a positroid cell.

$$
G r_{k, n}^{\geq 0}=\bigsqcup_{\text {positroids }} S_{\mathcal{M}}
$$

Overview

Moment map:

$$
m=2 \text { amplituhedron map: }
$$

$$
\begin{aligned}
G r_{k, n}^{\geq 0} \xrightarrow{\tilde{z}} & G r_{k, k+2} \\
{[A] \longmapsto } & \longmapsto A Z]
\end{aligned}
$$

- Hypersimplex

$$
\Delta_{k+1, n}:=\mu\left(G r_{k+1, n}^{\geq 0}\right)
$$

e.g.

- Amplituhedron (Arkani-Hamed $\underset{\substack{\text { Trnka }}}{\substack{\text { and } \\ \text { - }}}$

$$
\mathcal{A}_{n, k, 2}^{Z}:=\tilde{Z}\left(G r_{k, n}^{\geq 0}\right)
$$

e.g.

$$
A_{4,1,2} \subseteq G r_{1,3} \simeq \mathbb{P}^{2}
$$

$$
\overbrace{z_{4}}^{z_{1}} z_{z_{3}}^{z_{2}}
$$

Overview

Moment map: $m=2$ amplituhedron map:
$G r_{k+1, n}^{\geq 0} \xrightarrow{\mu} \mathbb{R}^{n}$
$V \longmapsto \frac{1}{a} \sum\left|P_{I}(V)\right|^{2} e_{I}$

$$
\begin{gathered}
G r_{k, n}^{\geq 0} \xrightarrow{\tilde{z}} G r_{k, k+2} \\
{[A] \longmapsto[A Z]}
\end{gathered}
$$

- Hypersimplex

$$
\Delta_{k+1, n}:=\mu\left(G r_{k+1, n}^{\geq 0}\right)
$$

- Positroid polytope

$$
\Gamma_{\mathcal{M}}:=\mu\left(\overline{S_{\mathcal{M}}}\right)
$$

- Amplituhedron (Arkani-Hamed $\underset{\text { Trnka }}{\substack{\text { a }}}$

$$
\mathcal{A}_{n, k, 2}^{Z}:=\tilde{Z}\left(G r_{k, n}^{\geq 0}\right)
$$

- Grasstope

$$
Z_{\mathcal{N}}:=\tilde{Z}\left(\overline{S_{\mathcal{N}}}\right)
$$

Overview

Moment map:
$m=2$ amplituhedron map:

$$
\begin{aligned}
G r_{k+1, n}^{\geq 0} & \mu \\
V \longmapsto & \mathbb{R}^{n} \\
V & \frac{1}{a} \sum\left|P_{l}(V)\right|^{2} e_{l}
\end{aligned}
$$

$$
\begin{gathered}
G r_{k, n}^{\geq 0} \xrightarrow{\tilde{z}} G r_{k, k+2} \\
{[A] \longmapsto[A Z]}
\end{gathered}
$$

- Hypersimplex

$$
\Delta_{k+1, n}:=\mu\left(G r_{k+1, n}^{\geq 0}\right)
$$

- Hypersimplex tile: full-dim'l $\Gamma_{\mathcal{M}}$ s.t. μ injective on $S_{\mathcal{M}}$
- Amplituhedron (Arkani-Hamed $\underset{\text { Trnka }}{\substack{\text { and }}}$

$$
\mathcal{A}_{n, k, 2}^{Z}:=\tilde{Z}\left(G r_{k, n}^{\geq 0}\right)
$$

- Amplituhedron tile: full-dim'l $Z_{\mathcal{N}}$ s.t. \tilde{Z} injective on $S_{\mathcal{N}}$

Overview

Moment map: $m=2$ amplituhedron map:

$$
G r_{k+1, n}^{\geq 0} \xrightarrow{\mu} \mathbb{R}^{n}
$$

$$
V \longmapsto \frac{1}{a} \sum\left|P_{l}(V)\right|^{2} e_{l}
$$

$$
\begin{gathered}
G r_{k, n}^{\geq 0} \xrightarrow{\tilde{z}} G r_{k, k+2} \\
{[A] \longmapsto[A Z]}
\end{gathered}
$$

- Hypersimplex

$$
\Delta_{k+1, n}:=\mu\left(G r_{k+1, n}^{\geq 0}\right)
$$

- Hypersimplex tile: full-dim'l $\Gamma_{\mathcal{M}}$ s.t. μ injective on $S_{\mathcal{M}}$
- Positroid "tilings"

$$
\Delta_{k+1, n}=\bigcup \Gamma_{\mathcal{M}}
$$

- Amplituhedron (Arkani-Hamed)

$$
\mathcal{A}_{n, k, 2}^{Z}:=\tilde{Z}\left(G r_{k, n}^{\geq 0}\right)
$$

- Amplituhedron tile: full-dim'l $Z_{\mathcal{N}}$ s.t. \tilde{Z} injective on $S_{\mathcal{N}}$
- Positroid "tilings"

$$
\mathcal{A}_{n, k, 2}^{z}=\bigcup Z_{\mathcal{N}}
$$

Motivation

Conjecture (LPW '20)

(1) There is a bijection ("T-duality")

$$
\Gamma_{\mathcal{M}} \mapsto Z_{\widehat{\mathcal{M}}}
$$

between positroid tiles for $\Delta_{k+1, n}$ and positroid tiles for $\mathcal{A}_{n, k, 2}^{Z}$.
(2) $\left\{\Gamma_{\mathcal{M}}\right\}$ a positroid tiling of $\Delta_{k+1, n} \Longleftrightarrow\left\{Z_{\widehat{\mathcal{M}}}\right\}$ a positroid tiling of $\mathcal{A}_{n, k, 2}^{Z}$ for all Z.

Results

Theorem (Parisi-SB-Williams '21)

(1) "T-duality" is a bijection

$$
\Gamma_{\mathcal{M}} \mapsto Z_{\widehat{\mathcal{M}}}
$$

between positroid tiles for $\Delta_{k+1, n}$ and positroid tiles for $\mathcal{A}_{n, k, 2}^{Z}$.
(2) $\left\{\Gamma_{\mathcal{M}}\right\}$ a positroid tiling of $\Delta_{k+1, n} \Longleftrightarrow\left\{Z_{\widehat{\mathcal{M}}}\right\}$ a positroid tiling of $\mathcal{A}_{n, k, 2}^{Z}$ for all Z.

We also give

- Inequality description of tile $Z_{\widehat{\mathcal{M}}}$ which parallels inequality description of T -dual tile $\Gamma_{\mathcal{M}}$
- Decomposition of $\mathcal{A}_{n, k, 2}^{Z}$ into chambers enumerated by Eulerian numbers, "T-dual" to classical triangulation of $\Delta_{k+1, n}$.

Results

Theorem (Parisi-SB-Williams '21)

(1) "T-duality" is a bijection

$$
\Gamma_{\mathcal{M}} \mapsto Z_{\widehat{\mathcal{M}}}
$$

between positroid tiles for $\Delta_{k+1, n}$ and positroid tiles for $\mathcal{A}_{n, k, 2}^{Z}$.
(2) $\left\{\Gamma_{\mathcal{M}}\right\}$ a positroid tiling of $\Delta_{k+1, n} \Longleftrightarrow\left\{Z_{\widehat{\mathcal{M}}}\right\}$ a positroid tiling of $\mathcal{A}_{n, k, 2}^{Z}$ for all Z.

We also give

- Inequality description of tile $Z_{\widehat{\mathcal{M}}}$ which parallels inequality description of T-dual tile $\Gamma_{\mathcal{M}}$.
- Decomposition of $\mathcal{A}_{n, k, 2}^{Z}$ into chambers enumerated by Eulerian numbers, "T-dual" to classical triangulation of $\Delta_{k+1, n}$.

Positroid tiles for $\mathcal{A}_{n, k, 2}^{Z}$

Theorem (PSBW)

(1) Positroid tiles are in bijection with properly bicolored subdivisions of an n-gon P_{n} with area k.
(2) Each non-crossing diagonal gives a linear inequality satisfied by $\Gamma_{\mathcal{M}}$ and $Z_{\widehat{\mathcal{M}}}$.

k	0	1	2	3	4	5
n	1					
3	1	1				
4	1	4	1			
5	1	10	10	1		
6	1	20	48	20	1	
7	1	35	161	161	35	1

$\#$ of positroid tiles for $\mathcal{A}_{n, k, 2}^{Z}$ and $\Delta_{k+1, n}$

Positroid tilings of $\mathcal{A}_{n, k, 2}^{Z}$ from $\Delta_{k+1, n}$

Theorem (PSBW '20)
$\left\{\Gamma_{\mathcal{M}}\right\}$ a positroid tiling of $\Delta_{k+1, n} \Longleftrightarrow\left\{Z_{\widehat{\mathcal{M}}}\right\}$ a positroid tiling of $\mathcal{A}_{n, k, 2}^{Z}$ for all Z.

Positroid tilings of $\mathcal{A}_{n, k, 2}^{Z}$ from $\Delta_{k+1, n}$

Theorem (PSBW '20)
$\left\{\Gamma_{\mathcal{M}}\right\}$ a positroid tiling of $\Delta_{k+1, n} \Longleftrightarrow\left\{Z_{\widehat{\mathcal{M}}}\right\}$ a positroid tiling of $\mathcal{A}_{n, k, 2}^{Z}$ for all Z.

Proof technique: take simultaneous refinement of all positroid tilings on both sides and match up the pieces.

Thanks for listening!

arXiv:2104.08254

T-duality

Positroids of type (k, n) are in bijection with (decorated) permutations:

$$
C=\begin{array}{cccc}
{\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
C_{1} & C_{2} & \ldots & C_{n} \\
\mid & \mid & & \mid
\end{array}\right] \in S_{\mathcal{M}} .} \\
\pi_{\mathcal{M}}: i \mapsto j
\end{array}
$$

where C_{j} is the first column such that $C_{i} \in \operatorname{span}\left\{C_{i+1}, \ldots, C_{j}\right\}$.

T-duality

Positroids of type (k, n) are in bijection with (decorated) permutations:

$$
C=\begin{array}{cccc}
{\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
C_{1} & C_{2} & \ldots & C_{n} \\
\mid & \mid & & \mid
\end{array}\right] \in S_{\mathcal{M}} .} \\
\pi_{\mathcal{M}}: i \mapsto j
\end{array}
$$

where C_{j} is the first column such that $C_{i} \in \operatorname{span}\left\{C_{i+1}, \ldots, C_{j}\right\}$.
T-duality:

$$
\pi=\begin{array}{cccc}
1 & 2 & & n \\
\downarrow & \downarrow & \ldots & \downarrow \\
a_{1} & a_{2} & & a_{n}
\end{array} \quad \mapsto \quad \hat{\pi}=\begin{array}{cccc}
1 & 2 & & n \\
\downarrow & \downarrow & \ldots & \downarrow \\
a_{n} & a_{1} & & a_{n-1}
\end{array}
$$

Examples of $m=2$ amplituhedra

Z a $n \times(k+2)$ matrix with positive max'l minors.

$$
\tilde{Z}: G r_{k, n}^{\geq 0} \longrightarrow G r_{k, k+2} \quad \mathcal{A}_{n, k, 2}(Z):=\tilde{Z}\left(G r_{k, n}^{\geq 0}\right)
$$

$$
[A] \longmapsto[A Z]
$$

- $k+2=n: \mathcal{A}_{n, k, 2}^{Z} \cong G r_{k, n}^{\geq 0}$. Only one positroid tile.
- $k=1: \mathcal{A}_{n, k, 2}^{Z}=$ cyclic polygon with n vertices in \mathbb{P}^{2}. Positroid tiles are triangles.

$A_{6,1,2} \subseteq \mathbb{P}^{2}$
- (Bao-He): Give tilings of $\mathcal{A}_{n, k, 2}^{Z}$ via recursion.

Finer decomposition

- (Stanley, Sturmfels, Lam-Postnikov): Triangulation of $\Delta_{k+1, n}$ with max'l simplices indexed by permutations of $n-1$ with k descents.

$$
\Delta_{k+1, n}=\bigcup \Delta_{w}
$$

- Simultaneous refinement of all positroid tilings gives

$$
\mathcal{A}_{n, k, 2}^{z}=\bigcup \hat{\Delta}_{w}^{z}
$$

and as long as $\hat{\Delta}_{w}^{z} \neq \emptyset$,

$$
\Delta_{w} \subset \Gamma_{\mathcal{M}} \Longleftrightarrow \hat{\Delta}_{w}^{Z} \subset Z_{\hat{\mathcal{M}}}
$$

- Problem: $\hat{\Delta}_{w}^{Z}$ may be empty for some Z.
- However, for any w, can find Z so that $\hat{\Delta}_{w}^{Z} \neq \emptyset$.

