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Determinantal equalities
Majorization inequalities

Schur polynomials
Given a decreasing N -tuple of integers n1 > · · · > nN > 0,
the corresponding Schur polynomial over a field F (say char F = 0) is the
unique polynomial extension to FN of

sn(u1, . . . , uN ) :=
det(u

nj
i )Ni,j=1

det(uN−ji )
=

det(u
nj
i )Ni,j=1

V (u)

for pairwise distinct ui ∈ F.

Note that the denominator is precisely the
Vandermonde determinant

V ((u1, . . . , uN )) := det(uN−ji ) =
∏

16i<j6N

(ui − uj).

Basis of homogeneous symmetric polynomials in u1, . . . , uN .

Characters of irreducible polynomial representations of GLN (C),

usually defined in terms of semi-standard Young tableaux.

Weyl Character (Dimension) Formula in Type A:

sn(1, . . . , 1) =
∏

16i<j6N

ni − nj
j − i =

V (n)

V ((N − 1, . . . , 1, 0))
.
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Determinantal equalities
Majorization inequalities

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N = 3 and m := (4, 2, 0). The tableaux are:

1 1

2

1 1

3

1 2

2

1 2

3

1 3

2

1 3

3

2 2

3

2 3

3

s(4,2,0)(u1, u2, u3)

= u2
1u2 + u2

1u3 + u1u
2
2 + 2u1u2u3 + u1u

2
3 + u2

2u3 + u2u
2
3

= (u1 + u2)(u2 + u3)(u3 + u1).

Example 2: Suppose N = 3 and n = (3, 2, 0): 1

2

1

3

2

3

Then s(3,2,0)(u1, u2, u3) = u1u2 + u1u3 + u2u3.
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Determinantal equalities
Majorization inequalities

From Frobenius, Cauchy, Binet in algebra. . .
. . . to Loewner and beyond in analysis

Cauchy’s – and Frobenius’s – determinantal identity

Theorem (Cauchy, 1841 memoir)

If f(t) = (1− t)−1 = 1 + t+ t2 + · · · , and f [A] := (f(aij)), then

det f [uvT ] = det((1− uivj)−1)Ni,j=1 =
∑
M>0

∑
n `M

V (u)V (v) · sn(u)sn(v).

This is the c = 0 special case of:

Theorem (Frobenius, J. reine Angew. Math. 1882)

If f(t) =
1− ct
1− t for a scalar c, then

det f [uvT ] = det

(
1− cuivj
1− uivj

)N
i,j=1

= V (u)V (v)(1− c)N−1

 ∑
n : nN=0

sn(u)sn(v) + (1− c)
∑

n : nN>0

sn(u)sn(v)

.
What happens for other power series?
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Determinantal equalities
Majorization inequalities

From Frobenius, Cauchy, Binet in algebra. . .
. . . to Loewner and beyond in analysis

The determinantal identity for polynomials

Suppose f(t) = f1t
n1 + · · ·+ fkt

nk is any polynomial with < N terms.
(Say n1 > · · · > nk > 0.) Then

f [uvT ] = f1u
◦n1(v◦n1)T + · · ·+ fku

◦nk (v◦nk )T

has rank k < N, so its determinant is zero.

(Folklore case: Jacobi, Cauchy, Schur. . . ) Suppose f(t) =
∑N
j=1 fjt

nj .

Then f [uvT ] factorizes as
un1
1 un2

1 · · · unN1
un1
2 un2

2 · · · unN2
...

...
. . .

...
un1
N un2

N · · · unNN

·

f1 0 · · · 0
0 f2 · · · 0
...

...
. . .

...
0 0 · · · fN

·

vn1
1 vn2

1 · · · vnN1

vn1
2 vn2

2 · · · vnN2

...
...

. . .
...

vn1
N vn2

N · · · vnNN


T

,

so det f [uvT ] = V (u)V (v)

N∏
j=1

fj · sn(u)sn(v).

Similar computation for arbitrary polynomials – f [uvT ] factorizes, so use
the Cauchy–Binet formula.
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Determinantal equalities
Majorization inequalities

From Frobenius, Cauchy, Binet in algebra. . .
. . . to Loewner and beyond in analysis

Connection from analysis

Loewner studied det f [tuuT ] as a function of t (for f smooth), and computed
its Taylor coefficients:

Fix u = (u1, . . . , uN )T ∈ RN , with ui > 0 pairwise distinct.

Define ∆(t) := det f [tuuT ], and compute its first
(
N
2

)
+ 1 derivatives:

∆(0) = ∆′(0) = · · · = ∆((N2 )−1)(0) = 0, and

∆((N2 ))(0)(
N
2

)
!

= V (u)2·12· f(0)

0!

f ′(0)

1!
· · · f

(N−1)(0)

(N − 1)!
.

(Loewner stopped here for his purposes – of matrix positivity preservers – but)
What if Loewner had gone one step further?

∆((N2 )+1)(0)

(
(
N
2

)
+ 1)!

= V (u)2·(u1 + · · ·+ uN )2· f(0)

0!

f ′(0)

1!
· · · f

(N−2)(0)

(N − 2)!
· f

(N)(0)

N !
.

Hidden inside this derivative is a Schur polynomial!
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Determinantal equalities
Majorization inequalities

From Frobenius, Cauchy, Binet in algebra. . .
. . . to Loewner and beyond in analysis

Loewner’s calculations
Loewner had summarized these computations in a letter to Josephine Mitchell
(Penn. State) on 24 Oct 1967. (Later in: Roger Horn, [Trans. AMS 1969].)
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Determinantal equalities
Majorization inequalities

From Frobenius, Cauchy, Binet in algebra. . .
. . . to Loewner and beyond in analysis

From each smooth function to all Schur polynomials
This provides a novel bridge, between analysis and symmetric function theory:

Given f : [0, ε)→ R smooth, and u1, . . . , uN > 0 pairwise distinct
(for ε > 0 and N > 1),
set ∆(t) := det f [tuuT ] and compute ∆(M)(0) for all integers M > 0.

Uncovers all Schur polynomials – for u and v:

Theorem (K., Trans. Amer. Math. Soc. 2022)

Suppose f, ε,N are as above. Fix u,v ∈ (0,∞)N and set ∆(t) := det f [tuvT ].
Then for all M > 0,

∆(M)(0)

M !
=

∑
n=(n1,...,nN ) `M

V (u)V (v)·sn(u)sn(v)·
N∏
j=1

f (nj)(0)

nj !
.

All Schur polynomials “occur” inside each smooth function.

If f is a power series, then so is ∆. What is its expansion?
(Starting with Cauchy and Frobenius. . . )
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Determinantal equalities
Majorization inequalities

From Frobenius, Cauchy, Binet in algebra. . .
. . . to Loewner and beyond in analysis

Cauchy–Frobenius identity for all power series

Theorem (K., Trans. Amer. Math. Soc. 2022)

Fix a commutative unital ring R and let t be an indeterminate.
Let f(t) :=

∑
M>0 fM t

M ∈ R[[t]] be an arbitrary formal power series.
Given vectors u,v ∈ RN for some N > 1, we have:

det f [tuvT ] = V (u)V (v)
∑

M>(N2 )

tM
∑

n=(n1,...,nN ) `M

sn(u)sn(v)

N∏
j=1

fnj .

Also true in the real-analytic topology, for R = R and |t| < radius of conv.

Similar questions and results (on symmetric function identities), including by

Andrews–Goulden–Jackson [Trans. Amer. Math. Soc. 1988].

Laksov–Lascoux–Thorup [Acta Math. 1989].

Kuperberg [Ann. of Math. 2002].

Ishikawa, Okado, and coauthors [Adv. Appl. Math. 2006, 2013].

See also Krattenthaler, Advanced determinantal calculus (and its sequel)
in 1998, 2005.
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Fix a commutative unital ring R and let t be an indeterminate.
Let f(t) :=

∑
M>0 fM t

M ∈ R[[t]] be an arbitrary formal power series.
Given vectors u,v ∈ RN for some N > 1, we have:

det f [tuvT ] = V (u)V (v)
∑

M>(N2 )

tM
∑

n=(n1,...,nN ) `M

sn(u)sn(v)

N∏
j=1

fnj .

Also true in the real-analytic topology, for R = R and |t| < radius of conv.

Similar questions and results (on symmetric function identities), including by

Andrews–Goulden–Jackson [Trans. Amer. Math. Soc. 1988].

Laksov–Lascoux–Thorup [Acta Math. 1989].

Kuperberg [Ann. of Math. 2002].

Ishikawa, Okado, and coauthors [Adv. Appl. Math. 2006, 2013].

See also Krattenthaler, Advanced determinantal calculus (and its sequel)
in 1998, 2005.
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From Frobenius, Cauchy, Binet in algebra. . .
. . . to Loewner and beyond in analysis

From determinants to all immanants

Theorem (K.–Sahi, 2022)

With (algebraic) notation as above, say over characteristic zero:

perm f [tuvT ] =
1

N !

∑
m>0

tm1+···+mN
N∏
j=1

fmj · perm(u
mj
i )perm(v

mj
i ).

Also,

analogues for:

All irreducible characters/immanants of SN , or of subgroups of SN .

“Fermionic” (ui anti-commuting) analogues of these “Bosonic” results.

Question: Fermionic/immanant versions of other symmetric function identities?
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Monotonicity of ratios of Schur polynomials
Majorization inequalities via symmetric functions

Schur polynomials in analysis: entrywise functions

The Schur polynomials lurking inside all smooth functions
(Loewner 1969 / K. 2022) turn out to play a crucial role in understanding
entrywise polynomial maps that preserve positive semidefiniteness on
N ×N matrices.

They are algebraic characters, but need to be studied as functions on the
positive orthant (0,∞)N .
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Schur polynomials via semi-standard Young tableaux

Back to the two examples above:

Example 1: Suppose N = 3 and m := (4, 2, 0). The tableaux are:

1 1

2

1 1

3

1 2

2

1 2

3

1 3

2

1 3

3

2 2

3

2 3

3

s(4,2,0)(u1, u2, u3)

= u2
1u2 + u2

1u3 + u1u
2
2 + 2u1u2u3 + u1u

2
3 + u2

2u3 + u2u
2
3

= (u1 + u2)(u2 + u3)(u3 + u1).

Example 2: Suppose N = 3 and n = (3, 2, 0): 1

2

1

3

2

3

Then s(3,2,0)(u1, u2, u3) = u1u2 + u1u3 + u2u3.

Note: Both polynomials are coordinate-wise non-decreasing on (0,∞)N .
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Schur Monotonicity Lemma

Example: The ratio sm(u)/sn(u) for m = (4, 2, 0), n = (3, 2, 0) is:

f(u1, u2, u3) =
(u1 + u2)(u2 + u3)(u3 + u1)

u1u2 + u2u3 + u3u1
, u1, u2, u3 > 0.

Note: both numerator and denominator are monomial-positive (in fact
Schur-positive, obviously) – hence non-decreasing in each coordinate.

Fact: Their ratio f(u) has the same property!

Theorem (K.–Tao, Amer. J. Math., 2021)

For integer tuples n1 > · · · > nN > 0 and m1 > · · · > mN > 0 such that
mj > nj ∀j, the function

f : (0,∞)N → R, f(u) :=
sm(u)

sn(u)

is non-decreasing in each coordinate.
(In fact, a stronger Schur positivity phenomenon holds.)
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Determinantal equalities
Majorization inequalities

Monotonicity of ratios of Schur polynomials
Majorization inequalities via symmetric functions

Schur Monotonicity Lemma

Example: The ratio sm(u)/sn(u) for m = (4, 2, 0), n = (3, 2, 0) is:

f(u1, u2, u3) =
(u1 + u2)(u2 + u3)(u3 + u1)

u1u2 + u2u3 + u3u1
, u1, u2, u3 > 0.

Note: both numerator and denominator are monomial-positive (in fact
Schur-positive, obviously) – hence non-decreasing in each coordinate.

Fact: Their ratio f(u) has the same property!

Theorem (K.–Tao, Amer. J. Math., 2021)

For integer tuples n1 > · · · > nN > 0 and m1 > · · · > mN > 0 such that
mj > nj ∀j, the function

f : (0,∞)N → R, f(u) :=
sm(u)

sn(u)

is non-decreasing in each coordinate.
(In fact, a stronger Schur positivity phenomenon holds.)

Apoorva Khare, IISc Bangalore 13



Determinantal equalities
Majorization inequalities

Monotonicity of ratios of Schur polynomials
Majorization inequalities via symmetric functions

Schur Monotonicity Lemma (cont.)

Claim: The ratio f(u1, u2, u3) =
(u1 + u2)(u2 + u3)(u3 + u1)

u1u2 + u2u3 + u3u1
,

treated as a function on the orthant (0,∞)3, is coordinate-wise non-decreasing.

(Why?) Applying the quotient rule of differentiation to f,

sn(u)∂u3sm(u)− sm(u)∂u3sn(u) = (u1 + u2)(u1u3 + 2u1u2 + u2u3)u3,

and this is monomial-positive (hence numerically positive).

In fact, upon writing this as
∑
j>0 pj(u1, u2)uj3, each pj is Schur-positive, i.e. a

sum of Schur polynomials:

p0(u1, u2) = 0,

p1(u1, u2) = 2u2
1u2 + 2u1u

2
2 = 2

1 1

2
+ 2

1 2

2
= 2s(3,1)(u1, u2),

p2(u1, u2) = (u1 + u2)2 =
1 1

+
1 2

+
2 2

+
1

2

= s(3,0)(u1, u2) + s(2,1)(u1, u2).
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Proof-sketch of Schur Monotonicity Lemma

The proof for general m > n is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

sn · ∂uN (sm)− sm · ∂uN (sn)

is numerically positive on (0,∞)N . (Note, the coefficients in sn(u) of each ujN
are skew-Schur polynomials in u1, . . . , uN−1.)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each ujN
is (also) Schur-positive.

Key ingredient: Schur-positivity result by Lam–Postnikov–Pylyavskyy
(Amer. J. Math. 2007).

[In turn, this emerged out of Skandera’s 2004 results on determinant
inequalities for totally non-negative matrices.]
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Weak majorization through Schur polynomials

Our Schur Monotonicity Lemma implies in particular:

sm(u)

sn(u)
>
sm(1, . . . , 1)

sn(1, . . . , 1)
=
V (m)

V (n)
, ∀u ∈ [1,∞)N .

if m dominates n coordinate-wise.

“Natural” to ask: for which other tuples m,n does this inequality hold?

Now extended to real tuples (generalized Vandermonde determinants):

Theorem (K.–Tao, Amer. J. Math., 2021)

Given reals n1 > · · · > nN and m1 > · · · > mN , TFAE:

1
det(u◦m)

det(u◦n)
>
V (m)

V (n)
, for all “distinct” tuples u ∈ [1,∞)N6= .

2 m weakly majorizes n – i.e., m1 + · · ·+mk > n1 + · · ·+ nk ∀k.

Ingredients of proof: (a) “First-order” approximation of Schur polynomials;
(b) Harish-Chandra–Itzykson–Zuber integral; (c) Schur convexity result.

Apoorva Khare, IISc Bangalore 16
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Cuttler–Greene–Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s,
for integer powers, and on the entire positive orthant (0,∞)N :

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers n1 > · · · > nN > 0 and m1 > · · · > mN > 0. Then

sm(u)

sn(u)
>
sm(1, . . . , 1)

sn(1, . . . , 1)
, ∀u ∈ (0,∞)N ,

if and only if m majorizes n.

Majorization = (weak majorization ) +
(∑N

j=1mj =
∑N
j=1 nj

)
.

Questions:
1 Does this characterization extend to real powers?

2 Can one use a smaller subset than the full orthant (0,∞)N , to deduce
majorization?

Yes, and Yes:

Apoorva Khare, IISc Bangalore 17
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Majorization via Vandermonde determinants

Theorem (K.–Tao, Amer. J. Math., 2021)

Given reals n1 > · · · > nN and m1 > · · · > mN , TFAE:

1
det(u◦m)

det(u◦n)
>
V (m)

V (n)
, for all “distinct” tuples u ∈ (0,∞)N6= .

2
det(u◦m)

det(u◦n)
>
V (m)

V (n)
, for all “distinct” tuples u ∈ (0, 1]N6= ∪ [1,∞)N6= .

3 m majorizes n.

Proof:
(1) =⇒ (2): Obvious. (3) =⇒ (1): Akin to Sra (2016).

(2) =⇒ (3): If u ∈ [1,∞)N6= , then by preceding result: m �w n.
If u ∈ (0, 1]N6= , let vi := 1/ui > 1. Now compute:

det(v◦(−m))

det(v◦(−n))
=

det(u◦m)

det(u◦n)
>
V (m)

V (n)
=
V (−m)

V (−n)
.

By preceding result: −m �w −n; and m �w n ⇐⇒ m majorizes n.
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If u ∈ (0, 1]N6= , let vi := 1/ui > 1. Now compute:
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=

det(u◦m)

det(u◦n)
>
V (m)

V (n)
=
V (−m)

V (−n)
.

By preceding result: −m �w −n;

and m �w n ⇐⇒ m majorizes n.
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Precursors to Cuttler-Greene-Skandera (and Sra, . . . )

Instead of using Schur polynomials, what if one uses other symmetric functions?

C-G-S:
sm(u1, . . . , uN )

sm(1, . . . , 1)
>
sn(u1, . . . , uN )

sn(1, . . . , 1)
on (0,∞)N ⇐⇒ m majorizes n.

Instead, if one uses the monomial symmetric polynomial

mλ(u1, . . . , uN ) :=
|SN · λ|
N !

∑
σ∈SN

N∏
j=1

u
λσ(j)
j ,

then:

Theorem (Muirhead, Proc. Edinburgh Math. Soc. 1903)

Fix scalars n1 > · · · > nN > 0 and m1 > · · · > mN > 0. Then

mm(u)

mm(1, . . . , 1)
>

mn(u)

mn(1, . . . , 1)
, ∀u ∈ (0,∞)N

if and only if m majorizes n.

Question: What if one restricts to u ∈ [1,∞)N?
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Majorization inequalities

The C-G-S–Sra inequality (and its follow-up by K.–Tao)
as well as Muirhead’s inequality, are examples of majorization inequalities.

Other majorization inequalities have been shown by:

Maclaurin (1729)

Newton (1732)

Schlömilch (1858)

Schur (1920s?)

Popoviciu (1934)

Gantmacher (1959)

Vast generalization by McSwiggen–Novak [IMRN 2022] to all Weyl groups,
via spherical functions on Riemannian symmetric spaces.

Conjectured to hold even more generally, for Heckman–Opdam hypergeometric
functions – this would extend C-G-S–Sra from Schur polynomials to Jack
polynomials. (Extends to Macdonald polynomials?)
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Complete homogeneous symmetric (CHS) polynomials

Define hk(u1, u2, . . . ) :=
∑

i16i26···6ik

ui1ui2 · · ·uik .
· · · · · ·

Thus, h0 = 1, h2 =
∑
i u

2
i +

∑
i<j uiuj = 1

2
(h1(u)2 + p2(u)) > 0.

Lemma

For all integers r > 0 and N > 0, the polynomial h2r(u1, . . . uN ) does not
vanish on RN except at the origin.

Proof (A. Barvinok): Given i.i.d. exponential(1) random variables Z1, . . . , ZN ,

k!hk(u1, . . . , uN ) = E
[
(u1Z1 + · · ·+ uNZN )k

]
∀k > 0, u1, . . . , uN ∈ R.

Which (other) Schur polynomials share this property?
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CHS polynomials (cont.)

Which other Schur polynomials share this property?

None:

Lemma (K.–Tao)

Suppose N > 1 and n1 > · · · > nN > 0 are integers. Then the Schur
polynomial sn(u1, . . . , uN ) is nonvanishing on RN \ {0}, if and only if there
exists r > 0 such that

nN = 0, nN−1 = 1, · · · , n2 = N − 2, n1 = (N − 1) + 2r.

Now recall the Schur Monotonicity Lemma: if m > n coordinatewise, then

sm(u)

sn(u)
: (0,∞)N → R

is non-decreasing in each coordinate. In particular, it attains its supremum on
[0, 1]N \ {0} at (1, . . . , 1).

Now consider the two-sided optimization problem, i.e. on [−1, 1]N \ {0}.
The above Lemmas suggest taking n = (N − 1 + 2r,N − 2, . . . , 1, 0).
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Maximizing ratios involving CHS polynomials

“Two-sided” variant: Suppose n = (N − 1 + 2r,N − 2, . . . , 1, 0)) for r > 0,
and m > n coordinatewise. Define

f(u) :=
sm(u)2

h2r(u)2
.

Question: How does this function behave on [−1, 1]N \ {0}? Where does it
attain its supremum?

By homogeneity considerations, enough to consider the behavior on the
boundary of the cube [−1, 1]N (a compact set). Where is the maximum
attained – and what does it equal?

A solution to this question has consequences for entrywise polynomials
that preserve positivity on matrices.
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W -majorization

Let V = Euclidean space containing Φ = crystallographic root system, with
Weyl group W ⊂ O(V ).
(So W is generated by the reflections in the hyperplanes orthogonal to α ∈ Φ.)

Definition (McSwiggen–Novak): Given λ, µ ∈ V, say that λ W -majorizes µ
if µ lies in the convex hull of the orbit W · λ.

Special case: If Φ is of type A, then W = SN , and then

λ SN -majorizes µ precisely means λ majorizes µ.
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Riemannian symmetric spaces

Let G = connected Lie group, σ : G→ G an order-2 automorphism.
If K := Gσ is compact, X = G/K is a Riemannian symmetric space.

(Under further assumptions:) Iwasawa decomposition G = NAK.
The weights/roots of Lie(G) w.r.t. a := Lie(A) form a root system Φ.

Now study W -majorization for λ, µ ∈ a.

The analogues of (normalized) Schur polyomials are spherical functions,
studied by Harish-Chandra [Amer. J. Math. 1958].

Theorem (McSwiggen–Novak, IMRN 2022)

Extended the C-G-S / Sra / K.–Tao results, to characterize W -majorization on
a, via inequalities of the spherical functions φiλ > φiµ on G/K.
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