Blowup-polynomials and delta-matriods of graphs

Projesh Nath Choudhury Indian Institute of Science

(Joint with Apoorva Khare)

FPSAC-2022 IISc Bangalore

July 21, 2022

Distance matrices of graphs

By a graph, we will denote G=(V,E) with $V=\{1,\ldots,k\}$ the nodes, and $E\subseteq\binom{V}{2}$ the edges. (Finite, simple, unweighted, and connected.)

Distance matrices of graphs

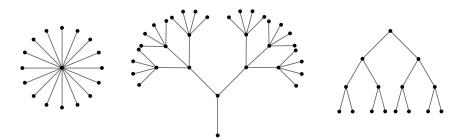
By a graph, we will denote G=(V,E) with $V=\{1,\ldots,k\}$ the nodes, and $E\subseteq\binom{V}{2}$ the edges. (Finite, simple, unweighted, and **connected**.)

- Between any two nodes v,w of G, there is a shortest path of integer length $d(v,w)\geqslant 0$ (i.e., d(v,w) edges).
- The distance matrix D_G is a $V \times V$ matrix with entries d(v, w).

Distance matrices of graphs

By a graph, we will denote G=(V,E) with $V=\{1,\ldots,k\}$ the nodes, and $E\subseteq\binom{V}{2}$ the edges. (Finite, simple, unweighted, and **connected**.)

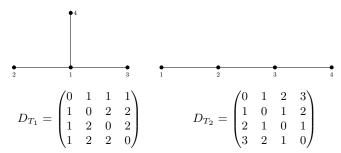
- Between any two nodes v, w of G, there is a shortest path of integer length $d(v, w) \geqslant 0$ (i.e., d(v, w) edges).
- The distance matrix D_G is a $V \times V$ matrix with entries d(v, w).
- Extensively studied quantity: the determinant of D_G for G a tree.



Algebraic fact: The Graham–Pollak result

Examples of distance matrices (on 4 nodes):

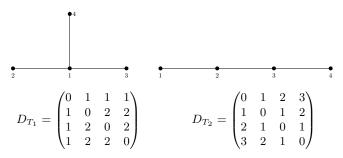
 T_1,T_2 are the star graph $K_{1,3}$ and the path graph P_4 , respectively.



Algebraic fact: The Graham-Pollak result

Examples of distance matrices (on 4 nodes):

 T_1, T_2 are the star graph $K_{1,3}$ and the path graph P_4 , respectively.

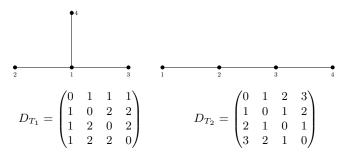


It turns out that both matrices have the same determinant. Remarkably, this holds for all trees:

Algebraic fact: The Graham-Pollak result

Examples of distance matrices (on 4 nodes):

 T_1, T_2 are the star graph $K_{1,3}$ and the path graph P_4 , respectively.



It turns out that both matrices have the same determinant. Remarkably, this holds for all trees:

Theorem (Graham-Pollak, Bell Sys. Tech. J., 1971)

Given a tree T on n nodes, $\det D_T = (-1)^{n-1} 2^{n-2} (n-1)$.

Analysis fact: co-spectral matrices

Also studied by Graham, with Lovász in [Adv. in Math. 1978].

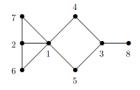
Question: Does the characteristic polynomial of D_G detect G?

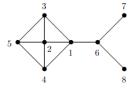
Analysis fact: co-spectral matrices

Also studied by Graham, with Lovász in [Adv. in Math. 1978].

Question: Does the characteristic polynomial of D_G detect G?

Answer: No – there exist graphs with the same number of vertices, and the same characteristic polynomial for D_G , which are **not** isomorphic. E.g.:





Thus, $\det(D_G - x \operatorname{Id}_V)$ does not detect the graph (up to isomorphism).

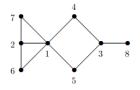
Inter-related Motivations/Goals:

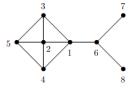
Analysis fact: co-spectral matrices

Also studied by Graham, with Lovász in [Adv. in Math. 1978].

Question: Does the characteristic polynomial of D_G detect G?

Answer: No – there exist graphs with the same number of vertices, and the same characteristic polynomial for D_G , which are **not** isomorphic. E.g.:





Thus, $\det(D_G - x \operatorname{Id}_V)$ does not detect the graph (up to isomorphism).

Inter-related Motivations/Goals:

- **1** Find a(nother) family $\{G_i : i \in I\}$ of graphs (e.g., trees on k vertices) such that $i \mapsto \det D_{G_i}$ is a "nice" function.
- ② Find an invariant of the matrix D_G which detects G (and is related to the distance spectrum eigenvalues of D_G).

Graph blowups

The key construction is of a graph blowup $G[\mathbf{n}]$, where $\mathbf{n} = (n_v)_{v \in V}$ is a V-tuple of positive integers. This is a finite simple connected graph $G[\mathbf{n}]$, with:

- n_v copies of the vertex $v \in V$, and
- a copy of vertex v and one of w are adjacent in $G[\mathbf{n}]$ if and only if $v \neq w$ and v, w are adjacent in G.

Example: Path graph $P_3 \cong P_2[(2,1)]$. a - b - c Blowup of an edge $P_2 = K_2$, with a,c = copies of one node.

Graph blowups

The key construction is of a graph blowup $G[\mathbf{n}]$, where $\mathbf{n}=(n_v)_{v\in V}$ is a V-tuple of positive integers. This is a finite simple connected graph $G[\mathbf{n}]$, with:

- n_v copies of the vertex $v \in V$, and
- a copy of vertex v and one of w are adjacent in $G[\mathbf{n}]$ if and only if $v \neq w$ and v, w are adjacent in G.

Example: Path graph $P_3 \cong P_2[(2,1)]$. a - b - c Blowup of an edge $P_2 = K_2$, with a, c = copies of one node.

More examples:

Star graph:
$$K_{1,n} \cong K_2[(1,n)]$$

4-cycle: $C_4 \cong K_2[(2,2)]$.

Suggestive example: Compute $\det D_{G[\mathbf{n}]}$ in all examples above:

$$\det D_{K_2[(r,s)]} = (-2)^{r+s-2}(3rs - 4r - 4s + 4).$$

Suggestive example: Compute $\det D_{G[\mathbf{n}]}$ in all examples above:

$$\det D_{K_2[(r,s)]} = (-2)^{r+s-2}(3rs - 4r - 4s + 4).$$

Contains: (i) an exponential factor in r + s, and

(ii) a polynomial in the sizes r, s.

Suggestive example: Compute $\det D_{G[\mathbf{n}]}$ in all examples above:

$$\det D_{K_2[(r,s)]} = (-2)^{r+s-2}(3rs - 4r - 4s + 4).$$

Contains: (i) an exponential factor in r + s, and

(ii) a polynomial in the sizes r, s.

Question: What is the determinant of $D_{G[n]}$ for general graphs G?

Suggestive example: Compute $\det D_{G[\mathbf{n}]}$ in all examples above:

$$\det D_{K_2[(r,s)]} = (-2)^{r+s-2} (3rs - 4r - 4s + 4).$$

Contains: (i) an exponential factor in r + s, and

(ii) a polynomial in the sizes r, s.

Question: What is the determinant of $D_{G[n]}$ for general graphs G?

Theorem (C.-Khare, 2021)

There exists a real polynomial $p_G(\mathbf{n})$ in the sizes n_v , such that:

$$\det D_{G[\mathbf{n}]} = (-2)^{\sum_{v} (n_v - 1)} p_G(\mathbf{n}), \qquad \mathbf{n} \in \mathbb{Z}_{>0}^V.$$

Moreover, p_G is multi-affine in \mathbf{n} , with constant term $(-2)^{|V|}$ and linear term $-(-2)^{|V|}\sum_{v\in V}n_v$. (In fact, have closed-form expression for every monomial.)

Suggestive example: Compute $\det D_{G[\mathbf{n}]}$ in all examples above:

$$\det D_{K_2[(r,s)]} = (-2)^{r+s-2}(3rs - 4r - 4s + 4).$$

Contains: (i) an exponential factor in r + s, and

(ii) a polynomial in the sizes r, s.

Question: What is the determinant of $D_{G[n]}$ for general graphs G?

Theorem (C.-Khare, 2021)

There exists a real polynomial $p_G(\mathbf{n})$ in the sizes n_v , such that:

$$\det D_{G[\mathbf{n}]} = (-2)^{\sum_{v} (n_v - 1)} p_G(\mathbf{n}), \qquad \mathbf{n} \in \mathbb{Z}_{>0}^V.$$

Moreover, p_G is multi-affine in \mathbf{n} , with constant term $(-2)^{|V|}$ and linear term $-(-2)^{|V|}\sum_{v\in V}n_v$. (In fact, have closed-form expression for every monomial.)

Definition: Define $p_G(\cdot)$ to be the *blowup-polynomial* of G.

This achieves Goal 1: the function $\overline{\mathbf{n} \mapsto \det D_{G[\mathbf{n}]}}$ is a "nice" function of \mathbf{n} , for all graphs G.

Suggestive example: Compute $\det D_{G[\mathbf{n}]}$ in all examples above:

$$\det D_{K_2[(r,s)]} = (-2)^{r+s-2}(3rs - 4r - 4s + 4).$$

Contains: (i) an exponential factor in r + s, and

(ii) a polynomial in the sizes r, s.

Question: What is the determinant of $D_{G[n]}$ for general graphs G?

Theorem (C.-Khare, 2021)

There exists a real polynomial $p_G(\mathbf{n})$ in the sizes n_v , such that:

$$\det D_{G[\mathbf{n}]} = (-2)^{\sum_{v} (n_v - 1)} p_G(\mathbf{n}), \qquad \mathbf{n} \in \mathbb{Z}_{>0}^V.$$

Moreover, p_G is multi-affine in \mathbf{n} , with constant term $(-2)^{|V|}$ and linear term $-(-2)^{|V|}\sum_{v\in V}n_v$. (In fact, have closed-form expression for every monomial.)

Definition: Define $p_G(\cdot)$ to be the *blowup-polynomial* of G.

This achieves Goal 1: the function $n \mapsto \det D_{G[n]}$ is a "nice" function of n, for all graphs G.

What about Goal 2 – can p_G recover G?

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_v \longleftrightarrow n_w$.

ullet Thus, the self-isometries/automorphisms of G determine the *symmetries* of p_G .

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_v \longleftrightarrow n_w$.

 Thus, the self-isometries/automorphisms of G determine the symmetries of p_G. Does this process work in reverse?

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_v \longleftrightarrow n_w$.

- ullet Thus, the self-isometries/automorphisms of G determine the *symmetries* of p_G . Does this process work in reverse?
- More strongly, does p_G recover G?

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_v \longleftrightarrow n_w$.

- ullet Thus, the self-isometries/automorphisms of G determine the *symmetries* of $p_G.$ Does this process work in reverse?
- More strongly, does p_G recover G?

Theorem (C.-Khare, 2021)

The symmetries of p_G coincide with the self-isometries of G. More strongly, the "purely quadratic" part of p_G , i.e. its "Hessian" $\mathcal{H}(p_G)$, recovers G.

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_v \longleftrightarrow n_w$.

- Thus, the self-isometries/automorphisms of G determine the symmetries of p_G. Does this process work in reverse?
- More strongly, does p_G recover G?

Theorem (C.-Khare, 2021)

The symmetries of p_G coincide with the self-isometries of G. More strongly, the "purely quadratic" part of p_G , i.e. its "Hessian" $\mathcal{H}(p_G)$, recovers G.

(Answers Goal 2.)

- The polynomial $u_{K_2}(n) = 3n^2 8n + 4 = (n-2)(3n-2)$.
- More generally: $u_{K_k}(n) = (n-2)^{k-1}(kn+n-2)$ also real rooted.

In fact, $u_G(n) := p_G(n, \dots, n)$ is always real-rooted. But much more is true – for p_G itself:

- The polynomial $u_{K_2}(n) = 3n^2 8n + 4 = (n-2)(3n-2)$.
- More generally: $u_{K_k}(n) = (n-2)^{k-1}(kn+n-2)$ also real rooted.

In fact, $u_G(n):=p_G(n,\ldots,n)$ is always real-rooted. But much more is true – for p_G itself:

Theorem (C.-Khare, 2021)

For all graphs G, the polynomial $p_G(\mathbf{z})$ is real-stable.

(I.e., if $\Im(z_j) > 0 \ \forall j \ \text{then} \ p(z_1, \ldots, z_k) \neq 0.$)

- The polynomial $u_{K_2}(n) = 3n^2 8n + 4 = (n-2)(3n-2)$.
- More generally: $u_{K_k}(n) = (n-2)^{k-1}(kn+n-2)$ also real rooted.

In fact, $u_G(n):=p_G(n,\dots,n)$ is always real-rooted. But much more is true – for p_G itself:

Theorem (C.-Khare, 2021)

For all graphs G, the polynomial $p_G(\mathbf{z})$ is real-stable.

(I.e., if
$$\Im(z_j) > 0 \ \forall j \ \text{then} \ p(z_1, \ldots, z_k) \neq 0.$$
)

Borcea and Brändén [Duke 2008, Ann. of Math. 2009, Invent. Math. 2009...]

- Provided far-reaching generalizations of the Laguerre–Pólya–Schur program on entire functions / multipliers / root-location / ...
- Proved longstanding conjectures of Johnson...

- The polynomial $u_{K_2}(n) = 3n^2 8n + 4 = (n-2)(3n-2)$.
- More generally: $u_{K_k}(n) = (n-2)^{k-1}(kn+n-2)$ also real rooted.

In fact, $u_G(n):=p_G(n,\dots,n)$ is always real-rooted. But much more is true – for p_G itself:

Theorem (C.-Khare, 2021)

For all graphs G, the polynomial $p_G(\mathbf{z})$ is real-stable. (I.e., if $\Im(z_i) > 0 \ \forall j$ then $p(z_1, \ldots, z_k) \neq 0$.)

Borcea and Brändén [Duke 2008, Ann. of Math. 2009, Invent. Math. 2009...]

- Provided far-reaching generalizations of the Laguerre–Pólya–Schur program on entire functions / multipliers / root-location / . . .
- Proved longstanding conjectures of Johnson...

Taken forward by Marcus-Spielman-Srivastava:

- Proved the Kadison-Singer conjecture. [Ann. of Math. 2015]
- Existence of bipartite Ramanujan graphs of all degrees and orders proved conjectures of Bilu–Linial and Lubotzky. [Ann. of Math. 2015]

Recall from above (with |V|=k) that $p_G(\mathbf{z})$ has constant term $(-2)^k$ and linear term $-(-2)^k\sum_{j=1}^k z_j$.

Thus, the real-stable polynomial p_G does not satisfy two further properties:

- **1** The coefficients are not all of the same sign. [Can consider $p_G(-\mathbf{z})$.]
- 2 p_G is not homogeneous. [Can consider $z_0^k p_G(z_0^{-1} \mathbf{z})$.]

Recall from above (with |V|=k) that $p_G(\mathbf{z})$ has constant term $(-2)^k$ and linear term $-(-2)^k\sum_{j=1}^k z_j$.

Thus, the real-stable polynomial p_G does not satisfy two further properties:

- ① The coefficients are not all of the same sign. [Can consider $p_G(-\mathbf{z})$.]
- 2 p_G is not homogeneous. [Can consider $z_0^k p_G(z_0^{-1} \mathbf{z})$.]

Stable polynomials with these properties were studied (in broader settings) by:

- Borcea-Brändén-Liggett [J. Amer. Math. Soc. 2009] strongly Rayleigh distributions/polynomials;
- 2 Brändén-Huh [Ann. of Math. 2020] Lorentzian polynomials; Anari-OveisGharan-Vinzant [2018] – completely log-concave polynomials; Gurvits [Adv. Combin. Math. 2009] – strongly log-concave polynomials.

Recall from above (with |V|=k) that $p_G(\mathbf{z})$ has constant term $(-2)^k$ and linear term $-(-2)^k\sum_{j=1}^k z_j$.

Thus, the real-stable polynomial p_G does not satisfy two further properties:

- ① The coefficients are not all of the same sign. [Can consider $p_G(-\mathbf{z})$.]
- 2 p_G is not homogeneous. [Can consider $z_0^k p_G(z_0^{-1}\mathbf{z})$.]

Stable polynomials with these properties were studied (in broader settings) by:

- Sorcea-Brändén-Liggett [J. Amer. Math. Soc. 2009] strongly Rayleigh distributions/polynomials;
- Brändén-Huh [Ann. of Math. 2020] Lorentzian polynomials; Anari-OveisGharan-Vinzant [2018] - completely log-concave polynomials; Gurvits [Adv. Combin. Math. 2009] - strongly log-concave polynomials.

Question: If we homogenize p_G at -1, for which graphs G does this yield a real-stable/Lorentzian polynomial? Or, when are all coefficients of same sign?

Recall from above (with |V|=k) that $p_G(\mathbf{z})$ has constant term $(-2)^k$ and linear term $-(-2)^k\sum_{i=1}^k z_i$.

Thus, the real-stable polynomial p_G does not satisfy two further properties:

- **1** The coefficients are not all of the same sign. [Can consider $p_G(-\mathbf{z})$.]
- ② p_G is not homogeneous. [Can consider $z_0^k p_G(z_0^{-1} \mathbf{z})$.]

Stable polynomials with these properties were studied (in broader settings) by:

- Borcea-Brändén-Liggett [J. Amer. Math. Soc. 2009] strongly Rayleigh distributions/polynomials;
- Brändén-Huh [Ann. of Math. 2020] Lorentzian polynomials; Anari-OveisGharan-Vinzant [2018] – completely log-concave polynomials; Gurvits [Adv. Combin. Math. 2009] – strongly log-concave polynomials.

Question: If we homogenize p_G at -1, for which graphs G does this yield a real-stable/Lorentzian polynomial? Or, when are all coefficients of same sign?

Our next result characterizes the graphs for which this holds:

Theorem (C.-Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$\widetilde{p}_G(z_0, z_1, \dots, z_k) := (-z_0)^k p_G\left(\frac{z_1}{-z_0}, \dots, \frac{z_k}{-z_0}\right) \in \mathbb{R}[z_0, z_1, \dots, z_k].$$

The following are equivalent:

Theorem (C.-Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$\widetilde{p}_G(z_0, z_1, \dots, z_k) := (-z_0)^k p_G\left(\frac{z_1}{-z_0}, \dots, \frac{z_k}{-z_0}\right) \in \mathbb{R}[z_0, z_1, \dots, z_k].$$

The following are equivalent:

- **1** The homogenized polynomial $\widetilde{p}_G(z_0, z_1, \ldots, z_k)$ is real-stable.
- 2 $\widetilde{p}_G(\cdot)$ has all coefficients non-negative (i.e., of the monomials $z_0^{k-|J|}\prod_{j\in J}z_j$).

Theorem (C.-Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$\widetilde{p}_G(z_0, z_1, \dots, z_k) := (-z_0)^k p_G\left(\frac{z_1}{-z_0}, \dots, \frac{z_k}{-z_0}\right) \in \mathbb{R}[z_0, z_1, \dots, z_k].$$

The following are equivalent:

- **1** The homogenized polynomial $\widetilde{p}_G(z_0, z_1, \ldots, z_k)$ is real-stable.
- 2 $\widetilde{p}_G(\cdot)$ has all coefficients non-negative (i.e., of the monomials $z_0^{k-|J|}\prod_{i\in J}z_i$).
- $(-1)^k p_G(-1,\ldots,-1) > 0$, and the normalized "reflected" polynomial

$$q_G:(z_1,\ldots,z_k) \mapsto \frac{p_G(-z_1,\ldots,-z_k)}{p_G(-1,\ldots,-1)}$$

is strongly Rayleigh, i.e., q_G is real-stable, has non-negative coefficients (of all monomials $\prod_{j\in J} z_j$), and these sum up to 1.

Theorem (C.-Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$\widetilde{p}_G(z_0,z_1,\ldots,z_k):=(-z_0)^kp_G\left(rac{z_1}{-z_0},\ldots,rac{z_k}{-z_0}
ight)\in\mathbb{R}[z_0,z_1,\ldots,z_k].$$

The following are equivalent:

- **1** The homogenized polynomial $\widetilde{p}_G(z_0, z_1, \ldots, z_k)$ is real-stable.
- 2 $\widetilde{p}_G(\cdot)$ has all coefficients non-negative (i.e., of the monomials $z_0^{k-|J|}\prod_{i\in J}z_j$).
- $(-1)^k p_G(-1,\ldots,-1) > 0$, and the normalized "reflected" polynomial

$$q_G:(z_1,\ldots,z_k) \mapsto \frac{p_G(-z_1,\ldots,-z_k)}{p_G(-1,\ldots,-1)}$$

is strongly Rayleigh, i.e., q_G is real-stable, has non-negative coefficients (of all monomials $\prod_{i \in I} z_i$), and these sum up to 1.

4 G is a complete multipartite graph.

Novel characterization of a class of graphs, via real-stability.

Matroids

A *matroid* is a notion common to linear algebra and graph theory (among other areas):

- **1** A finite set *E* (called the *ground set*);
- ② A nonempty family of subsets $\mathcal{F} \subseteq 2^E$ called the *independent* sets closed under taking subsets + under "exchange axiom".

Matroids

A *matroid* is a notion common to linear algebra and graph theory (among other areas):

- \bigcirc A finite set E (called the *ground set*);
- ② A nonempty family of subsets $\mathcal{F} \subseteq 2^E$ called the *independent* sets closed under taking subsets + under "exchange axiom".

Examples:

- ullet Free matroid: All subsets of E.
- **2** *Uniform matroid:* All subsets of E of size $\leq k$ (for fixed k).

Matroids

A *matroid* is a notion common to linear algebra and graph theory (among other areas):

- \bullet A finite set E (called the *ground set*);
- ② A nonempty family of subsets $\mathcal{F} \subseteq 2^E$ called the *independent* sets closed under taking subsets + under "exchange axiom".

Examples:

- lacktriangle Free matroid: All subsets of E.
- 2 Uniform matroid: All subsets of E of size $\leq k$ (for fixed k).
- 3 E= finite subset of vector space; $\mathcal{F}=$ linearly independent subsets of E. (E.g., *Linear matroid*: E indexes the columns of a matrix A over a field.)

Delta-matroids

A related well-studied notion is that of a delta-matroid.

Example 1: Restrict to the *bases* of $\operatorname{Col}(A)$, not all linearly independent subsets. These satisfy the "Symmetric Exchange Axiom":

$$A, B \in \mathcal{F}, \ x \in A\Delta B \implies \text{there exists } y \in A\Delta B \text{ s.t. } A\Delta\{x,y\} \in \mathcal{F}.$$

Delta-matroids

A related well-studied notion is that of a delta-matroid.

Example 1: Restrict to the *bases* of $\mathrm{Col}(A)$, not all linearly independent subsets. These satisfy the "Symmetric Exchange Axiom":

$$A, B \in \mathcal{F}, \ x \in A\Delta B \implies \text{there exists } y \in A\Delta B \text{ s.t. } A\Delta\{x,y\} \in \mathcal{F}.$$

In general, a delta-matroid consists of:

- A finite ground set E;
- ② A nonempty family of subsets $\mathcal{F} \subseteq 2^E$ called the *feasible* sets closed under the Symmetric Exchange Axiom.

Delta-matroids

A related well-studied notion is that of a delta-matroid.

Example 1: Restrict to the *bases* of $\mathrm{Col}(A)$, not all linearly independent subsets. These satisfy the "Symmetric Exchange Axiom":

$$A, B \in \mathcal{F}, \ x \in A\Delta B \implies \text{there exists } y \in A\Delta B \text{ s.t. } A\Delta\{x,y\} \in \mathcal{F}.$$

In general, a delta-matroid consists of:

- A finite ground set E;
- ② A nonempty family of subsets $\mathcal{F} \subseteq 2^E$ called the *feasible* sets closed under the Symmetric Exchange Axiom.

Example 2: Linear delta-matroid – given a symmetric or skew-symmetric matrix $A_{n \times n}$ over a field, let $E := \{1, \dots, n\}$.

A subset $F \subseteq E$ is feasible $\iff \det A_{F \times F} \neq 0$. The set of feasible subsets is the linear delta-matroid, denoted by \mathcal{M}_A .

Brändén ($Adv.\ Math.\ 2007$) showed: if $p(z_1,\ldots,z_k)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E=\{1,\ldots,k\}$.

Thus, every blowup-polynomial $p_G(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid.

Brändén ($Adv.\ Math.\ 2007$) showed: if $p(z_1,\ldots,z_k)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E=\{1,\ldots,k\}$.

Thus, every blowup-polynomial $p_G(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid.

In fact, this delta-matroid is linear: \mathcal{M}_{M_G} .

Example: For
$$G = P_3$$
 (path graph), with $E = \{1, 2, 3\}$,

$$\mathcal{M}_{M_{P_3}} = 2^E \setminus \{\{1,3\}, \{1,2,3\}\}.$$

Brändén (*Adv. Math.* 2007) showed: if $p(z_1, \ldots, z_k)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E = \{1, \ldots, k\}$.

Thus, every blowup-polynomial $p_G(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid.

In fact, this delta-matroid is linear: \mathcal{M}_{M_G} .

Example: For $G = P_3$ (path graph), with $E = \{1, 2, 3\}$,

$$\mathcal{M}_{M_{P_2}} = 2^E \setminus \{\{1,3\},\{1,2,3\}\}.$$

More generally, for P_k for small k, with $E_k = \{1, \dots, k\}$,

$$\mathcal{M}_{M_{P_k}} = 2^{E_k} \setminus \{\{i, i+2\}, \{i, i+1, i+2\} : 1 \le i \le k-2\}.$$

Brändén ($Adv.\ Math.\ 2007$) showed: if $p(z_1,\ldots,z_k)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E=\{1,\ldots,k\}$.

Thus, every blowup-polynomial $p_G(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid.

In fact, this delta-matroid is linear: \mathcal{M}_{M_G} .

Example: For $G = P_3$ (path graph), with $E = \{1, 2, 3\}$,

$$\mathcal{M}_{M_{P_2}} = 2^E \setminus \{\{1,3\}, \{1,2,3\}\}.$$

More generally, for P_k for small k, with $E_k = \{1, \dots, k\}$,

$$\mathcal{M}_{M_{P_k}} = 2^{E_k} \setminus \{\{i, i+2\}, \{i, i+1, i+2\} : 1 \le i \le k-2\}.$$

Questions:

- lacktriangle Does this hold for all k?
- 2 Regardless of (1), is the right-hand side a delta-matroid for all k?

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid $\forall k$, and it equals \mathcal{M}_{P_k} iff $k \leq 8$.

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid $\forall k$, and it equals \mathcal{M}_{P_k} iff $k \leq 8$.

(The last part is because $\{1,\ldots,9\} \notin \mathcal{M}_{P_k}$.)

In particular, for $k \ge 9$, the right-hand side yields a different novel delta-matroid for P_k . How to generalize this phenomenon?

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid $\forall k$, and it equals \mathcal{M}_{P_k} iff $k \leq 8$.

(The last part is because $\{1,\ldots,9\} \not\in \mathcal{M}_{P_k}$.)

In particular, for $k \ge 9$, the right-hand side yields a different novel delta-matroid for P_k . How to generalize this phenomenon?

- The induced subgraph in P_k on $I := \{i, i+1, i+2\}$ is a tree which is a blowup-graph: $P_3 = K_2[(2,1)]$, and i, i+2 are copies of a vertex in K_2 .
- More generally, any tree containing two leaves with common parent, is a blowup. Declare all such subsets of nodes to be infeasible. Does this yield a delta-matroid?

Theorem (C.-Khare, 2021)

Suppose T is a tree. Define a subset of vertices I to be infeasible if its Steiner tree T(I) has two leaves, which are in I and have the same parent. Then the remaining, "feasible" subsets form a delta-matroid $\mathcal{M}'(T)$.

Theorem (C.-Khare, 2021)

Suppose T is a tree. Define a subset of vertices I to be infeasible if its Steiner tree T(I) has two leaves, which are in I and have the same parent. Then the remaining, "feasible" subsets form a delta-matroid $\mathcal{M}'(T)$.

- Novel delta-matroid arising from combinatorics.
- We also show that the construction of $\mathcal{M}'(T)$ does *not* extend to arbitrary graphs.
- Connection to other known, combinatorial delta-matroids?

References

[1] P.N. Choudhury and A. Khare.

The blowup-polynomial of a metric space: connections to stable polynomials, graphs and their distance spectra.

Preprint, arXiv:2105.12111, 2021.

Thanks are owed to:

- C V Raman Post-doctoral Fellowship, IISc •
- National Post-doctoral Fellowship, SERB, India
 - MATRICS Grant, SERB, India •
 - Ramanujan Fellowship, SERB, India •
 - University Grants Commission, India •
- SwarnaJayanti Fellowship, DST and SERB, India •