Multi-grounded partitions and character formulas

Jehanne Dousse, Isaac Konan

Institut Camille Jordan, Université Claude Bernard Lyon 1

FPSAC 2022, July 18. Published in Advances in Mathematics, 400 (2022), 108275.

伺 ト イヨト イヨト

3

 $\begin{array}{c} \mbox{Multi-grounded partitions} \\ \mbox{Perfect crystals and multi-grounded partitions} \\ \mbox{Applications to standard level 1 modules of the Lie algebra } A^{(2)}_{n-1}(n \geq 3) \end{array}$

Overview What do we compute?

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

 $\label{eq:product} Multi-grounded partitions \\ Perfect crystals and multi-grounded partitions \\ Applications to standard level 1 modules of the Lie algebra <math display="inline">A_{2n-1}^{\prime}(n \geq 3)$

Overview What do we compute?

Characters of standard modules

<□> < □> < □> < ≧> < ≧> < ≧> ≥ つへで 2/16

 $Multi-grounded partitions \\ Perfect crystals and multi-grounded partitions \\ Applications to standard level 1 modules of the Lie algebra <math display="inline">A_{2n-1}^{j}(n \geq 3)$

Overview

What do we compute? What are the existing methods?

Characters of standard modules

<□> < □> < □> < ≧> < ≧> < ≧> ≥ つへで 2/16

Overview

What do we compute? What are the existing methods?

Overview

What do we compute? What are the existing methods?

Overview

What do we compute? What are the existing methods?

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の < ? 2/16

Overview

What do we compute? What are the existing methods?

Overview

What do we compute? What are the existing methods?

Overview

What do we compute? What are the existing methods? What do we bring to the table?

Overview

What do we compute? What are the existing methods? What do we bring to the table?

Overview

What do we compute? What are the existing methods? What do we bring to the table?

< ロ > < 同 > < 三 > < 三 >

э

partitions

A partition finite sequence of positive integers .

is a non-increasing

2

3/16

< ロ > < 同 > < 三 > < 三 > < 三 > <

Example: (4, 3, 1, 1), (1, 1, 1, 1, 1).

Generalized colored partitions

Let C be a set. Suppose that integers occur in "colors" in C. The set of colored integers is \mathbb{Z}_C . Let \succ be a binary relation on \mathbb{Z}_C .

A partition finite sequence of positive integers .

is a non-increasing

Example: $C = \{c_1, c_2\}$, and let \gg be the **order** defined on \mathbb{Z}_C such that

 $\cdots\succ \mathbf{1}_{c_2}\succ \mathbf{1}_{c_2}\succ \mathbf{1}_{c_1}\succ \mathbf{1}_{c_1}\succ \mathbf{0}_{c_2}\succ \mathbf{0}_{c_2}\succ \mathbf{0}_{c_1}\succ \mathbf{0}_{c_1}\succ (-1)_{c_2}\succ\cdots.$

Generalized colored partitions

Let C be a set. Suppose that integers occur in "colors" in C. The set of colored integers is \mathbb{Z}_{C} . Let \succ be a binary relation on \mathbb{Z}_{C} .

A generalized colored partition according to the relation \succ is a well-ordered finite sequence of colored integers according to the relation \succ .

<u>Example</u>: $C = \{c_1, c_2\}$, and let \gg be the **order** defined on \mathbb{Z}_C such that

 $\cdots \succ \mathbf{1}_{c_2} \succ \mathbf{1}_{c_2} \succ \mathbf{1}_{c_1} \succ \mathbf{1}_{c_1} \succ \mathbf{0}_{c_2} \succ \mathbf{0}_{c_2} \succ \mathbf{0}_{c_1} \succ \mathbf{0}_{c_1} \succ (-1)_{c_2} \succ \cdots.$

◆□ ▶ ◆周 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Generalized colored partitions

Let C be a set. Suppose that integers occur in "colors" in C. The set of colored integers is \mathbb{Z}_{C} . Let \succ be a binary relation on \mathbb{Z}_{C} .

A generalized colored partition according to the relation \succ is a well-ordered finite sequence of colored integers according to the relation \succ .

 $\begin{array}{ll} \underline{\mathsf{Example:}} & \mathcal{C} = \{c_1, c_2\}, \text{ and let} \gg \text{ be the order defined on } \mathbb{Z}_{\mathcal{C}} \text{ such that} \\ & \cdots \succ \mathbf{1}_{c_2} \succ \mathbf{1}_{c_2} \succ \mathbf{1}_{c_1} \succ \mathbf{1}_{c_1} \succ \mathbf{0}_{c_2} \succ \mathbf{0}_{c_1} \succ \mathbf{0}_{c_1} \succ (-1)_{c_2} \succ \cdots . \end{array}$

The sequence $(3_{c_1}, 3_{c_1}, 2_{c_2}, 2_{c_1})$ is allowed, but not $(2_{c_1}, 2_{c_2})$.

◆□ ▶ ◆◎ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ● ◎ ● ● ●

Multi-grounded partitions

Let C, \mathbb{Z}_{C} , and \succ be respectively a set of colors, the set of integers colored with colors in C, and a binary relation defined on \mathbb{Z}_{C} . Suppose that there exist some colors $c_{g_0}, \ldots, c_{g_{t-1}}$ in C and **unique** colored integers $u_{c_{g_0}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)}$ such that

$$u^{(0)} + \dots + u^{(t-1)} = 0$$

$$u^{(0)}_{c_{g_0}} \succ u^{(1)}_{c_{g_1}} \succ \dots \succ u^{(t-1)}_{c_{g_{t-1}}} \succ u^{(0)}_{c_{g_0}}$$

イロト 不得 とくほ とくほ とうほう

Multi-grounded partitions

Let C, \mathbb{Z}_{C} , and \succ be respectively a set of colors, the set of integers colored with colors in C, and a binary relation defined on \mathbb{Z}_{C} . Suppose that there exist some colors $c_{g_0}, \ldots, c_{g_{t-1}}$ in C and **unique** colored integers $u_{c_{g_0}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)}$ such that

$$\begin{aligned} u^{(0)} + \cdots + u^{(t-1)} &= 0 \\ u^{(0)}_{c_{g_0}} \succ u^{(1)}_{c_{g_1}} \succ \cdots \succ u^{(t-1)}_{c_{g_{t-1}}} \succ u^{(0)}_{c_{g_0}}. \end{aligned}$$

Then a **multi-grounded partition** with ground $c_{g_0}, \ldots, c_{g_{t-1}}$ and relation \succ is a non-empty generalized colored partition $\pi = (\pi_0, \ldots, \pi_{s-1}, u_{c_{g_0}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)})$ with relation \succ , such that $(\pi_{s-t}, \ldots, \pi_{s-1}) \neq (u_{c_{g_0}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)})$ in terms of colored integers.

イロト 不得 とくほ とくほ とうほう

Example of multi-grounded partitions

Consider the set of colors $C = \{c_1, c_2, c_3\}$, the matrix

$$M = \begin{pmatrix} 2 & 2 & 2 \\ 0 & 0 & 2 \\ -2 & 0 & 2 \end{pmatrix},$$

and define the relation \succ on $\mathbb{Z}_{\mathcal{C}}$ by $k_{c_b} \succ k'_{c_{b'}}$ if and only if $k - k' \ge M_{b,b'}$. If we choose $(g_0, g_1) = (1, 3)$, then $(u^{(0)}, u^{(1)}) = (1, -1)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example of multi-grounded partitions

Consider the set of colors $C = \{c_1, c_2, c_3\}$, the matrix

$$M=egin{pmatrix} 2&2&2\0&0&2\-2&0&2 \end{pmatrix},$$

and define the relation \succ on $\mathbb{Z}_{\mathcal{C}}$ by $k_{c_b} \succ k'_{c_{b'}}$ if and only if $k - k' \ge M_{b,b'}$. If we choose $(g_0, g_1) = (1, 3)$, then $(u^{(0)}, u^{(1)}) = (1, -1)$.

Hence, $(3_{c_3}, 3_{c_2}, 3_{c_1}, -1_{c_3}, 1_{c_1}, -1_{c_3})$ and $(1_{c_3}, 3_{c_1}, 1_{c_3}, 3_{c_1}, -1_{c_3}, 1_{c_1}, -1_{c_3})$ are examples of multi-grounded partitions with ground c_1, c_3 and relation \succ , while $(1_{c_1}, -1_{c_3}, 1_{c_1}, -1_{c_3})$ and $(2_{c_1}, 1_{c_1}, -1_{c_3})$ are not.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Perfect crystals

Let g be an affine Kac–Moody algebra with simple positive roots $\alpha_0, \ldots, \alpha_n$ and with null root $\delta = d_0\alpha_0 + \cdots + d_n\alpha_n$. For an integer level $\ell \ge 1$ and a dominant weight λ of level ℓ , Kashiwara et al. define the notion of a *perfect crystal* \mathcal{B} of *level* ℓ , an *energy function* $H: \mathcal{B} \otimes \mathcal{B} \to \mathbb{Z}$, and a particular element

$$\mathfrak{p}_{\lambda} = (g_k)_{k=0}^{\infty} = \cdots \otimes g_{k+1} \otimes g_k \otimes \cdots \otimes g_1 \otimes g_0 \in \mathcal{B}^{\infty},$$

called the ground state path of weight $\lambda.$ From this they consider all elements of the form

$$\mathfrak{p} = (p_k)_{k=0}^{\infty} = \cdots \otimes p_{k+1} \otimes p_k \otimes \cdots \otimes p_1 \otimes p_0 \in \mathcal{B}^{\infty},$$

which satisfy $p_k = g_k$ for large enough k. Such elements are called λ -paths.

3

The $(KMN)^2$ character formula

Theorem ((KMN)² crystal base character formula)

Let λ be a dominant weight of level ℓ , let H be an energy function on $\mathcal{B} \otimes \mathcal{B}$, and let $\mathfrak{p} = (p_k)_{k=0}^{\infty}$ be a λ -path. Then the weight of \mathfrak{p} and the character of the irreducible highest weight $U_q(\hat{\mathfrak{g}})$ -module $L(\lambda)$ are given by the following expressions:

$$\mathrm{wt}\mathfrak{p} = \lambda + \sum_{k=0}^{\infty} \left(\left(\overline{\mathrm{wt}} p_k - \overline{\mathrm{wt}} g_k \right) - rac{\delta}{d_0} \sum_{j=k}^{\infty} (H(p_{j+1} \otimes p_j) - H(g_{j+1} \otimes g_j))
ight),$$

 $\mathrm{ch}(\mathcal{L}(\lambda)) = \sum_{\mathfrak{p} \in \mathcal{P}(\lambda)} e^{\mathrm{wt}\mathfrak{p}},$

where $\overline{\mathrm{wt}}b$ stands for the weight of the element b in \mathcal{B} .

Normalizing the energy function

Let \mathcal{B} be a perfect crystal of level ℓ , and let λ be a level ℓ dominant weight with ground state path $\mathfrak{p}_{\lambda} = (g_k)_{k \geq 0}$ with period t. Let H be an energy function on $\mathcal{B} \otimes \mathcal{B}$.

3

Normalizing the energy function

Let \mathcal{B} be a perfect crystal of level ℓ , and let λ be a level ℓ dominant weight with ground state path $\mathfrak{p}_{\lambda} = (g_k)_{k \geq 0}$ with period t. Let H be an energy function on $\mathcal{B} \otimes \mathcal{B}$.

Define the function H_{λ} , for all $b, b' \in \mathcal{B}$, by

$$egin{aligned} \mathcal{H}_\lambda(m{b}\otimesm{b}') &:= \mathcal{H}(m{b}\otimesm{b}') - rac{1}{t}\sum_{k=0}^{t-1}\mathcal{H}(g_{k+1}\otimes g_k)\,. \end{aligned}$$

In the following, we choose a suitable divisor D of 2t such that $DH_{\lambda}(\mathcal{B} \otimes \mathcal{B}) \subset \mathbb{Z}$ and $\frac{1}{t} \sum_{k=0}^{t-1} (k+1)DH_{\lambda}(g_{k+1} \otimes g_k) \in \mathbb{Z}$.

3

Multi-grounded partition related to the energy function

Let us now consider the set of colors $\mathcal{C}_\mathcal{B}$ indexed by \mathcal{B} , and let us define the relation \gg on $\mathbb{Z}_{\mathcal{C}_\mathcal{B}}$ by

$$k_{c_b} \gg k_{c_{b'}}' \Longleftrightarrow k-k' \geq DH_{\lambda}(b' \otimes b).$$

Proposition

The set of multi-grounded partitions with ground $c_{g_0}, \ldots, c_{g_{t-1}}$ and relation \gg is the set of non-empty generalized colored partitions $\pi = (\pi_0, \ldots, \pi_{s-1}, u_{c_{g_0}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)})$ with relation \gg such that $(\pi_{s-t}, \ldots, \pi_{s-1}) \neq (u_{c_{g_0}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)})$, and for all $k \in \{0, \ldots, t-1\}$,

$$u^{(k)}=-rac{1}{t}\sum_{j=0}^{k-1}(j+1)D\mathcal{H}_{\lambda}(g_{j+1}\otimes g_j)+\sum_{j=k}^{k-1}D\mathcal{H}_{\lambda}(g_{j+1}\otimes g_j).$$

イロン 不同 とくほう イヨン 二日 二

Main result

Let *d* be a positive integer. Let \mathcal{P}_d be the set of multi-grounded partitions with ground $c_{g_0}, \ldots, c_{g_{t-1}}$ and relation \gg satisfying the following conditions:

- the number of parts is a multiple of t,
- the difference between two consecutive parts is a multiple of *d*.

▲◎▶▲■▶▲■▶ ■ のへで

Main result

Let d be a positive integer. Let \mathcal{P}_d be the set of multi-grounded partitions with ground $c_{g_0}, \ldots, c_{g_{t-1}}$ and relation \gg satisfying the following conditions:

- the number of parts is a multiple of t,
- the difference between two consecutive parts is a multiple of *d*.

Theorem (Dousse, K.)

Setting $q = e^{-\delta/(d_0D)}$ and $c_b = e^{\overline{wt}b}$ for all $b \in \mathcal{B}$, we have $c_{g_0} \cdots c_{g_{t-1}} = 1$, and the character of the irreducible highest weight $U_q(\mathfrak{g})$ -module $L(\lambda)$ is given by the following expressions:

$$\sum_{\pi \in \mathcal{P}_d} C(\pi) q^{|\pi|} = rac{e^{-\lambda} \mathrm{ch}(L(\lambda))}{(q^d; q^d)_\infty}.$$

Here, $C(\pi) = c_{b_0} \dots c_{b_s}$ and $|\pi| = k_0 + \dots + k_s$ for the generalized colored partition $\pi = ((k_0)_{c_{b_0}}, \dots, (k_s)_{c_{b_s}}).$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへで

Character for standard level 1 modules of the Lie algebra $A_{2n-1}^{(2)}(n \ge 3)$

Theorem (Dousse, K.)

Let $n \geq 3$, and let $\Lambda_0, \ldots, \Lambda_n$ be the fundamental weights and $\alpha_0, \ldots, \alpha_n$ be the simple roots of $A_{2n-1}^{(2)}$. Let $\delta = \alpha_0 + \alpha_1 + 2\alpha_2 \cdots + 2\alpha_{n-1} + \alpha_n$ be the null root. Set

$$q = e^{-\delta/2}$$
 and $c_i = e^{\alpha_i + \dots + \alpha_{n-1} + \alpha_n/2}$ for all $i \in \{1, \dots, n\}$.

The two dominant weights of level 1 are Λ_0 and Λ_1 , and we have

$$\begin{split} e^{-\Lambda_0} \mathrm{ch}(L(\Lambda_0)) &= \mathcal{E}\left((q^2; q^4)_{\infty} \prod_{k=1}^n (-c_k q; q^2)_{\infty} (-c_k^{-1} q; q^2)_{\infty} \right), \\ e^{-\Lambda_1} \mathrm{ch}(L(\Lambda_1)) &= \mathcal{E}\left((q^2; q^4)_{\infty} (-c_1 q^3; q^2)_{\infty} (-c_1^{-1} q^{-1}; q^2)_{\infty} \prod_{k=2}^n (-c_k q; q^2)_{\infty} (-c_k^{-1} q; q^2)_{\infty} \right), \end{split}$$

where

$$\mathcal{E}(F(c_1,\ldots,c_n))=\frac{1}{2}(F(c_1,\ldots,c_n)+F(-c_1,\ldots,-c_n)).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Crystal graph ${\mathcal B}$ of the vector representation for the Lie algebra ${\cal A}^{(2)}_{2n-1} (n\geq 3)$

æ

Energy function

The energy function such that $H(1 \otimes \overline{1}) = -1$, where $H(b_1 \otimes b_2)$ is the entry in column b_1 and row b_2 :

Character of $L(\Lambda_0)$

The ground state path is $\mathfrak{p}_{\Lambda_0} = (\cdots \overline{1} 1 \overline{1} 1 \overline{1})$. For D = d = t = 2, we obtain $u^{(0)} = -1$ and $u^{(1)} = 1$ and the corresponding partial order on odd colored integers:

$$\cdots \ll \begin{array}{c} (-1)_{c_{\overline{1}}} \\ 1_{c_1} \end{array} \ll 1_{c_2} \ll \cdots \ll 1_{c_n} \ll 1_{c_{\overline{n}}} \ll \cdots \ll 1_{c_{\overline{2}}} \ll \begin{array}{c} 1_{c_{\overline{1}}} \\ 3_{c_1} \end{array} \ll 3_{c_2} \ll \cdots$$

with the interlacing sequence

$$(2k+1)_{c_1} \ll (2k-1)_{c_{\overline{1}}} \ll (2k+1)_{c_1}.$$

3

Character of $L(\Lambda_0)$

The ground state path is $\mathfrak{p}_{\Lambda_0} = (\cdots \overline{1} 1 \overline{1} 1 \overline{1})$. For D = d = t = 2, we obtain $u^{(0)} = -1$ and $u^{(1)} = 1$ and the corresponding partial order on odd colored integers:

$$\cdots \ll \begin{array}{c} (-1)_{c_{\overline{1}}} \\ 1_{c_1} \end{array} \ll 1_{c_2} \ll \cdots \ll 1_{c_n} \ll 1_{c_{\overline{n}}} \ll \cdots \ll 1_{c_{\overline{2}}} \ll \begin{array}{c} 1_{c_{\overline{1}}} \\ 3_{c_1} \end{array} \ll 3_{c_2} \ll \cdots$$

with the interlacing sequence

$$(2k+1)_{c_1} \ll (2k-1)_{c_{\overline{1}}} \ll (2k+1)_{c_1}.$$

The set \mathcal{P}_2 consists of the multi-grounded partitions into odd colored integers and grounded in $c_{\overline{i}}c_1$, and the generating function is given by

$$\frac{(-c_1q,-c_{\overline{1}}q,\ldots,-c_nq,-c_{\overline{n}}q;q^2)_{\infty}}{(c_{\overline{1}}c_1q^4;q^4)_{\infty}}.$$

Character of $L(\Lambda_1)$

The ground state path is $\mathfrak{p}_{\Lambda_0} = (\cdots \overline{1}1\overline{1}1\overline{1}1\overline{1}1)$. For D = d = t = 2, we obtain $u^{(0)} = 1$ and $u^{(1)} = -1$, and the generating function of \mathcal{P}_2 is

$$\frac{(-c_1q^3, -c_{\overline{1}}q^{-1}, -c_2q, -c_{\overline{2}}q \dots, -c_nq, -c_{\overline{n}}q; q^2)_{\infty}}{(c_{\overline{1}}c_1q^4; q^4)_{\infty}}$$

▲御▶ ▲臣▶ ▲臣▶ ―臣 … 釣へ(?).

What we have done.

- We computed the character of standard level one modules of type $A_{n-1}^{(1)}(n \ge 2), B_n^{(1)}(n \ge 3), D_n^{(1)}(n \ge 4).$
- We retrieved the character of standard level one modules of type $A_{2n}^{(2)}(n \ge 2), D_{n+1}^{(2)}(n \ge 3).$
- We computed all the character of standard modules of type $A_1^{(1)}$ and derived partition identities involving absolute values.

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q (2)

What we have done. What should be done

- We computed the character of standard level one modules of type $A_{n-1}^{(1)}(n \ge 2), B_n^{(1)}(n \ge 3), D_n^{(1)}(n \ge 4).$
- We retrieved the character of standard level one modules of type $A_{2n}^{(2)}(n \ge 2), D_{n+1}^{(2)}(n \ge 3).$
- We computed all the character of standard modules of type $A_1^{(1)}$ and derived partition identities involving absolute values.
- Compute the character of standard level one modules of type $C_n^{(1)}(n \ge 2)$.
- Compute the character of standard modules for all levels and all types.