Generalized quantum Yang-Baxter moves and their application to Schubert calculus

Takafumi Kouno⁽¹⁾, Cristian Lenart⁽²⁾, and Satoshi Naito⁽³⁾

Waseda University, Japan
 State University of New York at Albany, U.S.A.
 Tokyo Institute of Technology, Japan

July 21, 2022, FPSAC2022

(Based on arXiv:2105.02546)

The quantum alcove model: introduced by Lenart-Lubovsky (2015)

- the quantum K-theory of flag manifolds
- the representation theory of quantum affine algebras

The quantum alcove model: introduced by Lenart-Lubovsky (2015)

- the quantum K-theory of flag manifolds
- the representation theory of quantum affine algebras
- B^{p,1}: a column-shape Kirillov-Reshetikhin crystal
 (a combinatorial model for a certain finite-dimensional representation of a quantum affine algebra)

The quantum alcove model: introduced by Lenart-Lubovsky (2015)

- the quantum K-theory of flag manifolds
- the representation theory of quantum affine algebras
- B^{p,1}: a column-shape Kirillov-Reshetikhin crystal
 (a combinatorial model for a certain finite-dimensional representation of a quantum affine algebra)

Fact (Lenart-Naito-Sagaki-Schilling-Shimozono (2017))

In arbitrary untwisted affine type, there exists a crystal isomorphism

 $\underbrace{\mathcal{A}(\Gamma)}_{objects of the quantum alcove model}^{\sim} B^{p_1,1} \otimes B^{p_2,1} \otimes \cdots \otimes B^{p_k,1} \text{ (only "dual Demazure arrows"),}$

where Γ is a suitable sequence of roots, called a λ -chain.

•
$$(p_1, p_2, \dots, p_k) \in \mathbb{Z}_{\geq 0}^k$$

• $(p'_1, p'_2, \dots, p'_k)$: a permutation of (p_1, p_2, \dots, p_k)

Fact

There exists a crystal isomorphism

$$B^{p_1,1}\otimes B^{p_2,1}\otimes\cdots\otimes B^{p_k,1}\xrightarrow{\sim} B^{p_1',1}\otimes B^{p_2',1}\otimes\cdots\otimes B^{p_k',1},$$

called a combinatorial *R*-matrix (realized as jeu de taquin on Young tableaux in type A).

 $\mathcal{A}(\Gamma)$ may depend of the choice of " λ -chain" Γ (λ : dominant)

 $\mathcal{A}(\Gamma)$ may depend of the choice of " λ -chain" Γ (λ : dominant)

- λ : dominant integral weight
- Γ , Γ' : two "reduced" (shortest) λ -chains

Theorem (Lenart-Lubovsky (2018))

There exists a crystal isomorphism $\mathcal{A}(\Gamma) \xrightarrow{\sim} \mathcal{A}(\Gamma')$, which is realized combinatorially by a sequence of quantum Yang-Baxter moves.

 $\mathcal{A}(\Gamma)$ may depend of the choice of " λ -chain" Γ (λ : dominant)

- λ : dominant integral weight
- Γ , Γ' : two "reduced" (shortest) λ -chains

Theorem (Lenart-Lubovsky (2018))

There exists a crystal isomorphism $\mathcal{A}(\Gamma) \xrightarrow{\sim} \mathcal{A}(\Gamma')$, which is realized combinatorially by a sequence of quantum Yang-Baxter moves.

 $\rightarrow \mathcal{A}(\Gamma)$ does not depend on the choice of Γ

Combinatorial R-matrix vs. QYB moves

Combinatorial R-matrix vs. QYB moves

Conclusion

The quantum Yang-Baxter moves provide a realization (in the quantum alcove model) of the combinatorial *R*-matrix, which works uniformly for all untwisted affine root systems.

The generalization of the QYB move (1/3)

 $\mathcal{A}(w, \Gamma)$: objects of the quantum alcove model (admissible subsets) generalized by Lenart-Naito-Sagaki (2020) for

- w (generalized from w = e before): an element of the Weyl group
- Γ : a λ -chain (λ : an arbitrary integral weight)

The generalization of the QYB move (1/3)

 $\mathcal{A}(w, \Gamma)$: objects of the quantum alcove model (admissible subsets) generalized by Lenart-Naito-Sagaki (2020) for

- w (generalized from w = e before): an element of the Weyl group
- Γ : a λ -chain (λ : an arbitrary integral weight)

Applications (Lenart-Naito-Sagaki (2020))

- The Chevalley multiplication formula in the *K*-group of semi-infinite flag manifolds
- — in the quantum K-group of flag manifolds
- Character identities of level-zero Demazure modules over quantum affine algebras

Question

Is there a generalization of the quantum Yang-Baxter moves $\mathcal{A}(w,\Gamma) o \mathcal{A}(w,\Gamma')$?

 $\rightarrow \mathcal{A}(w,\Gamma)$ is independent of the choice of Γ

Question

Is there a generalization of the quantum Yang-Baxter moves $\mathcal{A}(w,\Gamma) o \mathcal{A}(w,\Gamma')$?

 $ightarrow \mathcal{A}(w,\Gamma)$ is independent of the choice of Γ

Problem

In general, $|\mathcal{A}(w,\Gamma)| \neq |\mathcal{A}(w,\Gamma')|$. Hence there does not exist any bijection $\mathcal{A}(w,\Gamma) \rightarrow \Gamma(w,\Gamma')$.

 \rightarrow We need a new approach to generalize QYB moves.

The generalization of the QYB move (3/3)

Question

Is there a generalization of the quantum Yang-Baxter moves $\mathcal{A}(w,\Gamma) o \mathcal{A}(w,\Gamma')$?

Definition (Fisher-Konvalinka (2020))

A sijection ("signed bijection") $S \Rightarrow T$ between signed sets S and T is a triple $(\iota_S, \iota_T, \varphi)$ consisting of

- $\varphi: S_0 \rightarrow T_0$: a sign-preserving bijection ($S_0 \subset S$, $T_0 \subset T$)
- ι_S (resp., ι_T): a sign-reversing involution on $S \setminus S_0$ (resp., $T \setminus T_0$)

The generalization of the QYB move (3/3)

Question

Is there a generalization of the quantum Yang-Baxter moves $\mathcal{A}(w,\Gamma) o \mathcal{A}(w,\Gamma')$?

Definition (Fisher-Konvalinka (2020))

A sijection ("signed bijection") $S \Rightarrow T$ between signed sets S and T is a triple $(\iota_S, \iota_T, \varphi)$ consisting of

- $\varphi: S_0 \to T_0$: a sign-preserving bijection ($S_0 \subset S$, $T_0 \subset T$)
- ι_S (resp., ι_T): a sign-reversing involution on $S \setminus S_0$ (resp., $T \setminus T_0$)

Theorem (KLN (2021))

For λ -chains Γ , Γ' such that Γ' is obtained from Γ by a "simple deformation procedure", there exists a sijection $\mathcal{A}(w, \Gamma) \Rightarrow \mathcal{A}(w, \Gamma')$ which preserves the related statistics end, down, wt, and height.

- \mathfrak{g} : a simple Lie algebra over $\mathbb C$
- Δ : the root system of \mathfrak{g}
- Δ^+ : the set of positive roots
- P: the weight lattice
- P⁺: the set of dominant integral weights
- Q^{\vee} : the coroot lattice
- W: the Weyl group
- $\ell: W \to \mathbb{Z}_{\geq 0}$: the length function

The quantum Bruhat graph

Definition (Brenti-Fomin-Postnikov (1999))

The quantum Bruhat graph QBG(W) is the labeled directed graph:

- Vertex set: W
- Label set: Δ^+
- Edge: $x \xrightarrow{\alpha} y \ (x, y \in W, \ \alpha \in \Delta^+) \iff y = xs_{\alpha}$, and (Bruhat edge) $\ell(y) = \ell(x) + 1$, or (Quantum edge) $\ell(y) = \ell(x) - 2\langle \rho, \alpha^{\vee} \rangle + 1$ $(\rho := (1/2) \sum_{\alpha \in \Delta^+} \alpha)$.

• $A_{\circ} := \{\nu \mid 0 < \langle \nu, \alpha^{\vee} \rangle < 1 \text{ for all } \alpha \in \Delta^+ \}$: the fundamental alcove • $\lambda \in P$

(reduced) λ -chain: a sequence $\Gamma = (\beta_1, \dots, \beta_r)$ of roots associated to a (shortest) path from A_\circ to $A_{-\lambda} := A_\circ - \lambda$

[Type A_2] $(\alpha_2, \alpha_1 + \alpha_2, \alpha_2, \alpha_1 + \alpha_2, \alpha_1, \alpha_1 + \alpha_2)$ $(\varpi_1 + 2\varpi_2)$ -chain

 α_1

 $\frac{\pi}{2}$

Admissible subsets (1/2)

Admissible subsets: main objects in the quantum alcove model

- *w* ∈ *W*
- $\lambda \in P$
- $\Gamma = (\beta_1, \dots, \beta_r)$: a λ -chain

Definition (Lenart-Lubovsky (2015), Lenart-Naito-Sagaki (2020))

A subset $A = \{i_1 < i_2 < \cdots < i_s\} \subset \{1, \dots, r\}$ is said to be *w*-admissible if

$$w = w_0 \stackrel{|eta_{i_1}|}{\longrightarrow} w_1 \stackrel{|eta_{i_2}|}{\longrightarrow} \cdots \stackrel{|eta_{i_s}|}{\longrightarrow} w_s \; (=: \mathsf{end}(A))$$

is a directed path in QBG(W). Set

$$\mathsf{down}(A) := \sum_{\substack{1 \leq k \leq s \ w_{k-1} o w_k ext{ is a quantum edge}}} |eta_k|^ee,$$
 $n(A) := |\{j \in A \mid eta_j \in -\Delta^+\}|.$

Admissible subsets (2/2)

Definition (Lenart-Lubovsky (2015), Lenart-Naito-Sagaki (2020))

A subset $A = \{i_1 < i_2 < \cdots < i_s\} \subset \{1, \ldots, r\}$ is said to be *w*-admissible if

$$w = w_0 \xrightarrow{|\beta_{i_1}|} w_1 \xrightarrow{|\beta_{i_2}|} \cdots \xrightarrow{|\beta_{i_s}|} w_s \ (=: \operatorname{end}(A))$$

is a directed path in QBG(W). Set

$$\mathsf{down}(A) := \sum_{\substack{1 \leq k \leq s \ w_{k-1} o w_k ext{ is a quantum edge}}} |eta_k|^ee,$$
 $n(A) := |\{j \in A \mid eta_j \in -\Delta^+\}|.$

Remark

We can also define statistics $wt(A) \in P$ and $height(A) \in \mathbb{Z}$.

$$\mathcal{A}(w, \Gamma) := \{A \subset \{1, \dots, r\} \mid A \text{ is } w \text{-admissible}\} \text{ with sign } A \mapsto (-1)^{n(A)}$$

Takafumi Kouno (Waseda Univ.)

Generalized quantum Yang-Baxter moves

• $\lambda \in P$

• $\Gamma = (\beta_1, \dots, \beta_r)$: a λ -chain

Definition (e.g., Lenart-Postnikov (2007))

A Yang-Baxter transformation (YB): a procedure to obtain a new λ -chain (1) Take a segment $(\beta_{t+1}, \ldots, \beta_{t+q})$ of Γ s.t.

•
$$\langle \beta_{t+1}, \beta_{t+q}^{\vee} \rangle \leq 0$$
,
• $(\beta_{t+1}, \dots, \beta_{t+q}) = (\alpha, s_{\alpha}(\beta), s_{\alpha}s_{\beta}(\alpha), \dots, s_{\beta}(\alpha), \beta)$ for some α, β .

(2) Reverse $(\beta_{t+1}, \ldots, \beta_{t+q})$ in Γ :

$$\Gamma' := (\beta_1, \ldots, \beta_t, \beta_{t+q}, \ldots, \beta_{t+1}, \beta_{t+q+1}, \ldots, \beta_r).$$

 \rightarrow Γ' : λ -chain

Deletion

•
$$\lambda \in P$$

• $\Gamma = (\beta_1, \dots, \beta_r)$: a λ -chain

Definition (e.g., Lenart-Postnikov (2007))

A deletion (D): a procedure to obtain a new λ -chain

- (1) Take a segment $(\beta_{t+1}, \beta_{t+2})$ in Γ s.t. $\beta_{t+2} = -\beta_{t+1}$.
- (2) Delete the segment $(\beta_{t+1}, \beta_{t+2})$ in Γ :

$$\Gamma' := (\beta_1, \ldots, \beta_t, \beta_{t+3}, \ldots, \beta_r).$$

 \rightarrow Γ' : λ -chain

Deletion

•
$$\lambda \in P$$

• $\Gamma = (\beta_1, \dots, \beta_r)$: a λ -chain

Definition (e.g., Lenart-Postnikov (2007))

A deletion (D): a procedure to obtain a new λ -chain

- (1) Take a segment $(\beta_{t+1}, \beta_{t+2})$ in Γ s.t. $\beta_{t+2} = -\beta_{t+1}$.
- (2) Delete the segment $(\beta_{t+1}, \beta_{t+2})$ in Γ :

$$\Gamma' := (\beta_1, \ldots, \beta_t, \beta_{t+3}, \ldots, \beta_r).$$

 \rightarrow Γ' : λ -chain

Fact (e.g., Lenart-Naito-Sagaki, Lenart-Postnikov)

From any λ -chain, we can obtain any reduced λ -chain by repeated application of (YB) and (D).

Theorem (Lenart-Lubovsky (2018))

Let $\lambda \in P^+$, and take reduced λ -chains Γ_1 , Γ_2 s.t. $\Gamma_1 \xrightarrow{(YB)} \Gamma_2$. There exists a bijection $Y : \mathcal{A}(e, \Gamma_1) \to \mathcal{A}(e, \Gamma_2)$ s.t.

- end(Y(A)) = end(A),
- $\operatorname{down}(Y(A)) = \operatorname{down}(A)$,
- wt(Y(A)) = wt(A), and
- height(Y(A)) = height(A).

This Y is called a quantum Yang-Baxter (QYB) move.

A QYB move is a structure-preserving bijection.
 → A(e, Γ) does not depend on the choice of Γ.

Theorem (Lenart-Lubovsky (2018))

Let $\lambda \in P^+$, and take reduced λ -chains Γ_1 , Γ_2 s.t. $\Gamma_1 \xrightarrow{(YB)} \Gamma_2$. There exists a bijection $Y : \mathcal{A}(e, \Gamma_1) \to \mathcal{A}(e, \Gamma_2)$ s.t.

- end(Y(A)) = end(A),
- $\operatorname{down}(Y(A)) = \operatorname{down}(A)$,
- wt(Y(A)) = wt(A), and
- height(Y(A)) = height(A).

This Y is called a quantum Yang-Baxter (QYB) move.

• A QYB move is a structure-preserving bijection.

 $\rightarrow \mathcal{A}(e,\Gamma)$ does not depend on the choice of Γ .

- It is, in fact, an affine crystal isomorphism.
- It is a root system generalization of jeu de taquin in type A.

Let $\lambda \in P$ and $w \in W$. Take λ -chains Γ_1 , Γ_2 s.t.

- $\Gamma_1 \xrightarrow{(YB)} \Gamma_2$ or
- $\Gamma_1 \xrightarrow{(D)} \Gamma_2$ in which a segment $(\beta, -\beta)$ in Γ_1 , with β not a simple root, is deleted.

There exist explicit subsets $\mathcal{A}_0(w, \Gamma_1) \subset \mathcal{A}(w, \Gamma_1)$ and $\mathcal{A}_0(w, \Gamma_2) \subset \mathcal{A}(w, \Gamma_2)$ s.t.

Let $\lambda \in P$ and $w \in W$. Take λ -chains Γ_1 , Γ_2 s.t.

- $\Gamma_1 \xrightarrow{(YB)} \Gamma_2$ or
- $\Gamma_1 \xrightarrow{(D)} \Gamma_2$ in which a segment $(\beta, -\beta)$ in Γ_1 , with β not a simple root, is deleted.

There exist explicit subsets $\mathcal{A}_0(w, \Gamma_1) \subset \mathcal{A}(w, \Gamma_1)$ and $\mathcal{A}_0(w, \Gamma_2) \subset \mathcal{A}(w, \Gamma_2)$ s.t.

 there exists a bijection Y : A₀(w, Γ₁) → A₀(w, Γ₂) which preserves sign (-1)^{n(A)} and which preserves end(·), down(·), wt(·), and height(·),

Let $\lambda \in P$ and $w \in W$. Take λ -chains Γ_1 , Γ_2 s.t.

- $\Gamma_1 \xrightarrow{(YB)} \Gamma_2$ or
- $\Gamma_1 \xrightarrow{(D)} \Gamma_2$ in which a segment $(\beta, -\beta)$ in Γ_1 , with β not a simple root, is deleted.

There exist explicit subsets $\mathcal{A}_0(w, \Gamma_1) \subset \mathcal{A}(w, \Gamma_1)$ and $\mathcal{A}_0(w, \Gamma_2) \subset \mathcal{A}(w, \Gamma_2)$ s.t.

- there exists a bijection Y : A₀(w, Γ₁) → A₀(w, Γ₂) which preserves sign (-1)^{n(A)} and which preserves end(·), down(·), wt(·), and height(·),
- (2) there exist involutions I_k on A(w, Γ_k) \ A₀(w, Γ_k) (k = 1, 2) which reverse sign (−1)^{n(A)} and which preserve end(·), down(·), wt(·), and height(·).

Generalization of QYB moves (2/2)

Theorem (KLN (2021))

(1) a bijection $Y : \mathcal{A}_0(w, \Gamma_1) \to \mathcal{A}_0(w, \Gamma_2)$ which preserves sign $(-1)^{n(\mathcal{A})}$ and which preserves end(·), down(·), wt(·), and height(·),

(2) involutions I_k on $\mathcal{A}(w, \Gamma_k) \setminus \mathcal{A}_0(w, \Gamma_k)$ (k = 1, 2) which reverse sign $(-1)^{n(A)}$ and which preserve end(·), down(·), wt(·), and height(·).

•
$$W_{\sf af} = W \ltimes Q^{\lor} = \{wt_{\xi} \mid w \in W, \ \xi \in Q^{\lor}\}$$
: the affine Weyl group

- $x = wt_{\xi} \in W_{af}$
- $\Gamma: \lambda$ -chain ($\lambda \in P$)

Definition

A generating function $G_{\Gamma}(x) \in (\mathbb{Z}[q, q^{-1}][P])[W_{af}] \Leftrightarrow$

$$\mathsf{G}_{\mathsf{\Gamma}}(x) := \sum_{A \in \mathcal{A}(w, \Gamma)} (-1)^{n(A)} q^{-\operatorname{height}(A) - \langle \lambda, \xi \rangle} e^{\operatorname{wt}(A)} \operatorname{end}(A) t_{\xi + \operatorname{down}(A)}.$$

Let $\lambda \in P$, $x \in W_{af}$. Take λ -chains Γ_1 , Γ_2 s.t. • $\Gamma_1 \xrightarrow{(YB)} \Gamma_2$ or • $\Gamma_1 \xrightarrow{(D)} \Gamma_2$ in which a segment $(\beta, -\beta)$ in Γ_1 , with β not a simple root, is deleted.

Then $G_{\Gamma_1}(x) = G_{\Gamma_2}(x)$.

We obtain a generalization of QYB move A(w, Γ) ⇒ A(w, Γ') as a sijection.

- We obtain a generalization of QYB move A(w, Γ) ⇒ A(w, Γ') as a sijection.
- Generating functions are preserved under deformation procedures (YB) and (D) (deletes $(\beta, -\beta)$ with β not a simple root).

- We obtain a generalization of QYB move A(w, Γ) ⇒ A(w, Γ') as a sijection.
- Generating functions are preserved under deformation procedures (YB) and (D) (deletes $(\beta, -\beta)$ with β not a simple root).
- As an application, we give a combinatorial proof of the Chevalley multiplication formula in the equivariant *K*-group of semi-infinite flag manifolds, first proved by Lenart-Naito-Sagaki.