Equalities and inequalities involving Schur polynomials

Apoorva Khare
IISc and APRG (Bangalore, India)

Formal Power Series and Algebraic Combinatorics July 2022

Schur polynomials

Given a decreasing N-tuple of integers $n_{1}>\cdots>n_{N} \geqslant 0$, the corresponding Schur polynomial over a field \mathbb{F} (say char $\mathbb{F}=0$) is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{N-j}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$.

Schur polynomials

Given a decreasing N-tuple of integers $n_{1}>\cdots>n_{N} \geqslant 0$, the corresponding Schur polynomial over a field \mathbb{F} (say char $\mathbb{F}=0$) is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{N-j}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{N-j}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{i}-u_{j}\right) .
$$

Schur polynomials

Given a decreasing N-tuple of integers $n_{1}>\cdots>n_{N} \geqslant 0$, the corresponding Schur polynomial over a field \mathbb{F} (say char $\mathbb{F}=0$) is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{N-j}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{N-j}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{i}-u_{j}\right) .
$$

- Basis of homogeneous symmetric polynomials in u_{1}, \ldots, u_{N}.
- Characters of irreducible polynomial representations of $G L_{N}(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.

Schur polynomials

Given a decreasing N-tuple of integers $n_{1}>\cdots>n_{N} \geqslant 0$, the corresponding Schur polynomial over a field \mathbb{F} (say char $\mathbb{F}=0$) is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{N-j}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{N-j}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{i}-u_{j}\right) .
$$

- Basis of homogeneous symmetric polynomials in u_{1}, \ldots, u_{N}.
- Characters of irreducible polynomial representations of $G L_{N}(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.
- Weyl Character (Dimension) Formula in Type A:

$$
s_{\mathbf{n}}(1, \ldots, 1)=\prod_{1 \leqslant i<j \leqslant N} \frac{n_{i}-n_{j}}{j-i}=\frac{V(\mathbf{n})}{V((N-1, \ldots, 1,0))}
$$

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:
Example 1: Suppose $N=3$ and $\mathbf{m}:=(4,2,0)$. The tableaux are:

1	1
2	

1	1
3	

1	2
2	

1	2
3	

1	3
2	

1	3
3	

2	2
3	

2	3
3	

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose $N=3$ and $\mathbf{m}:=(4,2,0)$. The tableaux are:

1	1
2	

1	1
3	

1	2
2	

1	2
3	

1	3
2	

2	2
3	

2	3
3	

$$
\begin{aligned}
& s_{(4,2,0)}\left(u_{1}, u_{2}, u_{3}\right) \\
= & u_{1}^{2} u_{2}+u_{1}^{2} u_{3}+u_{1} u_{2}^{2}+2 u_{1} u_{2} u_{3}+u_{1} u_{3}^{2}+u_{2}^{2} u_{3}+u_{2} u_{3}^{2} \\
= & \left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)
\end{aligned}
$$

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:
Example 1: Suppose $N=3$ and $\mathbf{m}:=(4,2,0)$. The tableaux are:

1	1
2	

1	2
2	

1	2
3	

1	3
2	

2	2
3	

2	3
3	

$$
\begin{aligned}
& s_{(4,2,0)}\left(u_{1}, u_{2}, u_{3}\right) \\
= & u_{1}^{2} u_{2}+u_{1}^{2} u_{3}+u_{1} u_{2}^{2}+2 u_{1} u_{2} u_{3}+u_{1} u_{3}^{2}+u_{2}^{2} u_{3}+u_{2} u_{3}^{2} \\
= & \left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right) .
\end{aligned}
$$

Example 2: Suppose $N=3$ and $\mathbf{n}=(3,2,0)$:

1
2
:---
3

Then $s_{(3,2,0)}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2}+u_{1} u_{3}+u_{2} u_{3}$.

Cauchy's - and Frobenius's - determinantal identity

$$
\begin{aligned}
& \text { Theorem (Cauchy, } 1841 \text { memoir) } \\
& \text { If } f(t)=(1-t)^{-1}=1+t+t^{2}+\cdots, \text { and } f[A]:=\left(f\left(a_{i j}\right)\right), \text { then } \\
& \qquad \operatorname{det} f\left[\mathbf{u v}^{T}\right]=\operatorname{det}\left(\left(1-u_{i} v_{j}\right)^{-1}\right)_{i, j=1}^{N}=\sum_{M \geqslant 0} \sum_{\mathbf{n} \vdash M} V(\mathbf{u}) V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) .
\end{aligned}
$$

Cauchy's - and Frobenius's - determinantal identity

Theorem (Cauchy, 1841 memoir)

$$
\begin{aligned}
& \text { If } f(t)=(1-t)^{-1}=1+t+t^{2}+\cdots, \text { and } f[A]:=\left(f\left(a_{i j}\right)\right) \text {, then } \\
& \qquad \operatorname{det} f\left[\mathbf{u v}^{T}\right]=\operatorname{det}\left(\left(1-u_{i} v_{j}\right)^{-1}\right)_{i, j=1}^{N}=\sum_{M \geqslant 0} \sum_{\mathbf{n} \vdash M} V(\mathbf{u}) V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) .
\end{aligned}
$$

This is the $c=0$ special case of:

Theorem (Frobenius, J. reine Angew. Math. 1882)

$$
\text { If } f(t)=\frac{1-c t}{1-t} \text { for a scalar } c \text {, then }
$$

$$
\operatorname{det} f\left[\mathbf{u v}^{T}\right]=\operatorname{det}\left(\frac{1-c u_{i} v_{j}}{1-u_{i} v_{j}}\right)_{i, j=1}^{N}
$$

$$
=V(\mathbf{u}) V(\mathbf{v})(1-c)^{N-1}\left(\sum_{\mathbf{n}: n_{N}=0} s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v})+(1-c) \sum_{\mathbf{n}: n_{N}>0} s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v})\right) .
$$

What happens for other power series?

The determinantal identity for polynomials

- Suppose $f(t)=f_{1} t^{n_{1}}+\cdots+f_{k} t^{n_{k}}$ is any polynomial with $<N$ terms. (Say $n_{1}>\cdots>n_{k} \geqslant 0$.) Then

$$
f\left[\mathbf{u v}^{T}\right]=f_{1} \mathbf{u}^{\circ n_{1}}\left(\mathbf{v}^{\circ n_{1}}\right)^{T}+\cdots+f_{k} \mathbf{u}^{\circ n_{k}}\left(\mathbf{v}^{\circ n_{k}}\right)^{T}
$$

has rank $k<N$, so its determinant is zero.

The determinantal identity for polynomials

- Suppose $f(t)=f_{1} t^{n_{1}}+\cdots+f_{k} t^{n_{k}}$ is any polynomial with $<N$ terms. (Say $n_{1}>\cdots>n_{k} \geqslant 0$.) Then

$$
f\left[\mathbf{u} \mathbf{v}^{T}\right]=f_{1} \mathbf{u}^{\circ n_{1}}\left(\mathbf{v}^{\circ n_{1}}\right)^{T}+\cdots+f_{k} \mathbf{u}^{\circ n_{k}}\left(\mathbf{v}^{\circ n_{k}}\right)^{T}
$$

has rank $k<N$, so its determinant is zero.

- (Folklore case: Jacobi, Cauchy, Schur...) Suppose $f(t)=\sum_{j=1}^{N} f_{j} t^{n_{j}}$.

The determinantal identity for polynomials

- Suppose $f(t)=f_{1} t^{n_{1}}+\cdots+f_{k} t^{n_{k}}$ is any polynomial with $<N$ terms.
(Say $n_{1}>\cdots>n_{k} \geqslant 0$.) Then

$$
f\left[\mathbf{u} \mathbf{v}^{T}\right]=f_{1} \mathbf{u}^{\circ n_{1}}\left(\mathbf{v}^{\circ n_{1}}\right)^{T}+\cdots+f_{k} \mathbf{u}^{\circ n_{k}}\left(\mathbf{v}^{\circ n_{k}}\right)^{T}
$$

has rank $k<N$, so its determinant is zero.

- (Folklore case: Jacobi, Cauchy, Schur...) Suppose $f(t)=\sum_{j=1}^{N} f_{j} t^{n_{j}}$. Then $f\left[\mathbf{u v}^{T}\right]$ factorizes as

$$
\begin{aligned}
& \left(\begin{array}{cccc}
u_{1}^{n_{1}} & u_{1}^{n_{2}} & \cdots & u_{1}^{n_{N}} \\
u_{2}^{n_{1}} & u_{2}^{n_{2}} & \cdots & u_{2}^{n_{N}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N}^{n_{1}} & u_{N}^{n_{2}} & \cdots & u_{N}^{n_{N}}
\end{array}\right) \cdot\left(\begin{array}{cccc}
f_{1} & 0 & \cdots & 0 \\
0 & f_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & f_{N}
\end{array}\right) \cdot\left(\begin{array}{cccc}
v_{1}^{n_{1}} & v_{1}^{n_{2}} & \cdots & v_{1}^{n_{N}} \\
v_{2}^{n_{1}} & v_{2}^{n_{2}} & \cdots & v_{2}^{n_{N}} \\
\vdots & \vdots & \ddots & \vdots \\
v_{N}^{n_{1}} & v_{N}^{n_{2}} & \cdots & v_{N}^{n_{N}}
\end{array}\right)^{T}, \\
& \text { so det } f\left[\mathbf{u v ^ { T }}\right]=V(\mathbf{u}) V(\mathbf{v}) \prod_{j=1}^{N} f_{j} \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) .
\end{aligned}
$$

The determinantal identity for polynomials

- Suppose $f(t)=f_{1} t^{n_{1}}+\cdots+f_{k} t^{n_{k}}$ is any polynomial with $<N$ terms. (Say $n_{1}>\cdots>n_{k} \geqslant 0$.) Then

$$
f\left[\mathbf{u} \mathbf{v}^{T}\right]=f_{1} \mathbf{u}^{\circ n_{1}}\left(\mathbf{v}^{\circ n_{1}}\right)^{T}+\cdots+f_{k} \mathbf{u}^{\circ n_{k}}\left(\mathbf{v}^{\circ n_{k}}\right)^{T}
$$

has rank $k<N$, so its determinant is zero.

- (Folklore case: Jacobi, Cauchy, Schur...) Suppose $f(t)=\sum_{j=1}^{N} f_{j} t^{n_{j}}$. Then $f\left[\mathbf{u v}^{T}\right]$ factorizes as

$$
\begin{aligned}
& \left(\begin{array}{cccc}
u_{1}^{n_{1}} & u_{1}^{n_{2}} & \cdots & u_{1}^{n_{N}} \\
u_{2}^{n_{1}} & u_{2}^{n_{2}} & \cdots & u_{2}^{n_{N}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N}^{n_{1}} & u_{N}^{n_{2}} & \cdots & u_{N}^{n_{N}}
\end{array}\right) \cdot\left(\begin{array}{cccc}
f_{1} & 0 & \cdots & 0 \\
0 & f_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & f_{N}
\end{array}\right) \cdot\left(\begin{array}{cccc}
v_{1}^{n_{1}} & v_{1}^{n_{2}} & \cdots & v_{1}^{n_{N}} \\
v_{2}^{n_{1}} & v_{2}^{n_{2}} & \cdots & v_{2}^{n_{N}} \\
\vdots & \vdots & \ddots & \vdots \\
v_{N}^{n_{1}} & v_{N}^{n_{2}} & \cdots & v_{N}^{n_{N}}
\end{array}\right)^{T}, \\
& \text { so } \operatorname{det} f\left[\mathbf{u v}{ }^{T}\right]=V(\mathbf{u}) V(\mathbf{v}) \prod_{j=1}^{N} f_{j} \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) .
\end{aligned}
$$

- Similar computation for arbitrary polynomials - $f\left[\mathbf{u v}^{T}\right]$ factorizes, so use the Cauchy-Binet formula.

Connection from analysis

Loewner studied $\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$ as a function of t (for f smooth), and computed its Taylor coefficients:

- Fix $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)^{T} \in \mathbb{R}^{N}$, with $u_{i}>0$ pairwise distinct.
- Define $\Delta(t):=\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$, and compute its first $\binom{N}{2}+1$ derivatives:

Connection from analysis

Loewner studied $\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$ as a function of t (for f smooth), and computed its Taylor coefficients:

- Fix $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)^{T} \in \mathbb{R}^{N}$, with $u_{i}>0$ pairwise distinct.
- Define $\Delta(t):=\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$, and compute its first $\binom{N}{2}+1$ derivatives:

$$
\begin{gathered}
\Delta(0)=\Delta^{\prime}(0)=\cdots=\Delta^{\left(\binom{N}{2}-1\right)}(0)=0, \quad \text { and } \\
\frac{\Delta^{\left(\binom{N}{2}\right)}(0)}{\binom{N}{2}!}=V(\mathbf{u})^{2} \cdot 1^{2} \cdot \frac{f(0)}{0!} \frac{f^{\prime}(0)}{1!} \cdots \frac{f^{(N-1)}(0)}{(N-1)!}
\end{gathered}
$$

Connection from analysis

Loewner studied $\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$ as a function of t (for f smooth), and computed its Taylor coefficients:

- Fix $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)^{T} \in \mathbb{R}^{N}$, with $u_{i}>0$ pairwise distinct.
- Define $\Delta(t):=\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$, and compute its first $\binom{N}{2}+1$ derivatives:

$$
\begin{gathered}
\Delta(0)=\Delta^{\prime}(0)=\cdots=\Delta^{\left(\binom{N}{2}-1\right)}(0)=0, \quad \text { and } \\
\frac{\Delta^{\left(\binom{N}{2}\right)}(0)}{\binom{N}{2}!}=V(\mathbf{u})^{2} \cdot 1^{2} \cdot \frac{f(0)}{0!} \frac{f^{\prime}(0)}{1!} \cdots \frac{f^{(N-1)}(0)}{(N-1)!}
\end{gathered}
$$

(Loewner stopped here for his purposes - of matrix positivity preservers - but) What if Loewner had gone one step further?

Connection from analysis

Loewner studied $\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$ as a function of t (for f smooth), and computed its Taylor coefficients:

- Fix $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)^{T} \in \mathbb{R}^{N}$, with $u_{i}>0$ pairwise distinct.
- Define $\Delta(t):=\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$, and compute its first $\binom{N}{2}+1$ derivatives:

$$
\begin{gathered}
\Delta(0)=\Delta^{\prime}(0)=\cdots=\Delta^{\left(\binom{N}{2}-1\right)}(0)=0, \quad \text { and } \\
\frac{\Delta^{\left(\binom{N}{2}\right)}(0)}{\binom{N}{2}!}=V(\mathbf{u})^{2} \cdot 1^{2} \cdot \frac{f(0)}{0!} \frac{f^{\prime}(0)}{1!} \cdots \frac{f^{(N-1)}(0)}{(N-1)!} .
\end{gathered}
$$

(Loewner stopped here for his purposes - of matrix positivity preservers - but) What if Loewner had gone one step further?

$$
\frac{\Delta^{\left(\binom{N}{2}+1\right)}(0)}{\left(\binom{N}{2}+1\right)!}=V(\mathbf{u})^{2} \cdot\left(u_{1}+\cdots+u_{N}\right)^{2} \cdot \frac{f(0)}{0!} \frac{f^{\prime}(0)}{1!} \cdots \frac{f^{(N-2)}(0)}{(N-2)!} \cdot \frac{f^{(N)}(0)}{N!}
$$

Hidden inside this derivative is a Schur polynomial!

Loewner's calculations

Loewner had summarized these computations in a letter to Josephine Mitchell (Penn. State) on 24 Oct 1967. (Later in: Roger Horn, [Trans. AMS 1969].)


```
defined in somuintural (a,b), a\geq0 audconssider all realog-merebio
muatrics (agy)>0 of arder m mile demuents ay & (G, B), Wh.C
pwopertien must for fovecmcuroter (ket the ruateicer (f(\mp@subsup{a}{i2}{}))>0
Ifound as nuecenauy cosetritions. flt)\geq0, f(tr) that if/ is
(n-1) timues differeuliable Lle follaminy coudilicuus are
nocencery
(C) f(t)\geq0, f
The furetran t\rho}(\rho>1)\mathrm{ do not oblisfy there covuditioun for
allg>, of }x>3\mathrm{ .
    The/urvof }\therefore\mathrm{ obtained by convideving nualitices of 
```


From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory:
Given $f:[0, \epsilon) \rightarrow \mathbb{R}$ smooth, and $u_{1}, \ldots, u_{N}>0$ pairwise distinct (for $\epsilon>0$ and $N \geqslant 1$), set $\Delta(t):=\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$ and compute $\Delta^{(M)}(0)$ for all integers $M \geqslant 0$.

From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory:
Given $f:[0, \epsilon) \rightarrow \mathbb{R}$ smooth, and $u_{1}, \ldots, u_{N}>0$ pairwise distinct (for $\epsilon>0$ and $N \geqslant 1$), set $\Delta(t):=\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$ and compute $\Delta^{(M)}(0)$ for all integers $M \geqslant 0$.

Uncovers all Schur polynomials - for \mathbf{u} and \mathbf{v} :

Theorem (K., Trans. Amer. Math. Soc. 2022)

Suppose f, ϵ, N are as above. Fix $\mathbf{u}, \mathbf{v} \in(0, \infty)^{N}$ and set $\Delta(t):=\operatorname{det} f\left[\operatorname{tuv}^{T}\right]$. Then for all $M \geqslant 0$,

$$
\frac{\Delta^{(M)}(0)}{M!}=\sum_{\mathbf{n}=\left(n_{1}, \ldots, n_{N}\right) \vdash M} V(\mathbf{u}) V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \cdot \prod_{j=1}^{N} \frac{f^{\left(n_{j}\right)}(0)}{n_{j}!}
$$

- All Schur polynomials "occur" inside each smooth function.

From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory:
Given $f:[0, \epsilon) \rightarrow \mathbb{R}$ smooth, and $u_{1}, \ldots, u_{N}>0$ pairwise distinct (for $\epsilon>0$ and $N \geqslant 1$), set $\Delta(t):=\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$ and compute $\Delta^{(M)}(0)$ for all integers $M \geqslant 0$.

Uncovers all Schur polynomials - for \mathbf{u} and \mathbf{v} :

Theorem (K., Trans. Amer. Math. Soc. 2022)

Suppose f, ϵ, N are as above. Fix $\mathbf{u}, \mathbf{v} \in(0, \infty)^{N}$ and set $\Delta(t):=\operatorname{det} f\left[\operatorname{tuv}^{T}\right]$. Then for all $M \geqslant 0$,

$$
\frac{\Delta^{(M)}(0)}{M!}=\sum_{\mathbf{n}=\left(n_{1}, \ldots, n_{N}\right) \vdash M} V(\mathbf{u}) V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \cdot \prod_{j=1}^{N} \frac{f^{\left(n_{j}\right)}(0)}{n_{j}!}
$$

- All Schur polynomials "occur" inside each smooth function.
- If f is a power series, then so is Δ. What is its expansion? (Starting with Cauchy and Frobenius...)

Cauchy-Frobenius identity for all power series

Theorem (K., Trans. Amer. Math. Soc. 2022)

Fix a commutative unital ring R and let t be an indeterminate.
Let $f(t):=\sum_{M \geqslant 0} f_{M} t^{M} \in R[[t]]$ be an arbitrary formal power series.
Given vectors $\mathbf{u}, \mathbf{v} \in R^{N}$ for some $N \geqslant 1$, we have:

$$
\operatorname{det} f\left[t \mathbf{u} \mathbf{v}^{T}\right]=V(\mathbf{u}) V(\mathbf{v}) \sum_{M \geqslant\binom{ N}{2}} t^{M} \sum_{\mathbf{n}=\left(n_{1}, \ldots, n_{N}\right) \vdash M} s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \prod_{j=1}^{N} f_{n_{j}}
$$

Also true in the real-analytic topology, for $R=\mathbb{R}$ and $|t|<$ radius of conv.

Cauchy-Frobenius identity for all power series

Theorem (K., Trans. Amer. Math. Soc. 2022)

Fix a commutative unital ring R and let t be an indeterminate. Let $f(t):=\sum_{M \geqslant 0} f_{M} t^{M} \in R[[t]]$ be an arbitrary formal power series.
Given vectors $\mathbf{u}, \mathbf{v} \in R^{N}$ for some $N \geqslant 1$, we have:

$$
\operatorname{det} f\left[\mathbf{u v}^{T}\right]=V(\mathbf{u}) V(\mathbf{v}) \sum_{M \geqslant\binom{ N}{2}} t^{M} \sum_{\mathbf{n}=\left(n_{1}, \ldots, n_{N}\right) \vdash M} s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \prod_{j=1}^{N} f_{n_{j}} .
$$

Also true in the real-analytic topology, for $R=\mathbb{R}$ and $|t|<$ radius of conv.

Similar questions and results (on symmetric function identities), including by

- Andrews-Goulden-Jackson [Trans. Amer. Math. Soc. 1988].
- Laksov-Lascoux-Thorup [Acta Math. 1989].
- Kuperberg [Ann. of Math. 2002].
- Ishikawa, Okado, and coauthors [Adv. Appl. Math. 2006, 2013].
- See also Krattenthaler, Advanced determinantal calculus (and its sequel) in 1998, 2005.

From determinants to all immanants

Theorem (K.-Sahi, 2022)

With (algebraic) notation as above, say over characteristic zero:

$$
\operatorname{perm} f\left[t \mathbf{u v}^{T}\right]=\frac{1}{N!} \sum_{\mathbf{m} \geqslant \mathbf{0}} t^{m_{1}+\cdots+m_{N}} \prod_{j=1}^{N} f_{m_{j}} \cdot \operatorname{perm}\left(u_{i}^{m_{j}}\right) \operatorname{perm}\left(v_{i}^{m_{j}}\right) .
$$

Also,

From determinants to all immanants

Theorem (K.-Sahi, 2022)

With (algebraic) notation as above, say over characteristic zero:

$$
\operatorname{perm} f\left[t \mathbf{u v}^{T}\right]=\frac{1}{N!} \sum_{\mathbf{m} \geqslant \mathbf{0}} t^{m_{1}+\cdots+m_{N}} \prod_{j=1}^{N} f_{m_{j}} \cdot \operatorname{perm}\left(u_{i}^{m_{j}}\right) \operatorname{perm}\left(v_{i}^{m_{j}}\right)
$$

Also, analogues for:

- All irreducible characters/immanants of S_{N}, or of subgroups of S_{N}.
- "Fermionic" (u_{i} anti-commuting) analogues of these "Bosonic" results.

Question: Fermionic/immanant versions of other symmetric function identities?

Schur polynomials in analysis: entrywise functions

- The Schur polynomials lurking inside all smooth functions (Loewner 1969 / K. 2022) turn out to play a crucial role in understanding entrywise polynomial maps that preserve positive semidefiniteness on $N \times N$ matrices.
- They are algebraic characters, but need to be studied as functions on the positive orthant $(0, \infty)^{N}$.

Schur polynomials via semi-standard Young tableaux

Back to the two examples above:
Example 1: Suppose $N=3$ and $\mathbf{m}:=(4,2,0)$. The tableaux are:

1	1
2	

$$
\begin{aligned}
& s_{(4,2,0)}\left(u_{1}, u_{2}, u_{3}\right) \\
= & u_{1}^{2} u_{2}+u_{1}^{2} u_{3}+u_{1} u_{2}^{2}+2 u_{1} u_{2} u_{3}+u_{1} u_{3}^{2}+u_{2}^{2} u_{3}+u_{2} u_{3}^{2} \\
= & \left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)
\end{aligned}
$$

Example 2: Suppose $N=3$ and $\mathbf{n}=(3,2,0)$:

Then $s_{(3,2,0)}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2}+u_{1} u_{3}+u_{2} u_{3}$.

Schur polynomials via semi-standard Young tableaux

Back to the two examples above:
Example 1: Suppose $N=3$ and $\mathbf{m}:=(4,2,0)$. The tableaux are:

1	1
2	

$$
\begin{aligned}
& s_{(4,2,0)}\left(u_{1}, u_{2}, u_{3}\right) \\
= & u_{1}^{2} u_{2}+u_{1}^{2} u_{3}+u_{1} u_{2}^{2}+2 u_{1} u_{2} u_{3}+u_{1} u_{3}^{2}+u_{2}^{2} u_{3}+u_{2} u_{3}^{2} \\
= & \left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)
\end{aligned}
$$

Example 2: Suppose $N=3$ and $\mathbf{n}=(3,2,0)$:

Then $s_{(3,2,0)}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2}+u_{1} u_{3}+u_{2} u_{3}$.
Note: Both polynomials are coordinate-wise non-decreasing on $(0, \infty)^{N}$.

Schur Monotonicity Lemma

Example: The ratio $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ for $\mathbf{m}=(4,2,0), \mathbf{n}=(3,2,0)$ is:

$$
f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}, \quad u_{1}, u_{2}, u_{3}>0
$$

Note: both numerator and denominator are monomial-positive (in fact Schur-positive, obviously) - hence non-decreasing in each coordinate.

Fact: Their ratio $f(\mathbf{u})$ has the same property!

Schur Monotonicity Lemma

Example: The ratio $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ for $\mathbf{m}=(4,2,0), \mathbf{n}=(3,2,0)$ is:

$$
f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}, \quad u_{1}, u_{2}, u_{3}>0
$$

Note: both numerator and denominator are monomial-positive (in fact Schur-positive, obviously) - hence non-decreasing in each coordinate.

Fact: Their ratio $f(\mathbf{u})$ has the same property!

Theorem (K.-Tao, Amer. J. Math., 2021)

For integer tuples $n_{1}>\cdots>n_{N} \geqslant 0$ and $m_{1}>\cdots>m_{N} \geqslant 0$ such that $m_{j} \geqslant n_{j} \forall j$, the function

$$
f:(0, \infty)^{N} \rightarrow \mathbb{R}, \quad f(\mathbf{u}):=\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}
$$

is non-decreasing in each coordinate.
(In fact, a stronger Schur positivity phenomenon holds.)

Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinate-wise non-decreasing.

Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinate-wise non-decreasing.
(Why?) Applying the quotient rule of differentiation to f,

$$
s_{\mathbf{n}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{m}}(\mathbf{u})-s_{\mathbf{m}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{n}}(\mathbf{u})=\left(u_{1}+u_{2}\right)\left(u_{1} u_{3}+2 u_{1} u_{2}+u_{2} u_{3}\right) u_{3}
$$ and this is monomial-positive (hence numerically positive).

Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinate-wise non-decreasing. (Why?) Applying the quotient rule of differentiation to f,

$$
s_{\mathbf{n}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{m}}(\mathbf{u})-s_{\mathbf{m}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{n}}(\mathbf{u})=\left(u_{1}+u_{2}\right)\left(u_{1} u_{3}+2 u_{1} u_{2}+u_{2} u_{3}\right) u_{3}
$$ and this is monomial-positive (hence numerically positive).

In fact, upon writing this as $\sum_{j \geqslant 0} p_{j}\left(u_{1}, u_{2}\right) u_{3}^{j}$, each p_{j} is Schur-positive, i.e. a sum of Schur polynomials:

$$
\begin{aligned}
& p_{0}\left(u_{1}, u_{2}\right)=0, \\
& p_{1}\left(u_{1}, u_{2}\right)=2 u_{1}^{2} u_{2}+2 u_{1} u_{2}^{2}=2 \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 2 & \\
\hline
\end{array}+2 \begin{array}{|l|l}
\hline 1 & 2 \\
\hline 2 &
\end{array}=2 s_{(3,1)}\left(u_{1}, u_{2}\right), \\
& p_{2}\left(u_{1}, u_{2}\right)=\left(u_{1}+u_{2}\right)^{2}=\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline 2 & 2 \\
\hline
\end{array}+\begin{array}{|l|}
\hline 1 \\
\hline 2 \\
\hline
\end{array} \\
& =s_{(3,0)}\left(u_{1}, u_{2}\right)+s_{(2,1)}\left(u_{1}, u_{2}\right) .
\end{aligned}
$$

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

The assertion would follow if this expression is monomial-positive.

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

The assertion would follow if this expression is monomial-positive.
Our Schur Monotonicity Lemma in fact shows that the coefficient of each u_{N}^{j} is (also) Schur-positive.

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

The assertion would follow if this expression is monomial-positive.
Our Schur Monotonicity Lemma in fact shows that the coefficient of each u_{N}^{j} is (also) Schur-positive.

Key ingredient: Schur-positivity result by Lam-Postnikov-Pylyavskyy (Amer. J. Math. 2007).
[In turn, this emerged out of Skandera's 2004 results on determinant inequalities for totally non-negative matrices.]

Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}=\frac{V(\mathbf{m})}{V(\mathbf{n})}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if \mathbf{m} dominates \mathbf{n} coordinate-wise.

- "Natural" to ask: for which other tuples \mathbf{m}, \mathbf{n} does this inequality hold?

Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}=\frac{V(\mathbf{m})}{V(\mathbf{n})}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if \mathbf{m} dominates \mathbf{n} coordinate-wise.

- "Natural" to ask: for which other tuples \mathbf{m}, \mathbf{n} does this inequality hold?

Now extended to real tuples (generalized Vandermonde determinants):

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_{1}>\cdots>n_{N}$ and $m_{1}>\cdots>m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in[1, \infty)_{\neq}^{N}$.
(2) \mathbf{m} weakly majorizes \mathbf{n} - i.e., $m_{1}+\cdots+m_{k} \geqslant n_{1}+\cdots+n_{k} \forall k$.

Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}=\frac{V(\mathbf{m})}{V(\mathbf{n})}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if \mathbf{m} dominates \mathbf{n} coordinate-wise.

- "Natural" to ask: for which other tuples \mathbf{m}, \mathbf{n} does this inequality hold?

Now extended to real tuples (generalized Vandermonde determinants):

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_{1}>\cdots>n_{N}$ and $m_{1}>\cdots>m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in[1, \infty)_{\neq}^{N}$.
(2) \mathbf{m} weakly majorizes \mathbf{n} - i.e., $m_{1}+\cdots+m_{k} \geqslant n_{1}+\cdots+n_{k} \forall k$.

Ingredients of proof: (a) "First-order" approximation of Schur polynomials; (b) Harish-Chandra-Itzykson-Zuber integral; (c) Schur convexity result.

Cuttler-Greene-Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0, \infty)^{N}$:

Cuttler-Greene-Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0, \infty)^{N}$:

Theorem (Cuttler-Greene-Skandera and Sra, Eur. J. Comb., 2011, 2016)
Fix integers $n_{1}>\cdots>n_{N} \geqslant 0$ and $m_{1}>\cdots>m_{N} \geqslant 0$. Then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.
Majorization $=($ weak majorization $)+\left(\sum_{j=1}^{N} m_{j}=\sum_{j=1}^{N} n_{j}\right)$.

Cuttler-Greene-Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0, \infty)^{N}$:

Theorem (Cuttler-Greene-Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $n_{1}>\cdots>n_{N} \geqslant 0$ and $m_{1}>\cdots>m_{N} \geqslant 0$. Then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.
Majorization $=($ weak majorization $)+\left(\sum_{j=1}^{N} m_{j}=\sum_{j=1}^{N} n_{j}\right)$.

Questions:

(1) Does this characterization extend to real powers?
(2) Can one use a smaller subset than the full orthant $(0, \infty)^{N}$, to deduce majorization?

Cuttler-Greene-Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0, \infty)^{N}$:

Theorem (Cuttler-Greene-Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $n_{1}>\cdots>n_{N} \geqslant 0$ and $m_{1}>\cdots>m_{N} \geqslant 0$. Then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.
Majorization $=($ weak majorization $)+\left(\sum_{j=1}^{N} m_{j}=\sum_{j=1}^{N} n_{j}\right)$.

Questions:

(1) Does this characterization extend to real powers?
(2) Can one use a smaller subset than the full orthant $(0, \infty)^{N}$, to deduce majorization?

Yes, and Yes:

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)
Given reals $n_{1}>\cdots>n_{N}$ and $m_{1}>\cdots>m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) m majorizes n .

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)
Given reals $n_{1}>\cdots>n_{N}$ and $m_{1}>\cdots>m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) majorizes n .

Proof:

- $(1) \Longrightarrow(2)$: Obvious. $\quad(3) \Longrightarrow(1)$: Akin to Sra (2016).
- $(2) \Longrightarrow(3):$ If $\mathbf{u} \in[1, \infty)_{\neq}^{N}$, then by preceding result: $\mathbf{m} \succ_{w} \mathbf{n}$.

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_{1}>\cdots>n_{N}$ and $m_{1}>\cdots>m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) majorizes n .

Proof:

- $(1) \Longrightarrow(2)$: Obvious. $\quad(3) \Longrightarrow(1)$: Akin to Sra (2016).
- (2) $\Longrightarrow(3)$: If $\mathbf{u} \in[1, \infty)_{\neq}^{N}$, then by preceding result: $\mathbf{m} \succ_{w} \mathbf{n}$.

If $\mathbf{u} \in(0,1]_{\neq}^{N}$, let $v_{i}:=1 / u_{i} \geqslant 1$. Now compute:

$$
\frac{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{m})}\right)}{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{n})}\right)}=\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}=\frac{V(-\mathbf{m})}{V(-\mathbf{n})}
$$

By preceding result: $-\mathbf{m} \succ_{w}-\mathbf{n}$;

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_{1}>\cdots>n_{N}$ and $m_{1}>\cdots>m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) \mathbf{m} majorizes \mathbf{n}.

Proof:

- $(1) \Longrightarrow(2)$: Obvious. $\quad(3) \Longrightarrow(1)$: Akin to Sra (2016).
- (2) $\Longrightarrow(3):$ If $\mathbf{u} \in[1, \infty)_{\neq}^{N}$, then by preceding result: $\mathbf{m} \succ_{w} \mathbf{n}$.

If $\mathbf{u} \in(0,1]_{\neq}^{N}$, let $v_{i}:=1 / u_{i} \geqslant 1$. Now compute:

$$
\frac{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{m})}\right)}{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{n})}\right)}=\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}=\frac{V(-\mathbf{m})}{V(-\mathbf{n})}
$$

By preceding result: $-\mathbf{m} \succ_{w}-\mathbf{n}$; and $\mathbf{m} \succ_{w} \mathbf{n} \Longleftrightarrow \mathbf{m}$ majorizes \mathbf{n}.

Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions?
C-G-S: $\frac{s_{\mathbf{m}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{m}}(1, \ldots, 1)} \geqslant \frac{s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{n}}(1, \ldots, 1)}$ on $(0, \infty)^{N} \Longleftrightarrow$ m majorizes \mathbf{n}.

Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions? C-G-S: $\frac{s_{\mathbf{m}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{m}}(1, \ldots, 1)} \geqslant \frac{s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{n}}(1, \ldots, 1)}$ on $(0, \infty)^{N} \Longleftrightarrow \mathbf{m}$ majorizes \mathbf{n}.

Instead, if one uses the monomial symmetric polynomial
then:

$$
m_{\lambda}\left(u_{1}, \ldots, u_{N}\right):=\frac{\left|S_{N} \cdot \lambda\right|}{N!} \sum_{\sigma \in S_{N}} \prod_{j=1}^{N} u_{j}^{\lambda_{\sigma(j)}}
$$

Theorem (Muirhead, Proc. Edinburgh Math. Soc. 1903)

Fix scalars $n_{1}>\cdots>n_{N} \geqslant 0$ and $m_{1}>\cdots>m_{N} \geqslant 0$. Then

$$
\frac{m_{\mathbf{m}}(\mathbf{u})}{m_{\mathbf{m}}(1, \ldots, 1)} \geqslant \frac{m_{\mathbf{n}}(\mathbf{u})}{m_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.

Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions? C-G-S: $\frac{s_{\mathbf{m}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{m}}(1, \ldots, 1)} \geqslant \frac{s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{n}}(1, \ldots, 1)}$ on $(0, \infty)^{N} \Longleftrightarrow \mathbf{m}$ majorizes \mathbf{n}.

Instead, if one uses the monomial symmetric polynomial
then:

$$
m_{\lambda}\left(u_{1}, \ldots, u_{N}\right):=\frac{\left|S_{N} \cdot \lambda\right|}{N!} \sum_{\sigma \in S_{N}} \prod_{j=1}^{N} u_{j}^{\lambda_{\sigma(j)}}
$$

Theorem (Muirhead, Proc. Edinburgh Math. Soc. 1903)

Fix scalars $n_{1}>\cdots>n_{N} \geqslant 0$ and $m_{1}>\cdots>m_{N} \geqslant 0$. Then

$$
\frac{m_{\mathbf{m}}(\mathbf{u})}{m_{\mathbf{m}}(1, \ldots, 1)} \geqslant \frac{m_{\mathbf{n}}(\mathbf{u})}{m_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.

Question: What if one restricts to $\mathbf{u} \in[1, \infty)^{N}$?

Majorization inequalities

The C-G-S-Sra inequality (and its follow-up by K.-Tao) as well as Muirhead's inequality, are examples of majorization inequalities.

Other majorization inequalities have been shown by:

- Maclaurin (1729)
- Newton (1732)
- Schlömilch (1858)
- Schur (1920s?)
- Popoviciu (1934)
- Gantmacher (1959)

Majorization inequalities

The C-G-S-Sra inequality (and its follow-up by K.-Tao)
as well as Muirhead's inequality, are examples of majorization inequalities.
Other majorization inequalities have been shown by:

- Maclaurin (1729)
- Newton (1732)
- Schlömilch (1858)
- Schur (1920s?)
- Popoviciu (1934)
- Gantmacher (1959)

Vast generalization by McSwiggen-Novak [IMRN 2022] to all Weyl groups, via spherical functions on Riemannian symmetric spaces.

Conjectured to hold even more generally, for Heckman-Opdam hypergeometric functions - this would extend C-G-S-Sra from Schur polynomials to Jack polynomials. (Extends to Macdonald polynomials?)

Complete homogeneous symmetric (CHS) polynomials

Define $h_{k}\left(u_{1}, u_{2}, \ldots\right):=\sum_{i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{k}} u_{i_{1}} u_{i_{2}} \cdots u_{i_{k}}$.

Thus, $\quad h_{0}=1, \quad h_{2}=\sum_{i} u_{i}^{2}+\sum_{i<j} u_{i} u_{j}=\frac{1}{2}\left(h_{1}(\mathbf{u})^{2}+p_{2}(\mathbf{u})\right) \geqslant 0$.

Complete homogeneous symmetric (CHS) polynomials

Define $h_{k}\left(u_{1}, u_{2}, \ldots\right):=\sum_{i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{k}} u_{i_{1}} u_{i_{2}} \cdots u_{i_{k}}$.

Thus, $\quad h_{0}=1, \quad h_{2}=\sum_{i} u_{i}^{2}+\sum_{i<j} u_{i} u_{j}=\frac{1}{2}\left(h_{1}(\mathbf{u})^{2}+p_{2}(\mathbf{u})\right) \geqslant 0$.

Lemma

For all integers $r \geqslant 0$ and $N>0$, the polynomial $h_{2 r}\left(u_{1}, \ldots u_{N}\right)$ does not vanish on \mathbb{R}^{N} except at the origin.

Complete homogeneous symmetric (CHS) polynomials

Define $h_{k}\left(u_{1}, u_{2}, \ldots\right):=\sum_{i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{k}} u_{i_{1}} u_{i_{2}} \cdots u_{i_{k}}$.

Thus, $\quad h_{0}=1, \quad h_{2}=\sum_{i} u_{i}^{2}+\sum_{i<j} u_{i} u_{j}=\frac{1}{2}\left(h_{1}(\mathbf{u})^{2}+p_{2}(\mathbf{u})\right) \geqslant 0$.

Lemma

For all integers $r \geqslant 0$ and $N>0$, the polynomial $h_{2 r}\left(u_{1}, \ldots u_{N}\right)$ does not vanish on \mathbb{R}^{N} except at the origin.

Proof (A. Barvinok): Given i.i.d. exponential(1) random variables Z_{1}, \ldots, Z_{N}, $k!h_{k}\left(u_{1}, \ldots, u_{N}\right)=\mathbb{E}\left[\left(u_{1} Z_{1}+\cdots+u_{N} Z_{N}\right)^{k}\right] \quad \forall k \geqslant 0, u_{1}, \ldots, u_{N} \in \mathbb{R}$.

Complete homogeneous symmetric (CHS) polynomials

Define $h_{k}\left(u_{1}, u_{2}, \ldots\right):=\sum_{i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{k}} u_{i_{1}} u_{i_{2}} \cdots u_{i_{k}}$.

Thus, $\quad h_{0}=1, \quad h_{2}=\sum_{i} u_{i}^{2}+\sum_{i<j} u_{i} u_{j}=\frac{1}{2}\left(h_{1}(\mathbf{u})^{2}+p_{2}(\mathbf{u})\right) \geqslant 0$.

Lemma

For all integers $r \geqslant 0$ and $N>0$, the polynomial $h_{2 r}\left(u_{1}, \ldots u_{N}\right)$ does not vanish on \mathbb{R}^{N} except at the origin.

Proof (A. Barvinok): Given i.i.d. exponential(1) random variables Z_{1}, \ldots, Z_{N}, $k!h_{k}\left(u_{1}, \ldots, u_{N}\right)=\mathbb{E}\left[\left(u_{1} Z_{1}+\cdots+u_{N} Z_{N}\right)^{k}\right] \quad \forall k \geqslant 0, u_{1}, \ldots, u_{N} \in \mathbb{R}$.

Which (other) Schur polynomials share this property?

CHS polynomials (cont.)

Which other Schur polynomials share this property?

CHS polynomials (cont.)

Which other Schur polynomials share this property? None:

Lemma (K.-Tao)

Suppose $N \geqslant 1$ and $n_{1}>\cdots>n_{N} \geqslant 0$ are integers. Then the Schur polynomial $s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right)$ is nonvanishing on $\mathbb{R}^{N} \backslash\{\mathbf{0}\}$, if and only if there exists $r \geqslant 0$ such that

$$
n_{N}=0, \quad n_{N-1}=1, \quad \cdots, \quad n_{2}=N-2, \quad n_{1}=(N-1)+2 r .
$$

CHS polynomials (cont.)

Which other Schur polynomials share this property? None:

Lemma (K.-Tao)

Suppose $N \geqslant 1$ and $n_{1}>\cdots>n_{N} \geqslant 0$ are integers. Then the Schur polynomial $s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right)$ is nonvanishing on $\mathbb{R}^{N} \backslash\{\mathbf{0}\}$, if and only if there exists $r \geqslant 0$ such that

$$
n_{N}=0, \quad n_{N-1}=1, \quad \cdots, \quad n_{2}=N-2, \quad n_{1}=(N-1)+2 r
$$

Now recall the Schur Monotonicity Lemma: if $\mathbf{m} \geqslant \mathbf{n}$ coordinatewise, then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}:(0, \infty)^{N} \rightarrow \mathbb{R}
$$

is non-decreasing in each coordinate. In particular, it attains its supremum on $[0,1]^{N} \backslash\{\mathbf{0}\}$ at $(1, \ldots, 1)$.

CHS polynomials (cont.)

Which other Schur polynomials share this property? None:

Lemma (K.-Tao)

Suppose $N \geqslant 1$ and $n_{1}>\cdots>n_{N} \geqslant 0$ are integers. Then the Schur polynomial $s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right)$ is nonvanishing on $\mathbb{R}^{N} \backslash\{\mathbf{0}\}$, if and only if there exists $r \geqslant 0$ such that

$$
n_{N}=0, \quad n_{N-1}=1, \quad \cdots, \quad n_{2}=N-2, \quad n_{1}=(N-1)+2 r
$$

Now recall the Schur Monotonicity Lemma: if $\mathbf{m} \geqslant \mathbf{n}$ coordinatewise, then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}:(0, \infty)^{N} \rightarrow \mathbb{R}
$$

is non-decreasing in each coordinate. In particular, it attains its supremum on $[0,1]^{N} \backslash\{\mathbf{0}\}$ at $(1, \ldots, 1)$.

Now consider the two-sided optimization problem, i.e. on $[-1,1]^{N} \backslash\{0\}$. The above Lemmas suggest taking $\mathbf{n}=(N-1+2 r, N-2, \ldots, 1,0)$.

Maximizing ratios involving CHS polynomials

"Two-sided" variant: Suppose $\mathbf{n}=(N-1+2 r, N-2, \ldots, 1,0))$ for $r \geqslant 0$, and $\mathbf{m} \geqslant \mathbf{n}$ coordinatewise. Define

$$
f(\mathbf{u}):=\frac{s_{\mathbf{m}}(\mathbf{u})^{2}}{h_{2 r}(\mathbf{u})^{2}}
$$

Maximizing ratios involving CHS polynomials

"Two-sided" variant: Suppose $\mathbf{n}=(N-1+2 r, N-2, \ldots, 1,0))$ for $r \geqslant 0$, and $\mathbf{m} \geqslant \mathbf{n}$ coordinatewise. Define

$$
f(\mathbf{u}):=\frac{s_{\mathbf{m}}(\mathbf{u})^{2}}{h_{2 r}(\mathbf{u})^{2}}
$$

Question: How does this function behave on $[-1,1]^{N} \backslash\{\mathbf{0}\}$? Where does it attain its supremum?

Maximizing ratios involving CHS polynomials

"Two-sided" variant: Suppose $\mathbf{n}=(N-1+2 r, N-2, \ldots, 1,0))$ for $r \geqslant 0$, and $\mathbf{m} \geqslant \mathbf{n}$ coordinatewise. Define

$$
f(\mathbf{u}):=\frac{s_{\mathbf{m}}(\mathbf{u})^{2}}{h_{2 r}(\mathbf{u})^{2}}
$$

Question: How does this function behave on $[-1,1]^{N} \backslash\{\mathbf{0}\}$? Where does it attain its supremum?

- By homogeneity considerations, enough to consider the behavior on the boundary of the cube $[-1,1]^{N}$ (a compact set). Where is the maximum attained - and what does it equal?

Maximizing ratios involving CHS polynomials

"Two-sided" variant: Suppose $\mathbf{n}=(N-1+2 r, N-2, \ldots, 1,0))$ for $r \geqslant 0$, and $\mathbf{m} \geqslant \mathbf{n}$ coordinatewise. Define

$$
f(\mathbf{u}):=\frac{s_{\mathbf{m}}(\mathbf{u})^{2}}{h_{2 r}(\mathbf{u})^{2}}
$$

Question: How does this function behave on $[-1,1]^{N} \backslash\{\mathbf{0}\}$? Where does it attain its supremum?

- By homogeneity considerations, enough to consider the behavior on the boundary of the cube $[-1,1]^{N}$ (a compact set). Where is the maximum attained - and what does it equal?
- A solution to this question has consequences for entrywise polynomials that preserve positivity on matrices.

References I: Symmetric function identities

[1] A.-L. Cauchy. Memoir, 1841.
Mémoire sur les fonctions alternées et sur les sommes alternées.
[2] F.G. Frobenius. J. reine Angew. Math., 1882.
Über die elliptischen Funktionen zweiter Art.
[3] C. Loewner. Letter to J. Mitchell, 1967.
(Published+attributed in paper by R.A. Horn, in Trans. Amer. Math. Soc., 1969.)
[4] G.E. Andrews, I.P. Goulden, and D.M. Jackson. Trans. Amer. Math. Soc., 1988. Generalizations of Cauchy's summation theorem for Schur functions.
[5] D. Laksov, A. Lascoux, and A. Thorup. Acta Math., 1989.
On Giambelli's theorem for complete correlations.
[6] G. Kuperberg. Ann. of Math., 2002.
Symmetry classes of alternating-sign matrices under one roof.
[7] H. Rosengren and M. Schlosser. Compos. Math., 2006. Elliptic determinant evaluations and Macdonald identities for affine root systems.
[8] A. Khare. Trans. Amer. Math. Soc., 2022.
Smooth entrywise positivity preservers, a Horn-Loewner master theorem, and symmetric function identities.
[9] A. Khare and S. Sahi. Preprint, 2022. From Cauchy's determinant formula to bosonic/fermionic immanant identities.

References II: Majorization inequalities

[1] C. Maclaurin. Philos. Trans., 1729.
A second letter to Martin Foulkes, Esq., concerning the roots of equations with the demonstrations of other rules in algebra.
[2] I. Newton. Memoir, 1732.
Arithmetica universalis: sive de compositione et resolutione arithmetica liber.
[3] O. Schlömilch. Z. Math. Phys., 1858.
Über Mittel grössen verschiedener Ordnung.
[4] R.F. Muirhead. Proc. Edinburgh Math. Soc., 1903.
Some methods applicable to identities of symmetric algebraic functions of n letters.
[5] A. Cuttler, C. Greene, and M. Skandera. Eur. J. Combin., 2011. Inequalities for symmetric means.
[6] S. Sra. Eur. J. Combin., 2016.
On inequalities for normalized Schur functions.
[7] A. Khare and T. Tao. Amer. J. Math., 2021.
On the sign patterns of entrywise positivity preservers in fixed dimension.
[8] C. McSwiggen and J. Novak. Int. Res. Math. Not. IMRN, 2022. Majorization and spherical functions.

Thank you for your attention.

[L 나 $]$
Algato Society

W-majorization

Let $V=$ Euclidean space containing $\Phi=$ crystallographic root system, with Weyl group $W \subset O(V)$.
(So W is generated by the reflections in the hyperplanes orthogonal to $\alpha \in \Phi$.)

W-majorization

Let $V=$ Euclidean space containing $\Phi=$ crystallographic root system, with Weyl group $W \subset O(V)$. (So W is generated by the reflections in the hyperplanes orthogonal to $\alpha \in \Phi$.)

Definition (McSwiggen-Novak): Given $\lambda, \mu \in V$, say that λW-majorizes μ if μ lies in the convex hull of the orbit $W \cdot \lambda$.

Special case: If Φ is of type A, then $W=S_{N}$, and then

$$
\underline{\lambda} S_{N} \text {-majorizes } \mu \text { precisely means } \underline{\lambda \text { majorizes } \mu} \text {. }
$$

Riemannian symmetric spaces

- Let $G=$ connected Lie group, $\sigma: G \rightarrow G$ an order-2 automorphism. If $K:=G^{\sigma}$ is compact, $X=G / K$ is a Riemannian symmetric space.

Riemannian symmetric spaces

- Let $G=$ connected Lie group, $\sigma: G \rightarrow G$ an order-2 automorphism. If $K:=G^{\sigma}$ is compact, $X=G / K$ is a Riemannian symmetric space.
- (Under further assumptions:) Iwasawa decomposition $G=N A K$. The weights/roots of $\operatorname{Lie}(G)$ w.r.t. $\mathfrak{a}:=\operatorname{Lie}(A)$ form a root system Φ.
- Now study W-majorization for $\lambda, \mu \in \mathfrak{a}$.
- The analogues of (normalized) Schur polyomials are spherical functions, studied by Harish-Chandra [Amer. J. Math. 1958].

Riemannian symmetric spaces

- Let $G=$ connected Lie group, $\sigma: G \rightarrow G$ an order-2 automorphism. If $K:=G^{\sigma}$ is compact, $X=G / K$ is a Riemannian symmetric space.
- (Under further assumptions:) Iwasawa decomposition $G=N A K$. The weights/roots of $\operatorname{Lie}(G)$ w.r.t. $\mathfrak{a}:=\operatorname{Lie}(A)$ form a root system Φ.
- Now study W-majorization for $\lambda, \mu \in \mathfrak{a}$.
- The analogues of (normalized) Schur polyomials are spherical functions, studied by Harish-Chandra [Amer. J. Math. 1958].

Theorem (McSwiggen-Novak, IMRN 2022)

Extended the C-G-S / Sra / K.-Tao results, to characterize W-majorization on \mathfrak{a}, via inequalities of the spherical functions $\phi_{i \lambda} \geqslant \phi_{i \mu}$ on G / K.

