# Equalities and inequalities involving Schur polynomials

#### Apoorva Khare IISc and APRG (Bangalore, India)

Formal Power Series and Algebraic Combinatorics July 2022

## Schur polynomials

Given a decreasing N-tuple of integers  $n_1 > \cdots > n_N \ge 0$ , the corresponding Schur polynomial over a field  $\mathbb{F}$  (say char  $\mathbb{F} = 0$ ) is the unique polynomial extension to  $\mathbb{F}^N$  of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := \frac{\det(u_i^{n_j})_{i,j=1}^N}{\det(u_i^{N-j})} = \frac{\det(u_i^{n_j})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct  $u_i \in \mathbb{F}$ .

## Schur polynomials

Given a decreasing N-tuple of integers  $n_1 > \cdots > n_N \ge 0$ , the corresponding Schur polynomial over a field  $\mathbb{F}$  (say char  $\mathbb{F} = 0$ ) is the unique polynomial extension to  $\mathbb{F}^N$  of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := \frac{\det(u_i^{n_j})_{i,j=1}^N}{\det(u_i^{N-j})} = \frac{\det(u_i^{n_j})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct  $u_i \in \mathbb{F}$ . Note that the denominator is precisely the Vandermonde determinant

$$V((u_1,\ldots,u_N)) := \det(u_i^{N-j}) = \prod_{1 \le i < j \le N} (u_i - u_j).$$

## Schur polynomials

Given a decreasing N-tuple of integers  $n_1 > \cdots > n_N \ge 0$ , the corresponding Schur polynomial over a field  $\mathbb{F}$  (say char  $\mathbb{F} = 0$ ) is the unique polynomial extension to  $\mathbb{F}^N$  of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := \frac{\det(u_i^{n_j})_{i,j=1}^N}{\det(u_i^{N-j})} = \frac{\det(u_i^{n_j})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct  $u_i \in \mathbb{F}$ . Note that the denominator is precisely the Vandermonde determinant

$$V((u_1,\ldots,u_N)) := \det(u_i^{N-j}) = \prod_{1 \le i < j \le N} (u_i - u_j).$$

- Basis of homogeneous symmetric polynomials in  $u_1, \ldots, u_N$ .
- Characters of irreducible polynomial representations of  $GL_N(\mathbb{C})$ , usually defined in terms of semi-standard Young tableaux.

## Schur polynomials

Given a decreasing N-tuple of integers  $n_1 > \cdots > n_N \ge 0$ , the corresponding Schur polynomial over a field  $\mathbb{F}$  (say char  $\mathbb{F} = 0$ ) is the unique polynomial extension to  $\mathbb{F}^N$  of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := \frac{\det(u_i^{n_j})_{i,j=1}^N}{\det(u_i^{N-j})} = \frac{\det(u_i^{n_j})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct  $u_i \in \mathbb{F}$ . Note that the denominator is precisely the Vandermonde determinant

$$V((u_1,\ldots,u_N)) := \det(u_i^{N-j}) = \prod_{1 \le i < j \le N} (u_i - u_j).$$

- Basis of homogeneous symmetric polynomials in  $u_1, \ldots, u_N$ .
- Characters of irreducible polynomial representations of  $GL_N(\mathbb{C})$ , usually defined in terms of semi-standard Young tableaux.
- Weyl Character (Dimension) Formula in Type A:

$$s_{\mathbf{n}}(1,\ldots,1) = \prod_{1 \leq i < j \leq N} \frac{n_i - n_j}{j-i} = \frac{V(\mathbf{n})}{V((N-1,\ldots,1,0))}$$

Apoorva Khare, IISc Bangalore

Schur polynomials are also defined using semi-standard Young tableaux:

**Example 1:** Suppose N = 3 and  $\mathbf{m} := (4, 2, 0)$ . The tableaux are:

| 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 3 | 2 | 2 | 2 | 3 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 |   | 3 |   | 2 |   | 3 |   | 2 |   | 3 |   | 3 |   | 3 |   |

Schur polynomials are also defined using semi-standard Young tableaux:

**Example 1:** Suppose N = 3 and  $\mathbf{m} := (4, 2, 0)$ . The tableaux are:



$$s_{(4,2,0)}(u_1, u_2, u_3) = u_1^2 u_2 + u_1^2 u_3 + u_1 u_2^2 + 2u_1 u_2 u_3 + u_1 u_3^2 + u_2^2 u_3 + u_2 u_3^2 = (u_1 + u_2)(u_2 + u_3)(u_3 + u_1).$$

Schur polynomials are also defined using semi-standard Young tableaux:

**Example 1:** Suppose N = 3 and  $\mathbf{m} := (4, 2, 0)$ . The tableaux are:



$$s_{(4,2,0)}(u_1, u_2, u_3) = u_1^2 u_2 + u_1^2 u_3 + u_1 u_2^2 + 2u_1 u_2 u_3 + u_1 u_3^2 + u_2^2 u_3 + u_2 u_3^2 = (u_1 + u_2)(u_2 + u_3)(u_3 + u_1).$$

**Example 2:** Suppose N = 3 and  $\mathbf{n} = (3, 2, 0)$ :



Then  $s_{(3,2,0)}(u_1, u_2, u_3) = u_1u_2 + u_1u_3 + u_2u_3$ .

From Frobenius, Cauchy, Binet in algebra... ...to Loewner and beyond in analysis

## Cauchy's - and Frobenius's - determinantal identity

Theorem (Cauchy, 1841 memoir)

If 
$$f(t) = (1-t)^{-1} = 1+t+t^2+\cdots$$
, and  $f[A] := (f(a_{ij}))$ , then  
 $\det f[\mathbf{uv}^T] = \det((1-u_iv_j)^{-1})_{i,j=1}^N = \sum_{M \ge 0} \sum_{\mathbf{n} \vdash M} V(\mathbf{u})V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v}).$ 

From Frobenius, Cauchy, Binet in algebra... ...to Loewner and beyond in analysis

## Cauchy's - and Frobenius's - determinantal identity

Theorem (Cauchy, 1841 memoir)

If 
$$f(t) = (1-t)^{-1} = 1+t+t^2+\cdots$$
, and  $f[A] := (f(a_{ij}))$ , then  
 $\det f[\mathbf{uv}^T] = \det((1-u_iv_j)^{-1})_{i,j=1}^N = \sum_{M \ge 0} \sum_{\mathbf{n} \vdash M} V(\mathbf{u})V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v}).$ 

This is the c = 0 special case of:

Theorem (Frobenius, J. reine Angew. Math. 1882)  
If 
$$f(t) = \frac{1-ct}{1-t}$$
 for a scalar c, then  
 $\det f[\mathbf{u}\mathbf{v}^T] = \det \left(\frac{1-cu_iv_j}{1-u_iv_j}\right)_{i,j=1}^N$   
 $= V(\mathbf{u})V(\mathbf{v})(1-c)^{N-1} \left(\sum_{\mathbf{n}: n_N=0} s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v}) + (1-c)\sum_{\mathbf{n}: n_N>0} s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v})\right).$ 

What happens for other power series?

Apoorva Khare, IISc Bangalore

From Frobenius, Cauchy, Binet in algebra... ...to Loewner and beyond in analysis

### The determinantal identity for polynomials

• Suppose  $f(t) = f_1 t^{n_1} + \dots + f_k t^{n_k}$  is any polynomial with < N terms. (Say  $n_1 > \dots > n_k \ge 0$ .) Then  $f[\mathbf{uv}^T] = f_1 \mathbf{u}^{\circ n_1} (\mathbf{v}^{\circ n_1})^T + \dots + f_k \mathbf{u}^{\circ n_k} (\mathbf{v}^{\circ n_k})^T$ 

has rank k < N, so its determinant is zero.

## The determinantal identity for polynomials

• Suppose  $f(t) = f_1 t^{n_1} + \dots + f_k t^{n_k}$  is any polynomial with < N terms. (Say  $n_1 > \dots > n_k \ge 0$ .) Then  $f[\mathbf{uv}^T] = f_1 \mathbf{u}^{\circ n_1} (\mathbf{v}^{\circ n_1})^T + \dots + f_k \mathbf{u}^{\circ n_k} (\mathbf{v}^{\circ n_k})^T$ 

has rank k < N, so its determinant is zero.

• (Folklore case: Jacobi, Cauchy, Schur...) Suppose  $f(t) = \sum_{j=1}^{N} f_j t^{n_j}$ .

### The determinantal identity for polynomials

• Suppose  $f(t) = f_1 t^{n_1} + \dots + f_k t^{n_k}$  is any polynomial with < N terms. (Say  $n_1 > \dots > n_k \ge 0$ .) Then  $f[\mathbf{uv}^T] = f_1 \mathbf{u}^{\circ n_1} (\mathbf{v}^{\circ n_1})^T + \dots + f_k \mathbf{u}^{\circ n_k} (\mathbf{v}^{\circ n_k})^T$ 

has rank k < N, so its determinant is zero.

• (Folklore case: Jacobi, Cauchy, Schur...) Suppose  $f(t) = \sum_{j=1}^{N} f_j t^{n_j}$ . Then  $f[\mathbf{uv}^T]$  factorizes as

$$\begin{pmatrix} u_1^{n_1} & u_1^{n_2} & \cdots & u_1^{n_N} \\ u_2^{n_1} & u_2^{n_2} & \cdots & u_2^{n_N} \\ \vdots & \vdots & \ddots & \vdots \\ u_N^{n_1} & u_N^{n_2} & \cdots & u_N^{n_N} \end{pmatrix} \cdot \begin{pmatrix} f_1 & 0 & \cdots & 0 \\ 0 & f_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f_N \end{pmatrix} \cdot \begin{pmatrix} v_1^{n_1} & v_1^{n_2} & \cdots & v_1^{n_N} \\ v_2^{n_1} & v_2^{n_2} & \cdots & v_2^{n_N} \\ \vdots & \vdots & \ddots & \vdots \\ v_N^{n_1} & v_N^{n_2} & \cdots & v_N^{n_N} \end{pmatrix}^T ,$$
so det  $f[\mathbf{uv}^T] = V(\mathbf{u})V(\mathbf{v}) \prod_{j=1}^N f_j \cdot s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v}).$ 

From Frobenius, Cauchy, Binet in algebra... ...to Loewner and beyond in analysis

### The determinantal identity for polynomials

• Suppose  $f(t) = f_1 t^{n_1} + \dots + f_k t^{n_k}$  is any polynomial with < N terms. (Say  $n_1 > \dots > n_k \ge 0$ .) Then  $f[\mathbf{uv}^T] = f_1 \mathbf{u}^{\circ n_1} (\mathbf{v}^{\circ n_1})^T + \dots + f_k \mathbf{u}^{\circ n_k} (\mathbf{v}^{\circ n_k})^T$ 

has rank k < N, so its determinant is zero.

• (Folklore case: Jacobi, Cauchy, Schur...) Suppose  $f(t) = \sum_{j=1}^{N} f_j t^{n_j}$ . Then  $f[\mathbf{uv}^T]$  factorizes as

$$\begin{pmatrix} u_1^{n_1} & u_1^{n_2} & \cdots & u_1^{n_N} \\ u_2^{n_1} & u_2^{n_2} & \cdots & u_2^{n_N} \\ \vdots & \vdots & \ddots & \vdots \\ u_N^{n_1} & u_N^{n_2} & \cdots & u_N^{n_N} \end{pmatrix} \cdot \begin{pmatrix} f_1 & 0 & \cdots & 0 \\ 0 & f_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f_N \end{pmatrix} \cdot \begin{pmatrix} v_1^{n_1} & v_1^{n_2} & \cdots & v_1^{n_N} \\ v_2^{n_2} & v_2^{n_2} & \cdots & v_2^{n_N} \\ \vdots & \vdots & \ddots & \vdots \\ v_N^{n_1} & v_N^{n_2} & \cdots & v_N^{n_N} \end{pmatrix}^T$$
so det  $f[\mathbf{uv}^T] = V(\mathbf{u})V(\mathbf{v}) \prod_{j=1}^N f_j \cdot s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v}).$ 

 Similar computation for arbitrary polynomials - f[uv<sup>T</sup>] factorizes, so use the Cauchy-Binet formula.

Apoorva Khare, IISc Bangalore

Loewner studied det  $f[t\mathbf{u}\mathbf{u}^T]$  as a function of t (for f smooth), and computed its Taylor coefficients:

- Fix  $\mathbf{u} = (u_1, \dots, u_N)^T \in \mathbb{R}^N$ , with  $u_i > 0$  pairwise distinct.
- Define  $\Delta(t) := \det f[t\mathbf{u}\mathbf{u}^T]$ , and compute its first  $\binom{N}{2} + 1$  derivatives:

Loewner studied det  $f[t\mathbf{u}\mathbf{u}^T]$  as a function of t (for f smooth), and computed its Taylor coefficients:

- Fix  $\mathbf{u} = (u_1, \dots, u_N)^T \in \mathbb{R}^N$ , with  $u_i > 0$  pairwise distinct.
- Define  $\Delta(t) := \det f[t\mathbf{u}\mathbf{u}^T]$ , and compute its first  $\binom{N}{2} + 1$  derivatives:

$$\Delta(0) = \Delta'(0) = \dots = \Delta^{\binom{N}{2}-1}(0) = 0, \text{ and}$$
$$\frac{\Delta^{\binom{N}{2}}(0)}{\binom{N}{2}!} = V(\mathbf{u})^2 \cdot \mathbf{1}^2 \cdot \frac{f(0)}{0!} \frac{f'(0)}{1!} \cdots \frac{f^{\binom{N-1}{0}}(0)}{(N-1)!}.$$

Loewner studied det  $f[tuu^T]$  as a function of t (for f smooth), and computed its Taylor coefficients:

- Fix  $\mathbf{u} = (u_1, \dots, u_N)^T \in \mathbb{R}^N$ , with  $u_i > 0$  pairwise distinct.
- Define  $\Delta(t) := \det f[t\mathbf{u}\mathbf{u}^T]$ , and compute its first  $\binom{N}{2} + 1$  derivatives:

$$\Delta(0) = \Delta'(0) = \dots = \Delta^{\binom{N}{2}-1}(0) = 0, \text{ and}$$
$$\frac{\Delta^{\binom{N}{2}}(0)}{\binom{N}{2}!} = V(\mathbf{u})^2 \cdot \mathbf{1}^2 \cdot \frac{f(0)}{0!} \frac{f'(0)}{1!} \cdots \frac{f^{\binom{N-1}{0}}(0)}{(N-1)!}.$$

(Loewner stopped here for his purposes – of matrix positivity preservers – but) What if Loewner had gone one step further?

Loewner studied det  $f[t\mathbf{u}\mathbf{u}^T]$  as a function of t (for f smooth), and computed its Taylor coefficients:

- Fix  $\mathbf{u} = (u_1, \dots, u_N)^T \in \mathbb{R}^N$ , with  $u_i > 0$  pairwise distinct.
- Define  $\Delta(t) := \det f[t\mathbf{u}\mathbf{u}^T]$ , and compute its first  $\binom{N}{2} + 1$  derivatives:

$$\Delta(0) = \Delta'(0) = \dots = \Delta^{\binom{N}{2}-1}(0) = 0, \text{ and}$$
$$\frac{\Delta^{\binom{N}{2}}(0)}{\binom{N}{2}!} = V(\mathbf{u})^2 \cdot \mathbf{1}^2 \cdot \frac{f(0)}{0!} \frac{f'(0)}{1!} \cdots \frac{f^{\binom{N-1}{0}}(0)}{(N-1)!}.$$

(Loewner stopped here for his purposes – of matrix positivity preservers – but) What if Loewner had gone one step further?

$$\frac{\Delta^{\binom{N}{2}+1}(0)}{\binom{N}{2}+1!} = V(\mathbf{u})^2 \cdot (u_1 + \dots + u_N)^2 \cdot \frac{f(0)}{0!} \frac{f'(0)}{1!} \cdots \frac{f^{(N-2)}(0)}{(N-2)!} \cdot \frac{f^{(N)}(0)}{N!}$$

Hidden inside this derivative is a Schur polynomial!

From Frobenius, Cauchy, Binet in algebra... ...to Loewner and beyond in analysis

#### Loewner's calculations

Loewner had summarized these computations in a letter to Josephine Mitchell (Penn. State) on 24 Oct 1967. (Later in: Roger Horn, [*Trans. AMS* 1969].)

when I got interested in the following question : Let of the a function defined in concidencel (0,6), a 20 and consider all real og unetwo matrice (ag) >0 of order a with elements ag & (g &). When properties must for hove incarder that the matrices (f(ap)) >0 I found as recency conditions. Allos fit that of is mistimes differentiable the following conditions are necencerg (C) \$(+)≥0, \$'(+)≥0, -- \$(1-1)(+)≥0 The function to ( 971 ) do not salisfy these conditions for all 97 if n73. The proof is obtained by considering realtrices of the form any = a spar a with all 1972 and the or articlary Then (flag) ) of sweet inself mart and the of the start Then (flag) ) > Observed to see the deformance of the (flag) ) 20 To first the term in the Taylor expansion of Alw at w re is flas flas- fta). (IT (21-ag) ) and hence flas flas - flas 20, from what one easily derives that (C) marthold

Apoorva Khare, IISc Bangalore

From Frobenius, Cauchy, Binet in algebra... ...to Loewner and beyond in analysis

#### From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory:

Given  $f : [0, \epsilon) \to \mathbb{R}$  smooth, and  $u_1, \ldots, u_N > 0$  pairwise distinct (for  $\epsilon > 0$  and  $N \ge 1$ ), set  $\Delta(t) := \det f[t\mathbf{u}\mathbf{u}^T]$  and compute  $\Delta^{(M)}(0)$  for all integers  $M \ge 0$ .

From Frobenius, Cauchy, Binet in algebra... ...to Loewner and beyond in analysis

#### From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory: Given  $f: [0, \epsilon) \to \mathbb{R}$  smooth, and  $u_1, \ldots, u_N > 0$  pairwise distinct (for  $\epsilon > 0$  and  $N \ge 1$ ), set  $\Delta(t) := \det f[t\mathbf{u}\mathbf{u}^T]$  and compute  $\Delta^{(M)}(0)$  for all integers  $M \ge 0$ .

Uncovers all Schur polynomials – for  $\mathbf{u}$  and  $\mathbf{v}$ :

Theorem (K., Trans. Amer. Math. Soc. 2022) Suppose  $f, \epsilon, N$  are as above. Fix  $\mathbf{u}, \mathbf{v} \in (0, \infty)^N$  and set  $\Delta(t) := \det f[t\mathbf{u}\mathbf{v}^T]$ . Then for all  $M \ge 0$ ,  $\frac{\Delta^{(M)}(0)}{M!} = \sum_{\mathbf{n}=(n_1,\dots,n_N) \vdash M} V(\mathbf{u})V(\mathbf{v}) \cdot \mathbf{s_n}(\mathbf{u})\mathbf{s_n}(\mathbf{v}) \cdot \prod_{j=1}^N \frac{f^{(n_j)}(0)}{n_j!}.$ 

• All Schur polynomials "occur" inside each smooth function.

### From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory: Given  $f: [0, \epsilon) \to \mathbb{R}$  smooth, and  $u_1, \ldots, u_N > 0$  pairwise distinct (for  $\epsilon > 0$  and  $N \ge 1$ ), set  $\Delta(t) := \det f[t\mathbf{u}\mathbf{u}^T]$  and compute  $\Delta^{(M)}(0)$  for all integers  $M \ge 0$ .

Uncovers all Schur polynomials – for  $\mathbf{u}$  and  $\mathbf{v}$ :

Theorem (K., Trans. Amer. Math. Soc. 2022) Suppose  $f, \epsilon, N$  are as above. Fix  $\mathbf{u}, \mathbf{v} \in (0, \infty)^N$  and set  $\Delta(t) := \det f[t\mathbf{u}\mathbf{v}^T]$ . Then for all  $M \ge 0$ ,  $\frac{\Delta^{(M)}(0)}{M!} = \sum_{\mathbf{n}=(n_1,...,n_N) \vdash M} V(\mathbf{u})V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v}) \cdot \prod_{j=1}^N \frac{f^{(n_j)}(0)}{n_j!}.$ 

- All Schur polynomials "occur" inside each smooth function.
- If f is a power series, then so is Δ. What is its expansion? (Starting with Cauchy and Frobenius...)

From Frobenius, Cauchy, Binet in algebra... ...to Loewner and beyond in analysis

### Cauchy-Frobenius identity for all power series

#### Theorem (K., Trans. Amer. Math. Soc. 2022)

Fix a commutative unital ring R and let t be an indeterminate. Let  $f(t) := \sum_{M \ge 0} f_M t^M \in R[[t]]$  be an arbitrary formal power series. Given vectors  $\mathbf{u}, \mathbf{v} \in R^N$  for some  $N \ge 1$ , we have:

$$\det f[t\mathbf{u}\mathbf{v}^T] = V(\mathbf{u})V(\mathbf{v})\sum_{M \geqslant \binom{N}{2}} t^M \sum_{\mathbf{n} = (n_1, \dots, n_N) \vdash M} s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v})\prod_{j=1} f_{n_j}.$$

Also true in the real-analytic topology, for  $R = \mathbb{R}$  and |t| < radius of conv.

## Cauchy-Frobenius identity for all power series

#### Theorem (K., Trans. Amer. Math. Soc. 2022)

Fix a commutative unital ring R and let t be an indeterminate. Let  $f(t) := \sum_{M \ge 0} f_M t^M \in R[[t]]$  be an arbitrary formal power series. Given vectors  $\mathbf{u}, \mathbf{v} \in R^N$  for some  $N \ge 1$ , we have:

$$\det f[t\mathbf{u}\mathbf{v}^T] = V(\mathbf{u})V(\mathbf{v})\sum_{M \ge \binom{N}{2}} t^M \sum_{\mathbf{n} = (n_1, \dots, n_N) \vdash M} s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v})\prod_{j=1} f_{n_j}.$$

Also true in the real-analytic topology, for  $R = \mathbb{R}$  and |t| < radius of conv.

Similar questions and results (on symmetric function identities), including by

- Andrews-Goulden-Jackson [Trans. Amer. Math. Soc. 1988].
- Laksov-Lascoux-Thorup [Acta Math. 1989].
- Kuperberg [Ann. of Math. 2002].
- Ishikawa, Okado, and coauthors [Adv. Appl. Math. 2006, 2013].
- See also Krattenthaler, Advanced determinantal calculus (and its sequel) in 1998, 2005.

Apoorva Khare, IISc Bangalore

From Frobenius, Cauchy, Binet in algebra... ...to Loewner and beyond in analysis

#### From determinants to all immanants

#### Theorem (K.–Sahi, 2022)

With (algebraic) notation as above, say over characteristic zero:

$$\operatorname{perm} f[t\mathbf{u}\mathbf{v}^{T}] = \frac{1}{N!} \sum_{\mathbf{m} \ge \mathbf{0}} t^{m_{1}+\dots+m_{N}} \prod_{j=1}^{N} f_{m_{j}} \cdot \operatorname{perm}(u_{i}^{m_{j}}) \operatorname{perm}(v_{i}^{m_{j}}).$$

Also,

From Frobenius, Cauchy, Binet in algebra... ...to Loewner and beyond in analysis

### From determinants to all immanants

#### Theorem (K.–Sahi, 2022)

With (algebraic) notation as above, say over characteristic zero:

$$\operatorname{perm} f[t\mathbf{u}\mathbf{v}^{T}] = \frac{1}{N!} \sum_{\mathbf{m} \ge \mathbf{0}} t^{m_{1}+\dots+m_{N}} \prod_{j=1}^{N} f_{m_{j}} \cdot \operatorname{perm}(u_{i}^{m_{j}}) \operatorname{perm}(v_{i}^{m_{j}}).$$

Also, analogues for:

- All irreducible characters/immanants of  $S_N$ , or of subgroups of  $S_N$ .
- "Fermionic" (u<sub>i</sub> anti-commuting) analogues of these "Bosonic" results.

Question: Fermionic/immanant versions of other symmetric function identities?

## Schur polynomials in analysis: entrywise functions

- The Schur polynomials lurking inside all smooth functions (Loewner 1969 / K. 2022) turn out to play a crucial role in understanding entrywise polynomial maps that <u>preserve positive semidefiniteness</u> on  $N \times N$  matrices.
- They are algebraic characters, but need to be studied as functions on the positive orthant  $(0,\infty)^N$ .

Back to the two examples above:

**Example 1:** Suppose N = 3 and  $\mathbf{m} := (4, 2, 0)$ . The tableaux are:



**Example 2:** Suppose N = 3 and  $\mathbf{n} = (3, 2, 0)$ :



Then  $s_{(3,2,0)}(u_1, u_2, u_3) = u_1u_2 + u_1u_3 + u_2u_3$ .

Back to the two examples above:

**Example 1:** Suppose N = 3 and  $\mathbf{m} := (4, 2, 0)$ . The tableaux are:



**Example 2:** Suppose N = 3 and  $\mathbf{n} = (3, 2, 0)$ :



Then  $s_{(3,2,0)}(u_1, u_2, u_3) = u_1u_2 + u_1u_3 + u_2u_3$ .

**Note:** Both polynomials are coordinate-wise non-decreasing on  $(0, \infty)^N$ .

## Schur Monotonicity Lemma

Example: The ratio 
$$s_{\mathbf{m}}(\mathbf{u})/s_{\mathbf{n}}(\mathbf{u})$$
 for  $\mathbf{m}=(4,2,0), \ \mathbf{n}=(3,2,0)$  is:

$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1}, \qquad u_1, u_2, u_3 > 0.$$

Note: both numerator and denominator are **monomial-positive** (in fact Schur-positive, obviously) – hence non-decreasing in each coordinate.

**Fact:** Their ratio  $f(\mathbf{u})$  has the same property!

## Schur Monotonicity Lemma

Example: The ratio  $s_{\mathbf{m}}(\mathbf{u})/s_{\mathbf{n}}(\mathbf{u})$  for  $\mathbf{m}=(4,2,0),\ \mathbf{n}=(3,2,0)$  is:

$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1}, \qquad u_1, u_2, u_3 > 0.$$

Note: both numerator and denominator are **monomial-positive** (in fact Schur-positive, obviously) – hence non-decreasing in each coordinate.

**Fact:** Their ratio  $f(\mathbf{u})$  has the same property!

#### Theorem (K.-Tao, Amer. J. Math., 2021)

For integer tuples  $n_1 > \cdots > n_N \ge 0$  and  $m_1 > \cdots > m_N \ge 0$  such that  $m_j \ge n_j \ \forall j$ , the function

$$f: (0,\infty)^N \to \mathbb{R}, \qquad f(\mathbf{u}) := \frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}$$

is non-decreasing in each coordinate. (In fact, a stronger Schur positivity phenomenon holds.)

### Schur Monotonicity Lemma (cont.)

Claim: The ratio 
$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1u_2 + u_2u_3 + u_3u_1}$$
,

treated as a function on the orthant  $(0,\infty)^3$ , is coordinate-wise non-decreasing.

### Schur Monotonicity Lemma (cont.)

Claim: The ratio 
$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1}$$
,

treated as a function on the orthant  $(0,\infty)^3$ , is coordinate-wise non-decreasing.

(Why?) Applying the quotient rule of differentiation to f,

 $s_{\mathbf{n}}(\mathbf{u})\partial_{u_3}s_{\mathbf{m}}(\mathbf{u}) - s_{\mathbf{m}}(\mathbf{u})\partial_{u_3}s_{\mathbf{n}}(\mathbf{u}) = (u_1 + u_2)(u_1u_3 + 2u_1u_2 + u_2u_3)u_3,$ 

and this is monomial-positive (hence numerically positive).

### Schur Monotonicity Lemma (cont.)

Claim: The ratio 
$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1}$$
,

treated as a function on the orthant  $(0,\infty)^3$ , is coordinate-wise non-decreasing.

(Why?) Applying the quotient rule of differentiation to f,

 $s_{\mathbf{n}}(\mathbf{u})\partial_{u_3}s_{\mathbf{m}}(\mathbf{u}) - s_{\mathbf{m}}(\mathbf{u})\partial_{u_3}s_{\mathbf{n}}(\mathbf{u}) = (u_1 + u_2)(u_1u_3 + 2u_1u_2 + u_2u_3)u_3,$ and this is monomial-positive (hence numerically positive).

In fact, upon writing this as  $\sum_{j \ge 0} p_j(u_1, u_2) u_3^j$ , each  $p_j$  is Schur-positive, i.e. a sum of Schur polynomials:

$$p_{0}(u_{1}, u_{2}) = 0,$$

$$p_{1}(u_{1}, u_{2}) = 2u_{1}^{2}u_{2} + 2u_{1}u_{2}^{2} = 2\underbrace{\boxed{1 \ 1}}_{2} + 2\underbrace{\boxed{1 \ 2}}_{2} = 2s_{(3,1)}(u_{1}, u_{2}),$$

$$p_{2}(u_{1}, u_{2}) = (u_{1} + u_{2})^{2} = \underbrace{\boxed{1 \ 1}}_{2} + \underbrace{\boxed{1 \ 2}}_{2} + \underbrace{\boxed{2 \ 2}}_{2} + \underbrace{\boxed{1}}_{2}$$

$$= s_{(3,0)}(u_{1}, u_{2}) + s_{(2,1)}(u_{1}, u_{2}).$$

Apoorva Khare, IISc Bangalore

## Proof-sketch of Schur Monotonicity Lemma

The proof for general  $\mathbf{m} \geqslant \mathbf{n}$  is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on  $(0,\infty)^N$ . (Note, the coefficients in  $s_n(\mathbf{u})$  of each  $u_N^j$  are skew-Schur polynomials in  $u_1, \ldots, u_{N-1}$ .)

## Proof-sketch of Schur Monotonicity Lemma

The proof for general  $\mathbf{m} \geqslant \mathbf{n}$  is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on  $(0,\infty)^N$ . (Note, the coefficients in  $s_n(\mathbf{u})$  of each  $u_N^j$  are skew-Schur polynomials in  $u_1, \ldots, u_{N-1}$ .)

The assertion would follow if this expression is monomial-positive.
## Proof-sketch of Schur Monotonicity Lemma

The proof for general  $\mathbf{m} \geqslant \mathbf{n}$  is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on  $(0,\infty)^N$ . (Note, the coefficients in  $s_n(\mathbf{u})$  of each  $u_N^j$  are skew-Schur polynomials in  $u_1, \ldots, u_{N-1}$ .)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each  $u_N^j$  is (also) Schur-positive.

## Proof-sketch of Schur Monotonicity Lemma

The proof for general  $\mathbf{m} \geqslant \mathbf{n}$  is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on  $(0,\infty)^N$ . (Note, the coefficients in  $s_n(\mathbf{u})$  of each  $u_N^j$  are skew-Schur polynomials in  $u_1, \ldots, u_{N-1}$ .)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each  $u_N^j$  is (also) Schur-positive.

**Key ingredient:** Schur-positivity result by Lam–Postnikov–Pylyavskyy (*Amer. J. Math.* 2007).

[In turn, this emerged out of Skandera's 2004 results on determinant inequalities for totally non-negative matrices.]

#### Weak majorization through Schur polynomials

• Our Schur Monotonicity Lemma implies in particular:

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\dots,1)}{s_{\mathbf{n}}(1,\dots,1)} = \frac{V(\mathbf{m})}{V(\mathbf{n})}, \qquad \forall \mathbf{u} \in [1,\infty)^{N}.$$

if  ${\bf m}$  dominates  ${\bf n}$  coordinate-wise.

• "Natural" to ask: for which other tuples  $\mathbf{m}, \mathbf{n}$  does this inequality hold?

#### Weak majorization through Schur polynomials

• Our Schur Monotonicity Lemma implies in particular:

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)} = \frac{V(\mathbf{m})}{V(\mathbf{n})}, \qquad \forall \mathbf{u} \in [1,\infty)^{N}.$$

if  ${\bf m}$  dominates  ${\bf n}$  coordinate-wise.

• "Natural" to ask: for which other tuples  $\mathbf{m}, \mathbf{n}$  does this inequality hold?

Now extended to *real* tuples (generalized Vandermonde determinants):

Theorem (K.-Tao, Amer. J. Math., 2021)  
Given reals 
$$n_1 > \cdots > n_N$$
 and  $m_1 > \cdots > m_N$ , TFAE:  
 $\underbrace{\det(\mathbf{u}^{\circ \mathbf{m}})}_{\det(\mathbf{u}^{\circ \mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})}$ , for all "distinct" tuples  $\mathbf{u} \in [1, \infty)_{\neq}^N$ .  
**2** m weakly majorizes  $\mathbf{n} - i.e., m_1 + \cdots + m_k \ge n_1 + \cdots + n_k \forall k$ .

#### Weak majorization through Schur polynomials

• Our Schur Monotonicity Lemma implies in particular:

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)} = \frac{V(\mathbf{m})}{V(\mathbf{n})}, \qquad \forall \mathbf{u} \in [1,\infty)^{N}.$$

if  ${\bf m}$  dominates  ${\bf n}$  coordinate-wise.

• "Natural" to ask: for which other tuples  $\mathbf{m}, \mathbf{n}$  does this inequality hold?

Now extended to real tuples (generalized Vandermonde determinants):

Theorem (K.-Tao, Amer. J. Math., 2021)  
Given reals 
$$n_1 > \cdots > n_N$$
 and  $m_1 > \cdots > m_N$ , TFAE:  
 $\begin{array}{l} \underbrace{\det(\mathbf{u}^{\circ \mathbf{m}})}{\det(\mathbf{u}^{\circ \mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})}, \text{ for all "distinct" tuples } \mathbf{u} \in [1, \infty)_{\neq}^N. \end{array}$   
 $\begin{array}{l} \textcircled{m}$  meakly majorizes  $\mathbf{n} - i.e., m_1 + \cdots + m_k \ge n_1 + \cdots + n_k \ \forall k. \end{array}$ 

*Ingredients of proof:* (a) "First-order" approximation of Schur polynomials; (b) Harish-Chandra–Itzykson–Zuber integral; (c) Schur convexity result.

Apoorva Khare, IISc Bangalore

Determinantal equalities Majorization inequalities Monotonicity of ratios of Schur polynomials Majorization inequalities via symmetric functions

#### Cuttler–Greene–Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and *on the entire positive orthant*  $(0, \infty)^N$ :

### Cuttler–Greene–Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant  $(0,\infty)^N$ :

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers  $n_1 > \cdots > n_N \ge 0$  and  $m_1 > \cdots > m_N \ge 0$ . Then

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^{N},$$

if and only if  $\mathbf{m}$  majorizes  $\mathbf{n}$ .

Majorization = (weak majorization) + 
$$\left(\sum_{j=1}^{N} m_j = \sum_{j=1}^{N} n_j\right)$$
.

## Cuttler–Greene–Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant  $(0,\infty)^N$ :

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers  $n_1 > \cdots > n_N \ge 0$  and  $m_1 > \cdots > m_N \ge 0$ . Then

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^N,$$

if and only if  $\mathbf{m}$  majorizes  $\mathbf{n}$ .

Majorization = (weak majorization) + 
$$\left(\sum_{j=1}^{N} m_j = \sum_{j=1}^{N} n_j\right)$$
.

#### Questions:

- Does this characterization extend to real powers?
- **2** Can one use a smaller subset than the full orthant  $(0,\infty)^N$ , to deduce majorization?

## Cuttler–Greene–Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant  $(0,\infty)^N$ :

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers  $n_1 > \cdots > n_N \ge 0$  and  $m_1 > \cdots > m_N \ge 0$ . Then

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^N,$$

if and only if  $\mathbf{m}$  majorizes  $\mathbf{n}$ .

Majorization = (weak majorization) + 
$$\left(\sum_{j=1}^{N} m_j = \sum_{j=1}^{N} n_j\right)$$
.

#### Questions:

- Does this characterization extend to real powers?
- <sup>(2)</sup> Can one use a smaller subset than the full orthant  $(0,\infty)^N$ , to deduce majorization?

Yes, and Yes:

#### Majorization via Vandermonde determinants

#### Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals  $n_1 > \cdots > n_N$  and  $m_1 > \cdots > m_N$ , TFAE:

Monotonicity of ratios of Schur polynomials Majorization inequalities via symmetric functions

#### Majorization via Vandermonde determinants

#### Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals  $n_1 > \cdots > n_N$  and  $m_1 > \cdots > m_N$ , TFAE:

Proof:

- (1)  $\implies$  (2): Obvious. (3)  $\implies$  (1): Akin to Sra (2016).
- (2)  $\implies$  (3): If  $\mathbf{u} \in [1, \infty)^N_{\neq}$ , then by preceding result:  $\mathbf{m} \succ_w \mathbf{n}$ .

Monotonicity of ratios of Schur polynomials Majorization inequalities via symmetric functions

#### Majorization via Vandermonde determinants

#### Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals  $n_1 > \cdots > n_N$  and  $m_1 > \cdots > m_N$ , TFAE:

Proof:

- (1)  $\implies$  (2): Obvious. (3)  $\implies$  (1): Akin to Sra (2016).
- (2)  $\implies$  (3): If  $\mathbf{u} \in [1, \infty)^N_{\neq}$ , then by preceding result:  $\mathbf{m} \succ_w \mathbf{n}$ . If  $\mathbf{u} \in (0, 1]^N_{\neq}$ , let  $v_i := 1/u_i \ge 1$ . Now compute:

$$\frac{\det(\mathbf{v}^{\circ(-\mathbf{m})})}{\det(\mathbf{v}^{\circ(-\mathbf{n})})} = \frac{\det(\mathbf{u}^{\circ\mathbf{m}})}{\det(\mathbf{u}^{\circ\mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})} = \frac{V(-\mathbf{m})}{V(-\mathbf{n})}$$

By preceding result:  $-\mathbf{m} \succ_w -\mathbf{n}$ ;

Monotonicity of ratios of Schur polynomials Majorization inequalities via symmetric functions

#### Majorization via Vandermonde determinants

#### Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals  $n_1 > \cdots > n_N$  and  $m_1 > \cdots > m_N$ , TFAE:

Proof:

- (1)  $\implies$  (2): Obvious. (3)  $\implies$  (1): Akin to Sra (2016).
- (2)  $\implies$  (3): If  $\mathbf{u} \in [1, \infty)^N_{\neq}$ , then by preceding result:  $\mathbf{m} \succ_w \mathbf{n}$ . If  $\mathbf{u} \in (0, 1]^N_{\neq}$ , let  $v_i := 1/u_i \ge 1$ . Now compute:

$$\frac{\det(\mathbf{v}^{\circ(-\mathbf{m})})}{\det(\mathbf{v}^{\circ(-\mathbf{n})})} = \frac{\det(\mathbf{u}^{\circ\mathbf{m}})}{\det(\mathbf{u}^{\circ\mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})} = \frac{V(-\mathbf{m})}{V(-\mathbf{n})}$$

By preceding result:  $-\mathbf{m} \succ_w -\mathbf{n}$ ; and  $\mathbf{m} \succ_w \mathbf{n} \iff \mathbf{m}$  majorizes  $\mathbf{n}$ .

Determinantal equalities Majorization inequalities Monotonicity of ratios of Schur polynomials Majorization inequalities via symmetric functions

#### Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions?

$$\mathsf{C-G-S:}\ \frac{s_{\mathbf{m}}(u_1,\ldots,u_N)}{s_{\mathbf{m}}(1,\ldots,1)} \geqslant \frac{s_{\mathbf{n}}(u_1,\ldots,u_N)}{s_{\mathbf{n}}(1,\ldots,1)} \text{ on } (0,\infty)^N \iff \mathbf{m} \text{ majorizes } \mathbf{n}.$$

#### Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions?

$$\mathsf{C-G-S:}\ \frac{s_{\mathbf{m}}(u_1,\ldots,u_N)}{s_{\mathbf{m}}(1,\ldots,1)} \geqslant \frac{s_{\mathbf{n}}(u_1,\ldots,u_N)}{s_{\mathbf{n}}(1,\ldots,1)} \text{ on } (0,\infty)^N \iff \mathbf{m} \text{ majorizes } \mathbf{n}.$$

Instead, if one uses the monomial symmetric polynomial

$$m_{\lambda}(u_1,\ldots,u_N) := \frac{|S_N \cdot \lambda|}{N!} \sum_{\sigma \in S_N} \prod_{j=1}^N u_j^{\lambda_{\sigma(j)}},$$

then:

#### Theorem (Muirhead, Proc. Edinburgh Math. Soc. 1903)

Fix scalars  $n_1 > \cdots > n_N \ge 0$  and  $m_1 > \cdots > m_N \ge 0$ . Then

$$\frac{m_{\mathbf{m}}(\mathbf{u})}{m_{\mathbf{m}}(1,\ldots,1)} \ge \frac{m_{\mathbf{n}}(\mathbf{u})}{m_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^{N}$$

if and only if  $\mathbf{m}$  majorizes  $\mathbf{n}$ .

#### Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions?

$$\mathsf{C-G-S:}\ \frac{s_{\mathbf{m}}(u_1,\ldots,u_N)}{s_{\mathbf{m}}(1,\ldots,1)} \geqslant \frac{s_{\mathbf{n}}(u_1,\ldots,u_N)}{s_{\mathbf{n}}(1,\ldots,1)} \text{ on } (0,\infty)^N \iff \mathbf{m} \text{ majorizes } \mathbf{n}.$$

Instead, if one uses the monomial symmetric polynomial

$$m_{\lambda}(u_1,\ldots,u_N) := \frac{|S_N \cdot \lambda|}{N!} \sum_{\sigma \in S_N} \prod_{j=1}^N u_j^{\lambda_{\sigma(j)}},$$

then:

Theorem (Muirhead, Proc. Edinburgh Math. Soc. 1903)

Fix scalars  $n_1 > \cdots > n_N \ge 0$  and  $m_1 > \cdots > m_N \ge 0$ . Then

$$\frac{m_{\mathbf{m}}(\mathbf{u})}{m_{\mathbf{m}}(1,\ldots,1)} \ge \frac{m_{\mathbf{n}}(\mathbf{u})}{m_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^{N}$$

if and only if  $\mathbf{m}$  majorizes  $\mathbf{n}$ .

Question: What if one restricts to  $\mathbf{u} \in [1, \infty)^N$ ?

Apoorva Khare, IISc Bangalore

## Majorization inequalities

The C-G-S–Sra inequality (and its follow-up by K.–Tao) as well as Muirhead's inequality, are examples of *majorization inequalities*.

Other majorization inequalities have been shown by:

- Maclaurin (1729)
- Newton (1732)
- Schlömilch (1858)
- Schur (1920s?)
- Popoviciu (1934)
- Gantmacher (1959)

## Majorization inequalities

The C-G-S–Sra inequality (and its follow-up by K.–Tao) as well as Muirhead's inequality, are examples of *majorization inequalities*.

Other majorization inequalities have been shown by:

- Maclaurin (1729)
- Newton (1732)
- Schlömilch (1858)
- Schur (1920s?)
- Popoviciu (1934)
- Gantmacher (1959)

Vast generalization by McSwiggen–Novak [*IMRN* 2022] to all Weyl groups, via spherical functions on Riemannian symmetric spaces.

Conjectured to hold even more generally, for Heckman–Opdam hypergeometric functions – this would extend C-G-S–Sra from Schur polynomials to Jack polynomials. (Extends to Macdonald polynomials?)

Apoorva Khare, IISc Bangalore

Define 
$$h_k(u_1, u_2, \dots) := \sum_{i_1 \leqslant i_2 \leqslant \dots \leqslant i_k} u_{i_1} u_{i_2} \cdots u_{i_k}.$$

Thus,  $h_0 = 1$ ,  $h_2 = \sum_i u_i^2 + \sum_{i < j} u_i u_j = \frac{1}{2} (h_1(\mathbf{u})^2 + p_2(\mathbf{u})) \ge 0$ .

Define 
$$h_k(u_1, u_2, \dots) := \sum_{i_1 \leqslant i_2 \leqslant \dots \leqslant i_k} u_{i_1} u_{i_2} \cdots u_{i_k}.$$



Thus,  $h_0 = 1$ ,  $h_2 = \sum_i u_i^2 + \sum_{i < j} u_i u_j = \frac{1}{2} (h_1(\mathbf{u})^2 + p_2(\mathbf{u})) \ge 0$ .

#### Lemma

For all integers  $r \ge 0$  and N > 0, the polynomial  $h_{2r}(u_1, \ldots u_N)$  does not vanish on  $\mathbb{R}^N$  except at the origin.

Define 
$$h_k(u_1, u_2, \dots) := \sum_{i_1 \leqslant i_2 \leqslant \dots \leqslant i_k} u_{i_1} u_{i_2} \cdots u_{i_k}.$$



Thus,  $h_0 = 1$ ,  $h_2 = \sum_i u_i^2 + \sum_{i < j} u_i u_j = \frac{1}{2} (h_1(\mathbf{u})^2 + p_2(\mathbf{u})) \ge 0$ .

#### Lemma

For all integers  $r \ge 0$  and N > 0, the polynomial  $h_{2r}(u_1, \ldots u_N)$  does not vanish on  $\mathbb{R}^N$  except at the origin.

**Proof** (A. Barvinok): Given i.i.d. exponential(1) random variables  $Z_1, \ldots, Z_N$ ,

$$k! h_k(u_1, \dots, u_N) = \mathbb{E}\left[ \left( u_1 Z_1 + \dots + u_N Z_N \right)^k \right] \quad \forall k \ge 0, \ u_1, \dots, u_N \in \mathbb{R}.$$

Define 
$$h_k(u_1, u_2, \dots) := \sum_{i_1 \leqslant i_2 \leqslant \dots \leqslant i_k} u_{i_1} u_{i_2} \cdots u_{i_k}.$$

Thus,  $h_0 = 1$ ,  $h_2 = \sum_i u_i^2 + \sum_{i < j} u_i u_j = \frac{1}{2} (h_1(\mathbf{u})^2 + p_2(\mathbf{u})) \ge 0$ .

#### Lemma

For all integers  $r \ge 0$  and N > 0, the polynomial  $h_{2r}(u_1, \ldots u_N)$  does not vanish on  $\mathbb{R}^N$  except at the origin.

**Proof** (A. Barvinok): Given i.i.d. exponential(1) random variables  $Z_1, \ldots, Z_N$ ,

$$k! h_k(u_1, \dots, u_N) = \mathbb{E}\left[ \left( u_1 Z_1 + \dots + u_N Z_N \right)^k \right] \quad \forall k \ge 0, \ u_1, \dots, u_N \in \mathbb{R}.$$

Which (other) Schur polynomials share this property?

Determinantal equalities Majorization inequalities Monotonicity of ratios of Schur polynomials Majorization inequalities via symmetric functions

# CHS polynomials (cont.)

Which other Schur polynomials share this property?

# CHS polynomials (cont.)

Which other Schur polynomials share this property? None:

#### Lemma (K.–Tao)

Suppose  $N \ge 1$  and  $n_1 > \cdots > n_N \ge 0$  are integers. Then the Schur polynomial  $s_n(u_1, \ldots, u_N)$  is nonvanishing on  $\mathbb{R}^N \setminus \{\mathbf{0}\}$ , if and only if there exists  $r \ge 0$  such that

 $n_N = 0$ ,  $n_{N-1} = 1$ ,  $\cdots$ ,  $n_2 = N - 2$ ,  $n_1 = (N - 1) + 2r$ .

# CHS polynomials (cont.)

Which other Schur polynomials share this property? None:

Lemma (K.–Tao)

Suppose  $N \ge 1$  and  $n_1 > \cdots > n_N \ge 0$  are integers. Then the Schur polynomial  $s_n(u_1, \ldots, u_N)$  is nonvanishing on  $\mathbb{R}^N \setminus \{\mathbf{0}\}$ , if and only if there exists  $r \ge 0$  such that

 $n_N = 0$ ,  $n_{N-1} = 1$ ,  $\cdots$ ,  $n_2 = N - 2$ ,  $n_1 = (N - 1) + 2r$ .

Now recall the Schur Monotonicity Lemma: if  $\mathbf{m} \geqslant \mathbf{n}$  coordinatewise, then

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}:(0,\infty)^N\to\mathbb{R}$$

is non-decreasing in each coordinate. In particular, it attains its supremum on  $[0,1]^N\setminus\{\mathbf{0}\}$  at  $(1,\ldots,1).$ 

# CHS polynomials (cont.)

Which other Schur polynomials share this property? None:

Lemma (K.–Tao)

Suppose  $N \ge 1$  and  $n_1 > \cdots > n_N \ge 0$  are integers. Then the Schur polynomial  $s_n(u_1, \ldots, u_N)$  is nonvanishing on  $\mathbb{R}^N \setminus \{\mathbf{0}\}$ , if and only if there exists  $r \ge 0$  such that

 $n_N = 0$ ,  $n_{N-1} = 1$ ,  $\cdots$ ,  $n_2 = N - 2$ ,  $n_1 = (N - 1) + 2r$ .

Now recall the Schur Monotonicity Lemma: if  $\mathbf{m} \geqslant \mathbf{n}$  coordinatewise, then

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}:(0,\infty)^N\to\mathbb{R}$$

is non-decreasing in each coordinate. In particular, it attains its supremum on  $[0,1]^N\setminus\{\mathbf{0}\}$  at  $(1,\ldots,1).$ 

Now consider the *two-sided* optimization problem, i.e. on  $[-1,1]^N \setminus \{0\}$ . The above Lemmas suggest taking  $\mathbf{n} = (N - 1 + 2r, N - 2, \dots, 1, 0)$ .

Apoorva Khare, IISc Bangalore

"Two-sided" variant: Suppose  $\mathbf{n} = (N - 1 + 2r, N - 2, ..., 1, 0))$  for  $r \ge 0$ , and  $\mathbf{m} \ge \mathbf{n}$  coordinatewise. Define

$$f(\mathbf{u}) := \frac{s_{\mathbf{m}}(\mathbf{u})^2}{h_{2r}(\mathbf{u})^2}.$$

"Two-sided" variant: Suppose  $\mathbf{n} = (N - 1 + 2r, N - 2, ..., 1, 0))$  for  $r \ge 0$ , and  $\mathbf{m} \ge \mathbf{n}$  coordinatewise. Define

$$f(\mathbf{u}) := \frac{s_{\mathbf{m}}(\mathbf{u})^2}{h_{2r}(\mathbf{u})^2}.$$

**Question:** How does this function behave on  $[-1, 1]^N \setminus \{0\}$ ? Where does it attain its supremum?

"Two-sided" variant: Suppose  $\mathbf{n} = (N - 1 + 2r, N - 2, ..., 1, 0))$  for  $r \ge 0$ , and  $\mathbf{m} \ge \mathbf{n}$  coordinatewise. Define

$$f(\mathbf{u}) := \frac{s_{\mathbf{m}}(\mathbf{u})^2}{h_{2r}(\mathbf{u})^2}.$$

**Question:** How does this function behave on  $[-1,1]^N \setminus \{0\}$ ? Where does it attain its supremum?

• By homogeneity considerations, enough to consider the behavior on the boundary of the cube  $[-1,1]^N$  (a compact set). Where is the maximum attained – and what does it equal?

"Two-sided" variant: Suppose  $\mathbf{n} = (N - 1 + 2r, N - 2, ..., 1, 0))$  for  $r \ge 0$ , and  $\mathbf{m} \ge \mathbf{n}$  coordinatewise. Define

$$f(\mathbf{u}) := \frac{s_{\mathbf{m}}(\mathbf{u})^2}{h_{2r}(\mathbf{u})^2}.$$

**Question:** How does this function behave on  $[-1,1]^N \setminus \{0\}$ ? Where does it attain its supremum?

- By homogeneity considerations, enough to consider the behavior on the boundary of the cube  $[-1,1]^N$  (a compact set). Where is the maximum attained and what does it equal?
- A solution to this question has consequences for entrywise polynomials that preserve positivity on matrices.

## References I: Symmetric function identities

- A.-L. Cauchy. *Memoir*, 1841. Mémoire sur les fonctions alternées et sur les sommes alternées.
- F.G. Frobenius. J. reine Angew. Math., 1882.
   Über die elliptischen Funktionen zweiter Art.
- C. Loewner. Letter to J. Mitchell, 1967.
   (Published+attributed in paper by R.A. Horn, in Trans. Amer. Math. Soc., 1969.)
- [4] G.E. Andrews, I.P. Goulden, and D.M. Jackson. *Trans. Amer. Math. Soc.*, 1988. Generalizations of Cauchy's summation theorem for Schur functions.
- [5] D. Laksov, A. Lascoux, and A. Thorup. Acta Math., 1989. On Giambelli's theorem for complete correlations.
- [6] G. Kuperberg. Ann. of Math., 2002. Symmetry classes of alternating-sign matrices under one roof.
- H. Rosengren and M. Schlosser. Compos. Math., 2006.
   Elliptic determinant evaluations and Macdonald identities for affine root systems.
- [8] A. Khare. *Trans. Amer. Math. Soc.*, 2022.
   Smooth entrywise positivity preservers, a Horn–Loewner master theorem, and symmetric function identities.
- [9] A. Khare and S. Sahi. Preprint, 2022.
   From Cauchy's determinant formula to bosonic/fermionic immanant identities.

Apoorva Khare, IISc Bangalore

#### References II: Majorization inequalities

[1] C. Maclaurin. Philos. Trans., 1729.

A second letter to Martin Foulkes, Esq., concerning the roots of equations with the demonstrations of other rules in algebra.

- I. Newton. Memoir, 1732. Arithmetica universalis: sive de compositione et resolutione arithmetica liber.
- [3] O. Schlömilch. Z. Math. Phys., 1858.
   Über Mittel grössen verschiedener Ordnung.
- [4] R.F. Muirhead. *Proc. Edinburgh Math. Soc.*, **1903**.
   Some methods applicable to identities of symmetric algebraic functions of n letters.
- [5] A. Cuttler, C. Greene, and M. Skandera. *Eur. J. Combin.*, 2011. Inequalities for symmetric means.
- [6] S. Sra. *Eur. J. Combin.*, 2016. On inequalities for normalized Schur functions.
- [7] A. Khare and T. Tao. *Amer. J. Math.*, 2021.
   On the sign patterns of entrywise positivity preservers in fixed dimension.
- [8] C. McSwiggen and J. Novak. Int. Res. Math. Not. IMRN, 2022. Majorization and spherical functions.

# Thank you for your attention.



# W-majorization

Let V = Euclidean space containing  $\Phi =$  crystallographic root system, with Weyl group  $W \subset O(V)$ . (So W is generated by the reflections in the hyperplanes orthogonal to  $\alpha \in \Phi$ .)

# W-majorization

Let V = Euclidean space containing  $\Phi =$  crystallographic root system, with Weyl group  $W \subset O(V)$ . (So W is generated by the reflections in the hyperplanes orthogonal to  $\alpha \in \Phi$ .)

**Definition** (*McSwiggen–Novak*): Given  $\lambda, \mu \in V$ , say that  $\lambda$  *W*-majorizes  $\mu$  if  $\mu$  lies in the convex hull of the orbit  $W \cdot \lambda$ .

Special case: If  $\Phi$  is of type A, then  $W = S_N$ , and then

 $\lambda$   $S_N$ -majorizes  $\mu$  precisely means  $\lambda$  majorizes  $\mu$ .

#### Riemannian symmetric spaces

- Let  $G = \text{connected Lie group}, \sigma: G \to G$  an order-2 automorphism.
  - If  $K := G^{\sigma}$  is compact, X = G/K is a Riemannian symmetric space.
## Riemannian symmetric spaces

- Let G = connected Lie group, σ : G → G an order-2 automorphism.
  If K := G<sup>σ</sup> is compact, X = G/K is a Riemannian symmetric space.
- (Under further assumptions:) Iwasawa decomposition G = NAK. The weights/roots of Lie(G) w.r.t. α := Lie(A) form a root system Φ.
- Now study W-majorization for  $\lambda, \mu \in \mathfrak{a}$ .
- The analogues of (normalized) Schur polyomials are *spherical functions*, studied by Harish-Chandra [*Amer. J. Math.* 1958].

## Riemannian symmetric spaces

- Let G = connected Lie group, σ : G → G an order-2 automorphism.
  If K := G<sup>σ</sup> is compact, X = G/K is a Riemannian symmetric space.
- (Under further assumptions:) Iwasawa decomposition G = NAK. The weights/roots of Lie(G) w.r.t. α := Lie(A) form a root system Φ.
- Now study W-majorization for  $\lambda, \mu \in \mathfrak{a}$ .
- The analogues of (normalized) Schur polyomials are *spherical functions*, studied by Harish-Chandra [*Amer. J. Math.* 1958].

## Theorem (McSwiggen–Novak, IMRN 2022)

Extended the C-G-S / Sra / K.–Tao results, to characterize W-majorization on  $\mathfrak{a}$ , via inequalities of the spherical functions  $\phi_{i\lambda} \ge \phi_{i\mu}$  on G/K.