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Asymmetric multinomial coefficients

Cavalieri–Gillespie–Monin introduced the asymmetric multinomial coeffs:

Fix n and k = (k1, . . . , kn) � n

Let i(k) := index of rightmost 0 in k

Recall the standard recursion for multinomial coefficients:(
n

k1, . . . , kn

)
=
∑

1≤i≤n

(
n− 1

k1, . . . , ki−1, ki − 1, ki+1, . . . , kn

)
.

For j > i(k), define k̃j:

Example:

n = 10, k = (1, 0, 0, 1, 0, 1, 2, 1, 3, 1), i(k) = 5

k̃8 = (1, 0, 0, 1, 0, 1, 2, 3, 1) k̃9 = (1, 0, 0, 1, 1, 2, 1, 2, 1)

j = 8 j = 9

Subtract 1 from kj, then
Delete the right-most 0 of the result.



Asymmetric multinomial coefficients

〈
n

k

〉
:=

∑
j>i(k)

〈
n− 1

k̃j

〉
,

〈
1

1

〉
:= 1.

Example:〈
6

1, 0, 1, 2, 1, 1

〉
=

〈
5

1, 0, 2, 1, 1

〉
+

〈
5

1, 1, 1, 1, 1

〉
+

〈
5

1, 0, 1, 2, 1

〉
+

〈
5

1, 0, 1, 2, 1

〉
.

Cavalieri–Gillespie–Monin (2019):
〈n
k

〉
is the multidegree of a natural

embedding of M0,n+3 into a product of projective spaces. Equivalently, it’s
a 0-dimensional product of ω classes (more later).

Asymmetric string recursion:

Let i(k) := index of rightmost 0 in k

For j > i(k), define k̃j: Subtract 1 from kj, then
Delete the right-most 0 of the result.



Column-restricted parking functions

k is called reverse Catalan if kn + · · · + kn−i+1 ≥ i for all i.

Theorem (Cavalieri–Gillespie–Monin, 2019)〈n
k

〉
6= 0 if and only if k is reverse Catalan.

In this case,
〈n
k

〉
is the number of column-restricted parking functions

with ki labels in column i.
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k = (1, 1, 0, 2, 1)

Theorem (Cavalieri–Gillespie–Monin, 2019)

Total # column-restricted parking functions on n is (2n− 1)!!.



Two more combinatorial interpretations

The geometry of M0,n is intimately related to the combinatorics of
trivalent trees: The boundary points (0-diml’ strata) are indexed by
trivalent trees on n labeled nodes.

We give two new formulas for
〈n
k

〉
:

(1) Lazy tournaments: An algorithm that partitions a set of trivalent trees
into subsets that count

〈n
k

〉
.

(2) Slides: An algorithm that directly generates a set of trivalent trees with
cardinality

〈n
k

〉
.

The two interpretations have different geometric properties.
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Lazy tournaments

Let the labels be: a < b < c < 1 < · · · < n

a

b

4

2 3

1

c

Suppose T is a trivalent tree such that a and b are adjacent.
The lazy tournament of T is the following edge labeling:
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Lazy tournaments

Let the labels be: a < b < c < 1 < · · · < n

• (Identify which pair “face off”) The adjacent pair i < j with largest
smaller element i “face off” first.
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Suppose T is a trivalent tree such that a and b are adjacent.
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Lazy tournaments

Let the labels be: a < b < c < 1 < · · · < n

• (Identify which pair “face off”) The adjacent pair i < j with largest
smaller element i “face off” first.

• (Determine winner) Larger label j wins the round.

• (Determine which advances to next round) j advances, unless it
can be lazy: if the next edge is adjacent to some label u > i, then i
advances despite losing the round.
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Suppose T is a trivalent tree such that a and b are adjacent.
The lazy tournament of T is the following edge labeling:
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i = 2, j = 3
u = 4
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Lazy tournaments

Theorem (Gillespie-G.-Levinson, 2021)〈n
k

〉
= # trivalent trees T such that a and b are adjacent and

each i wins ki many rounds of the lazy tournament of T .

The (2n− 1)!! formula is an easy corollary:

The lazy tournament trees satisfy the asymmetric string recursion for
〈n
k

〉
.

The proof uses the “forgetting map” on M0,n+3 that forgets the label i
and contracts its edge.

∑
k

〈
n

k

〉
= # trivalent trees such that a and b are adjacent

= (2n− 1)!!.
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Slide trees

• Fix k, start with unique trivalent tree on a, b, c:

• At ith step, insert i and perform ki slides at i:
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slide1

• The resulting trivalent trees are denoted by Slideω(k1, . . . , kn).
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Let m = min label not in the a branch

Example: Let n = 3 and k = (1, 0, 2).
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Slide trees

• Fix k, start with unique trivalent tree on a, b, c:

• At ith step, insert i and perform ki slides at i:

a

b
c

1

−→
slide1
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1

c

Insert 2 and 3, and then perform slide3 twice:
2

3

• The resulting trivalent trees are denoted by Slideω(k1, . . . , kn).
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Let m = min label not in the a branch

Example: Let n = 3 and k = (1, 0, 2).
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Slide trees

Perform slide3 twice:

↓ ↓ ↓ ↓

∅ ∅
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c 1

Example: Let n = 3 and k = (1, 0, 2).

Theorem (Gillespie-G.-Levinson, 2021)〈n
k

〉
= #Slideω(k1, . . . , kn).

Proof: Hands-on intersection theory calculation on M0,n



The moduli space M0,n



Moduli space M0,n

A moduli space is (informally) a space that parametrizes geometric objects
(e.g. the Grassmannian of k planes in Cn).

M0,n is the moduli space of isomorphism classes of n ordered distinct

marked points on CP1.
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3
45

M0,n (the Deligne-Mumford compactification) is the moduli space
parametrizing genus zero stable curves with n marked points:

• Stable curves can have multiple irreducible components, but each
component has a total of at least 3 marked points and nodes.
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Dual tree

Associate a dual tree to each stable curve in M0,n:

• Vertices: Components and marked points

• Edges: Adjacent components, and marked points on their components
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Dual tree

Associate a dual tree to each stable curve in M0,n:

• Vertices: Components and marked points

• Edges: Adjacent components, and marked points on their components
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Stable curve → Every non-leaf vertex has degree ≥ 3.



Boundary strata/points

• dim(XT ) =
∑

internal v

(deg(v)− 3)

1
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6

43

T =

XT is a boundary point of M0,6

Examples:

• T is trivalent iff XT is a point.

1

5

2

6

43

T ′ =

XT ′ is a curve in M0,6

X◦T = {stable curves with dual tree T}

XT = X◦
T



Kapranov map

For each i, let ψi ∈ A∗(M0,n) ∼= H∗(M0,n) be the divisor on M0,n

corresponding to the ith cotangent line bundle Li→M0,n+3.

Consider M0,n+3 with marked points a < b < c < 1 < 2 < · · · < n.

ψi corresponds to the ith Kapranov map:

|ψi| : M0,n+3→ Pn

If H is the class of a hyperplane in Pn, then ψi = |ψi|∗(H).

1

2

3

a

b

c 4

P
s

0t

∞
7→ [xb : xc : x1 : x3 : x4] = [s : t : t : t : 0]
ψ2

|ψi| can be computed in coordinates:



Combined Kapranov maps

Kapranov embedding:

Let πn : M0,n+3→M0,n+2 be the “forgetting map” that forgets the
marked point n and stabilizes the curve.

Ωn : M0,n+3 ↪→ P1 × P2 × · · · × Pn

Define ωi = Ω∗n(Hi).

Ωn first appeared in Keel and Tevelev’s work on the log-canonical
embedding of M0,n+3.

M0,n+3 ↪→M0,n+2 × Pn

C 7→ (πn(C), |ψn|(C))

Iterating this, we get an embedding:



ψ and ω class products

•When k1 + k2 + · · · + kn = n:∫
M0,n+3

ψ
k1
1 · · ·ψ

kn
n =

(
n

k1, k2, . . . , kn

)
.

• Asymmetric multinomial coefficients are the multidegrees of Ωn:∫
M0,n+3

ω
k1
1 · · ·ω

kn
n

=
CGM

〈
n

k1, . . . , kn

〉
.

The asymmetric string equation takes the form:∫
M0,n+3

ωk =
∑
j>i(k)

∫
M0,n+2

ωk̃j

The ψ and ω classes can be multiplied in A∗(M0,n+3):

Aside: (Kontsevich) Higher genus intersection numbers → A solution to
KdV eqn



Explicit hyperplane intersections

Question: Can
〈n
k

〉
be realized as counting subsets of boundary points

that are obtained from explicit hyperplane intersections?

Multiplying ωi classes

Let [xb : xc : x1 : · · · : xi−1] be the projective coordinates for Pi.

Define Hi(t) = xb + txc + t2x1 + · · · + tixi−1.

Theorem (Gillespie-G.-Levinson, 2021)

lim
~t→~0

n⋂
i=1

ki⋂
j=1

Ω−1
n (Hi(ti,j)) = Slideω(k1, . . . , kn)

↔ Intersecting (generic) pulled-back hyperplanes
(ki from the ith projective space factor)



Slide rule for ω products

Bonus: The slide rule works for k1 + · · · + kn < n to expand
positive-dim’l ωi products as a positive multiplicity-free sum of [XT ].

Theorem (Gillespie-G.-Levinson, 2021)

For any k with k1 + · · · + kn ≤ n, we have

ω
k1
1 ω

k2
2 · · ·ω

kn
n =

∑
T∈Slideω(k1,...,kn)

[XT ].

Example: ω1ω3 expands as the sum of classes of:

a

b
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c
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b

1

3
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c
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b

1

c

2

3

a

b

1

3

2

c

(Keel) A∗(M0,n) is generated by the [XT ] (satisfying certain relations).



Slide rule for ψ products

Theorem (Gillespie-G.-Levinson, 2021)

For any k with k1 + · · · + kn ≤ n, we have

ψ
k1
1 ψ

k2
2 · · ·ψ

kn
n =

∑
T∈Slideψ(k1,...,kn)

[XT ].

Double bonus: The same kind of limiting hyperplanes work for ψi
products, and more general products of pulled-back ψ classes.



Open questions

• The trees Slideω(1, 1, . . . , 1) can be partially described using 23-1 pattern
avoidance. Pattern avoidance criteria for slide trees in general?

•Direct bijection between Slideω(k) and tournament trees for the case
when

∑
i ki = n?

• Generalization to ψ class products in higher genus A∗(Mg,n)? Hassett
spaces? Stable maps?



Thanks for your attention!



Slide rule for ψ products

Double bonus: The same kinds of limiting hyperplanes and slide rules
work for ψ products as well!

Perform the same algorithm, except start with:

Example: n = 3 and k = (1, 0, 2).

−→
slide1 and distrib. c, 2, 3

a 1 2
3
...nc

b

a

b
c

3
2

1

a

b
c

3
2

1

a

b
2

1
3

c

· · ·

↓ ↓ ↓

a

b
c

1
2

3

slide3 twice:

a

b
c

3
2

1

a

b
c

3

1
2

a 1

2

3c
b



Slide rule for ψ products

Let Slideψ(k1, . . . , kn) be the set of stable trees obtained.

Theorem (Gillespie-G.-Levinson, 2021)

For any (k1, . . . , kn) with k1 + · · · + kn ≤ n, we have

ψ
k1
1 ψ

k2
2 · · ·ψ

kn
n =

∑
T∈Slideψ(k1,...,kn)

[XT ].

A slight variation of the slide rule also give formulas for any mixed product
of ω and ψ classes: First compute the product of the ω’s, then multiply by
the ψ’s.

Proof: Again using limiting hyperplane intersections.


