Tournaments and slide rules for ω and ψ class products on $\bar{M}_{0, n}$

Sean Griffin UC Davis

FPSAC, IISc Bangalore July 22, 2022

Joint work with Maria Gillespie (Colorado State Univ.) and Jake Levinson (Simon Fraser Univ.)

Asymmetric multinomial coefficients

Asymmetric multinomial coefficients

Recall the standard recursion for multinomial coefficients:

$$
\binom{n}{k_{1}, \ldots, k_{n}}=\sum_{1 \leq i \leq n}\binom{n-1}{k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{n}} .
$$

Cavalieri-Gillespie-Monin introduced the asymmetric multinomial coeffs:

Asymmetric multinomial coefficients

Recall the standard recursion for multinomial coefficients:

$$
\binom{n}{k_{1}, \ldots, k_{n}}=\sum_{1 \leq i \leq n}\binom{n-1}{k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{n}} .
$$

Cavalieri-Gillespie-Monin introduced the asymmetric multinomial coeffs:
Fix n and $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right) \vDash n$
Let $i(\mathbf{k}):=$ index of rightmost 0 in \mathbf{k}
For $j>i(\mathbf{k})$, define $\widetilde{\mathbf{k}}_{j}$:

Asymmetric multinomial coefficients

Recall the standard recursion for multinomial coefficients:

$$
\binom{n}{k_{1}, \ldots, k_{n}}=\sum_{1 \leq i \leq n}\binom{n-1}{k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{n}} .
$$

Cavalieri-Gillespie-Monin introduced the asymmetric multinomial coeffs:
Fix n and $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right) \vDash n$
Let $i(\mathbf{k}):=$ index of rightmost 0 in \mathbf{k}
For $j>i(\mathbf{k})$, define $\widetilde{\mathbf{k}}_{j}$: Subtract 1 from k_{j}, then Delete the right-most 0 of the result.

Example:

$$
\begin{gathered}
n=10, \mathbf{k}=(1,0,0,1,0,1,2,1,3,1), i(\mathbf{k})=5 \\
\widetilde{\mathbf{k}}_{8}=(1,0,0,1,0,1,2,3,1) \quad \widetilde{\mathbf{k}}_{9}=(1,0,0,1,1,2,1,2,1)
\end{gathered}
$$

Asymmetric multinomial coefficients

Let $i(\mathbf{k}):=$ index of rightmost 0 in \mathbf{k}
For $j>i(\mathbf{k})$, define $\widetilde{\mathbf{k}}_{j}$: Subtract 1 from k_{j}, then
Delete the right-most 0 of the result.
Asymmetric string recursion:

$$
\left\langle\begin{array}{l}
n \\
\mathbf{k}
\end{array}\right\rangle:=\sum_{j>i(\mathbf{k})}\left\langle\begin{array}{c}
n-1 \\
\widetilde{\mathbf{k}}_{j}
\end{array}\right\rangle, \quad\left\langle\begin{array}{l}
1 \\
1
\end{array}\right\rangle:=1
$$

Example:
$\left\langle\begin{array}{c}6 \\ 1,0,1,2,1,1\end{array}\right\rangle=\left\langle\begin{array}{c}5 \\ 1,0,2,1,1\end{array}\right\rangle+\left\langle\begin{array}{c}5 \\ 1,1,1,1,1\end{array}\right\rangle+\left\langle\begin{array}{c}5 \\ 1,0,1,2,1\end{array}\right\rangle+\left\langle\begin{array}{c}5 \\ 1,0,1,2,1\end{array}\right\rangle$.
Cavalieri-Gillespie-Monin (2019): $\left\langle\begin{array}{l}n \\ \mathrm{k}\end{array}\right\rangle$ is the multidegree of a natural embedding of $\bar{M}_{0, n+3}$ into a product of projective spaces. Equivalently, it's a 0 -dimensional product of ω classes (more later).

Column-restricted parking functions

\mathbf{k} is called reverse Catalan if $k_{n}+\cdots+k_{n-i+1} \geq i$ for all i.
Theorem (Cavalieri-Gillespie-Monin, 2019)
$\left\langle\begin{array}{l}n \\ \mathbf{k}\end{array}\right\rangle \neq 0$ if and only if \mathbf{k} is reverse Catalan.
In this case, $\left\langle\begin{array}{l}n \\ \mathbf{k}\end{array}\right\rangle$ is the number of column-restricted parking functions with k_{i} labels in column i.

$$
\mathbf{k}=(1,1,0,2,1)
$$

Theorem (Cavalieri-Gillespie-Monin, 2019)
Total \# column-restricted parking functions on n is $(2 n-1)!!$.

Two more combinatorial interpretations

The geometry of $\bar{M}_{0, n}$ is intimately related to the combinatorics of trivalent trees: The boundary points (0-diml' strata) are indexed by trivalent trees on n labeled nodes.

We give two new formulas for $\left\langle\begin{array}{l}n \\ \mathbf{k}\end{array}\right\rangle$:
(1) Lazy tournaments: An algorithm that partitions a set of trivalent trees into subsets that count $\left\langle\begin{array}{l}n \\ \mathrm{k}\end{array}\right\rangle$.
(2) Slides: An algorithm that directly generates a set of trivalent trees with cardinality $\left\langle\begin{array}{l}n \\ \mathbf{k}\end{array}\right\rangle$.

The two interpretations have different geometric properties.

Lazy tournaments

Let the labels be: $a<b<c<1<\cdots<n$
Suppose T is a trivalent tree such that a and b are adjacent. The lazy tournament of T is the following edge labeling:

Lazy tournaments

Let the labels be: $a<b<c<1<\cdots<n$
Suppose T is a trivalent tree such that a and b are adjacent.
The lazy tournament of T is the following edge labeling:

- (Identify which pair "face off") The adjacent pair $i<j$ with largest smaller element i "face off" first.

Lazy tournaments

Let the labels be: $a<b<c<1<\cdots<n$
Suppose T is a trivalent tree such that a and b are adjacent.
The lazy tournament of T is the following edge labeling:

- (Identify which pair "face off") The adjacent pair $i<j$ with largest smaller element i "face off" first.

Lazy tournaments

Let the labels be: $a<b<c<1<\cdots<n$
Suppose T is a trivalent tree such that a and b are adjacent.
The lazy tournament of T is the following edge labeling:

- (Identify which pair "face off") The adjacent pair $i<j$ with largest smaller element i "face off" first.
- (Determine winner) Larger label j wins the round.

Lazy tournaments

Let the labels be: $a<b<c<1<\cdots<n$
Suppose T is a trivalent tree such that a and b are adjacent.
The lazy tournament of T is the following edge labeling:

- (Identify which pair "face off") The adjacent pair $i<j$ with largest smaller element i "face off" first.
- (Determine winner) Larger label j wins the round.
- (Determine which advances to next round) j advances, unless it can be lazy: if the next edge is adjacent to some label $u>i$, then i advances despite losing the round.

Lazy tournaments

Let the labels be: $a<b<c<1<\cdots<n$
Suppose T is a trivalent tree such that a and b are adjacent.
The lazy tournament of T is the following edge labeling:

- (Identify which pair "face off") The adjacent pair $i<j$ with largest smaller element i "face off" first.
- (Determine winner) Larger label j wins the round.
- (Determine which advances to next round) j advances, unless it can be lazy: if the next edge is adjacent to some label $u>i$, then i advances despite losing the round.

Lazy tournaments

Let the labels be: $a<b<c<1<\cdots<n$
Suppose T is a trivalent tree such that a and b are adjacent.
The lazy tournament of T is the following edge labeling:

- (Identify which pair "face off") The adjacent pair $i<j$ with largest smaller element i "face off" first.
- (Determine winner) Larger label j wins the round.
- (Determine which advances to next round) j advances, unless it can be lazy: if the next edge is adjacent to some label $u>i$, then i advances despite losing the round.

Lazy tournaments

Let the labels be: $a<b<c<1<\cdots<n$
Suppose T is a trivalent tree such that a and b are adjacent.
The lazy tournament of T is the following edge labeling:

- (Identify which pair "face off") The adjacent pair $i<j$ with largest smaller element i "face off" first.
- (Determine winner) Larger label j wins the round.
- (Determine which advances to next round) j advances, unless it can be lazy: if the next edge is adjacent to some label $u>i$, then i advances despite losing the round.

Lazy tournaments

Let the labels be: $a<b<c<1<\cdots<n$
Suppose T is a trivalent tree such that a and b are adjacent.
The lazy tournament of T is the following edge labeling:

- (Identify which pair "face off") The adjacent pair $i<j$ with largest smaller element i "face off" first.
- (Determine winner) Larger label j wins the round.
- (Determine which advances to next round) j advances, unless it can be lazy: if the next edge is adjacent to some label $u>i$, then i advances despite losing the round.

Lazy tournaments

Let the labels be: $a<b<c<1<\cdots<n$
Suppose T is a trivalent tree such that a and b are adjacent.
The lazy tournament of T is the following edge labeling:

- (Identify which pair "face off") The adjacent pair $i<j$ with largest smaller element i "face off" first.
- (Determine winner) Larger label j wins the round.
- (Determine which advances to next round) j advances, unless it can be lazy: if the next edge is adjacent to some label $u>i$, then i advances despite losing the round.

Lazy tournaments

Theorem (Gillespie-G.-Levinson, 2021)

$\left\langle\begin{array}{l}n \\ \mathrm{k}\end{array}\right\rangle=\#$ trivalent trees T such that a and b are adjacent and each i wins k_{i} many rounds of the lazy tournament of T.

The lazy tournament trees satisfy the asymmetric string recursion for $\left\langle\begin{array}{l}n \\ \mathbf{k}\end{array}\right\rangle$. The proof uses the "forgetting map" on $\bar{M}_{0, n+3}$ that forgets the label i and contracts its edge.

The $(2 n-1)!$! formula is an easy corollary:

$$
\begin{aligned}
\sum_{\mathbf{k}}\left\langle\begin{array}{l}
n \\
\mathbf{k}
\end{array}\right\rangle & =\# \text { trivalent trees such that } a \text { and } b \text { are adjacent } \\
& =(2 n-1)!!.
\end{aligned}
$$

Slide trees

- Fix \mathbf{k}, start with unique trivalent tree on a, b, c :

- At i th step, insert i and perform k_{i} slides at i :

Slide trees

- Fix \mathbf{k}, start with unique trivalent tree on a, b, c :

- At i th step, insert i and perform k_{i} slides at i :

Let $m=\min$ label not in the a branch

Slide trees

- Fix \mathbf{k}, start with unique trivalent tree on a, b, c :
- At i th step, insert i and perform k_{i} slides at i :

Let $m=\min$ label not in the a branch

distribute remaining branches

Slide trees

- Fix \mathbf{k}, start with unique trivalent tree on a, b, c :
- At i th step, insert i and perform k_{i} slides at i :

Let $m=\min$ label not in the a branch

Slide trees

- Fix \mathbf{k}, start with unique trivalent tree on a, b, c :

- At i th step, insert i and perform k_{i} slides at i : distribute remaining
Let $m=\min$ label not in the a branch

- The resulting trivalent trees are denoted by $\operatorname{Slide}^{\omega}\left(k_{1}, \ldots, k_{n}\right)$.

Example: Let $n=3$ and $\mathbf{k}=(1,0,2)$.

Slide trees

- Fix \mathbf{k}, start with unique trivalent tree on a, b, c :

- At i th step, insert i and perform k_{i} slides at i :

Let $m=\min$ label not in the a branch

- The resulting trivalent trees are denoted by $\operatorname{Slide}^{\omega}\left(k_{1}, \ldots, k_{n}\right)$.

Example: Let $n=3$ and $\mathbf{k}=(1,0,2)$.

Insert 2 and 3, and then perform slide 3 twice:

Slide trees

Example: Let $n=3$ and $\mathbf{k}=(1,0,2)$.
Perform slide ${ }_{3}$ twice:

Theorem (Gillespie-G.-Levinson, 2021)

$$
\left\langle\begin{array}{l}
n \\
\mathbf{k}
\end{array}\right\rangle=\# \operatorname{Slide}^{\omega}\left(k_{1}, \ldots, k_{n}\right) .
$$

Proof: Hands-on intersection theory calculation on $\bar{M}_{0, n}$

The moduli space $\bar{M}_{0, n}$

Moduli space $\bar{M}_{0, n}$

A moduli space is (informally) a space that parametrizes geometric objects (e.g. the Grassmannian of k planes in \mathbb{C}^{n}).
$M_{0, n}$ is the moduli space of isomorphism classes of n ordered distinct marked points on $\mathbb{C P}^{1}$.
$\bar{M}_{0, n}$ (the Deligne-Mumford compactification) is the moduli space parametrizing genus zero stable curves with n marked points:

- Stable curves can have multiple irreducible components, but each component has a total of at least 3 marked points and nodes.

Dual tree

Associate a dual tree to each stable curve in $\bar{M}_{0, n}$:

- Vertices: Components and marked points
- Edges: Adjacent components, and marked points on their components

Dual tree

Associate a dual tree to each stable curve in $\bar{M}_{0, n}$:

- Vertices: Components and marked points
- Edges: Adjacent components, and marked points on their components

Dual tree

Associate a dual tree to each stable curve in $\bar{M}_{0, n}$:

- Vertices: Components and marked points
- Edges: Adjacent components, and marked points on their components

Stable curve \rightarrow Every non-leaf vertex has degree ≥ 3.

Boundary strata/points

$X_{T}^{\circ}=\{$ stable curves with dual tree $T\}$
$X_{T}=\overline{X_{T}^{\circ}}$

- $\operatorname{dim}\left(X_{T}\right)=\sum_{\text {internal } v}(\operatorname{deg}(v)-3)$
- T is trivalent iff X_{T} is a point.

Examples:

X_{T} is a boundary point of $\bar{M}_{0,6}$
$X_{T^{\prime}}$ is a curve in $\bar{M}_{0,6}$

Kapranov map

Consider $\bar{M}_{0, n+3}$ with marked points $a<b<c<1<2<\cdots<n$. For each i, let $\psi_{i} \in A^{*}\left(\bar{M}_{0, n}\right) \cong H^{*}\left(\bar{M}_{0, n}\right)$ be the divisor on $\bar{M}_{0, n}$ corresponding to the i th cotangent line bundle $\mathbb{L}_{i} \rightarrow \bar{M}_{0, n+3}$.
ψ_{i} corresponds to the i th Kapranov map:

$$
\left|\psi_{i}\right|: \bar{M}_{0, n+3} \rightarrow \mathbb{P}^{n}
$$

If H is the class of a hyperplane in \mathbb{P}^{n}, then $\psi_{i}=\left|\psi_{i}\right|^{*}(H)$.
$\left|\psi_{i}\right|$ can be computed in coordinates:

$$
\stackrel{\psi_{2}}{\mapsto}\left[x_{b}: x_{c}: x_{1}: x_{3}: x_{4}\right]=[s: t: t: t: 0]
$$

Combined Kapranov maps

Let $\pi_{n}: \bar{M}_{0, n+3} \rightarrow \bar{M}_{0, n+2}$ be the "forgetting map" that forgets the marked point n and stabilizes the curve.

$$
\begin{aligned}
\bar{M}_{0, n+3} & \hookrightarrow \bar{M}_{0, n+2} \times \mathbb{P}^{n} \\
C & \mapsto\left(\pi_{n}(C),\left|\psi_{n}\right|(C)\right)
\end{aligned}
$$

Iterating this, we get an embedding:

Kapranov embedding:

$$
\Omega_{n}: \bar{M}_{0, n+3} \hookrightarrow \mathbb{P}^{1} \times \mathbb{P}^{2} \times \cdots \times \mathbb{P}^{n}
$$

Define $\omega_{i}=\Omega_{n}^{*}\left(H_{i}\right)$.
Ω_{n} first appeared in Keel and Tevelev's work on the log-canonical embedding of $\bar{M}_{0, n+3}$.

ψ and ω class products

The ψ and ω classes can be multiplied in $A^{*}\left(\bar{M}_{0, n+3}\right)$:

- When $k_{1}+k_{2}+\cdots+k_{n}=n$:

$$
\int_{\bar{M}_{0, n+3}} \psi_{1}^{k_{1}} \cdots \psi_{n}^{k_{n}}=\binom{n}{k_{1}, k_{2}, \ldots, k_{n}} .
$$

Aside: (Kontsevich) Higher genus intersection numbers $\rightarrow \mathrm{A}$ solution to KdV eqn

- Asymmetric multinomial coefficients are the multidegrees of Ω_{n} :

$$
\int_{\bar{M}_{0, n+3}} \omega_{1}^{k_{1}} \cdots \omega_{n}^{k_{n}} \stackrel{\mathrm{CGM}}{=}\left\langle\begin{array}{c}
n \\
k_{1}, \ldots, k_{n}
\end{array}\right\rangle
$$

The asymmetric string equation takes the form:

$$
\int_{\bar{M}_{0, n+3}} \omega^{\mathbf{k}}=\sum_{j>i(\mathbf{k})} \int_{\bar{M}_{0, n+2}} \omega^{\widetilde{\mathbf{k}}_{j}}
$$

Explicit hyperplane intersections

Multiplying ω_{i} classes \leftrightarrow Intersecting (generic) pulled-back hyperplanes (k_{i} from the i th projective space factor)

Question: Can $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ be realized as counting subsets of boundary points that are obtained from explicit hyperplane intersections?

Let $\left[x_{b}: x_{c}: x_{1}: \cdots: x_{i-1}\right]$ be the projective coordinates for \mathbb{P}^{i}.
Define $H_{i}(t)=x_{b}+t x_{c}+t^{2} x_{1}+\cdots+t^{i} x_{i-1}$.

Theorem (Gillespie-G.-Levinson, 2021)

$$
\lim _{\vec{t} \rightarrow \overrightarrow{0}} \bigcap_{i=1}^{n} \bigcap_{j=1}^{k_{i}} \Omega_{n}^{-1}\left(H_{i}\left(t_{i, j}\right)\right)=\operatorname{Slide}^{\omega}\left(k_{1}, \ldots, k_{n}\right)
$$

Slide rule for ω products

(Keel) $A^{*}\left(\bar{M}_{0, n}\right)$ is generated by the $\left[X_{T}\right]$ (satisfying certain relations).
Bonus: The slide rule works for $k_{1}+\cdots+k_{n}<n$ to expand positive-dim'l ω_{i} products as a positive multiplicity-free sum of $\left[X_{T}\right]$.

Theorem (Gillespie-G.-Levinson, 2021)

For any \mathbf{k} with $k_{1}+\cdots+k_{n} \leq n$, we have

$$
\omega_{1}^{k_{1}} \omega_{2}^{k_{2}} \cdots \omega_{n}^{k_{n}}=\sum_{T \in \operatorname{Side}^{\omega}\left(k_{1}, \ldots, k_{n}\right)}\left[X_{T}\right] .
$$

Example: $\omega_{1} \omega_{3}$ expands as the sum of classes of:

Slide rule for ψ products

Double bonus: The same kind of limiting hyperplanes work for ψ_{i} products, and more general products of pulled-back ψ classes.

Theorem (Gillespie-G.-Levinson, 2021)

For any \mathbf{k} with $k_{1}+\cdots+k_{n} \leq n$, we have

$$
\psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \cdots \psi_{n}^{k_{n}}=\sum_{T \in \operatorname{Slide}^{\psi}\left(k_{1}, \ldots, k_{n}\right)}\left[X_{T}\right] .
$$

Open questions

- The trees $\operatorname{Slide}^{\omega}(1,1, \ldots, 1)$ can be partially described using 23-1 pattern avoidance. Pattern avoidance criteria for slide trees in general?
- Direct bijection between $\operatorname{Slide}^{\omega}(\mathbf{k})$ and tournament trees for the case when $\sum_{i} k_{i}=n$?
- Generalization to ψ class products in higher genus $A^{*}\left(\bar{M}_{g, n}\right)$? Hassett spaces? Stable maps?

Thanks for your attention!

Slide rule for ψ products

Double bonus: The same kinds of limiting hyperplanes and slide rules work for ψ products as well!

Perform the same algorithm, except start with:

Example: $n=3$ and $\mathbf{k}=(1,0,2)$.
slide $_{1}$ and distrib. $c, 2,3$

\downarrow slide $_{3}$ twice:

 3

\downarrow

Slide rule for ψ products

Let Slide ${ }^{\psi}\left(k_{1}, \ldots, k_{n}\right)$ be the set of stable trees obtained.

Theorem (Gillespie-G.-Levinson, 2021)

For any $\left(k_{1}, \ldots, k_{n}\right)$ with $k_{1}+\cdots+k_{n} \leq n$, we have

$$
\psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \cdots \psi_{n}^{k_{n}}=\sum_{T \in \operatorname{Slide}^{\psi}\left(k_{1}, \ldots, k_{n}\right)}\left[X_{T}\right]
$$

Proof: Again using limiting hyperplane intersections.

A slight variation of the slide rule also give formulas for any mixed product of ω and ψ classes: First compute the product of the ω 's, then multiply by the ψ 's.

