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The quantum alcove model

The quantum alcove model: introduced by Lenart-Lubovsky (2015)

the quantum K -theory of flag manifolds

the representation theory of quantum affine algebras

Bp,1: a column-shape Kirillov-Reshetikhin crystal
(a combinatorial model for a certain finite-dimensional representation
of a quantum affine algebra)

Fact (Lenart-Naito-Sagaki-Schilling-Shimozono (2017))

In arbitrary untwisted affine type, there exists a crystal isomorphism

A(Γ)︸ ︷︷ ︸
objects of the quantum alcove model

∼−→ Bp1,1 ⊗ Bp2,1 ⊗ · · · ⊗ Bpk ,1 (only “dual Demazure arrows”),

where Γ is a suitable sequence of roots, called a λ-chain.
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The combinatorial R-matrix

(p1, p2, . . . , pk) ∈ Zk
≥0

(p′1, p
′
2, . . . , p

′
k): a permutation of (p1, p2, . . . , pk)

Fact

There exists a crystal isomorphism

Bp1,1 ⊗ Bp2,1 ⊗ · · · ⊗ Bpk ,1 ∼−→ Bp′1,1 ⊗ Bp′2,1 ⊗ · · · ⊗ Bp′k ,1,

called a combinatorial R-matrix (realized as jeu de taquin on Young
tableaux in type A).
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The quantum Yang-Baxter move

A(Γ) may depend of the choice of “λ-chain” Γ (λ: dominant)

λ: dominant integral weight

Γ, Γ′: two “reduced” (shortest) λ-chains

Theorem (Lenart-Lubovsky (2018))

There exists a crystal isomorphism A(Γ)
∼−→ A(Γ′), which is realized

combinatorially by a sequence of quantum Yang-Baxter moves.

→ A(Γ) does not depend on the choice of Γ
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Combinatorial R-matrix vs. QYB moves

A(Γ) A(Γ′)

Bp1,1 ⊗ · · · ⊗ Bpk ,1 Bp′1,1 ⊗ · · · ⊗ Bp′k ,1

quantum Yang–Baxter moves

combinatorial R-matrix
(jeu de taquin)

' '

Conclusion

The quantum Yang-Baxter moves provide a realization (in the quantum
alcove model) of the combinatorial R-matrix, which works uniformly for all
untwisted affine root systems.
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The generalization of the QYB move (1/3)

A(w , Γ): objects of the quantum alcove model (admissible subsets)
generalized by Lenart-Naito-Sagaki (2020) for

w (generalized from w = e before): an element of the Weyl group

Γ: a λ-chain (λ: an arbitrary integral weight)

Applications (Lenart-Naito-Sagaki (2020))

The Chevalley multiplication formula in the K -group of semi-infinite
flag manifolds

— in the quantum K -group of flag manifolds

Character identities of level-zero Demazure modules over quantum
affine algebras
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The generalization of the QYB move (2/3)

Question

Is there a generalization of the quantum Yang-Baxter moves
A(w , Γ) → A(w , Γ′)?

→ A(w , Γ) is independent of the choice of Γ

Problem

In general, |A(w , Γ)| 6= |A(w , Γ′)|. Hence there does not exist any
bijection A(w , Γ) → Γ(w , Γ′).

→ We need a new approach to generalize QYB moves.
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The generalization of the QYB move (3/3)

Question

Is there a generalization of the quantum Yang-Baxter moves
A(w , Γ) → A(w , Γ′)?

Definition (Fisher-Konvalinka (2020))

A sijection (“signed bijection”) S ⇒ T between signed sets S and T is a
triple (ιS , ιT , φ) consisting of

φ : S0 → T0: a sign-preserving bijection (S0 ⊂ S , T0 ⊂ T )

ιS (resp., ιT ): a sign-reversing involution on S \ S0 (resp., T \ T0)

Theorem (KLN (2021))

For λ-chains Γ, Γ′ such that Γ′ is obtained from Γ by a “simple
deformation procedure”, there exists a sijection A(w , Γ) ⇒ A(w , Γ′) which
preserves the related statistics end, down, wt, and height.
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Settings

g: a simple Lie algebra over C
∆: the root system of g

∆+: the set of positive roots

P: the weight lattice

P+: the set of dominant integral weights

Q∨: the coroot lattice

W : the Weyl group

ℓ : W → Z≥0: the length function
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The quantum Bruhat graph

Definition (Brenti-Fomin-Postnikov (1999))

The quantum Bruhat graph QBG(W ) is the labeled directed graph:

Vertex set: W

Label set: ∆+

Edge: x
α−→ y (x , y ∈ W , α ∈ ∆+) ⇔ y = xsα, and

(Bruhat edge) ℓ(y) = ℓ(x) + 1, or
(Quantum edge) ℓ(y) = ℓ(x)− 2〈ρ, α∨〉+ 1 (ρ := (1/2)

∑
α∈∆+ α).

e

s1 s2

s1s2 s2s1

w◦

α1

α1 α2

α2

α2 α2 α1 α1

α1

α1 α2

α2

α1 + α2 α1 + α2

α1 + α2
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Chains of roots

A◦ := {ν | 0 < 〈ν, α∨〉 < 1 for all α ∈ ∆+}: the fundamental alcove

λ ∈ P

(reduced) λ-chain: a sequence Γ = (β1, . . . , βr ) of roots associated to a
(shortest) path from A◦ to A−λ := A◦ − λ

α1

α2

ϖ1

ϖ2

A◦

A−ϖ1−2ϖ2

[Type A2]
(α2, α1 + α2, α2, α1 + α2, α1, α1 + α2)
(ϖ1 + 2ϖ2)-chain
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Admissible subsets (1/2)

Admissible subsets: main objects in the quantum alcove model

w ∈ W

λ ∈ P

Γ = (β1, . . . , βr ): a λ-chain

Definition (Lenart-Lubovsky (2015), Lenart-Naito-Sagaki (2020))

A subset A = {i1 < i2 < · · · < is} ⊂ {1, . . . , r} is said to be w -admissible
if

w = w0
|βi1

|
−−→ w1

|βi2
|

−−→ · · ·
|βis |−−→ ws ( =: end(A))

is a directed path in QBG(W ). Set

down(A) :=
∑

1≤k≤s
wk−1 → wk is a quantum edge

|βk |∨,

n(A) := |{j ∈ A | βj ∈ −∆+}|.
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Admissible subsets (2/2)

Definition (Lenart-Lubovsky (2015), Lenart-Naito-Sagaki (2020))

A subset A = {i1 < i2 < · · · < is} ⊂ {1, . . . , r} is said to be w -admissible
if

w = w0
|βi1

|
−−→ w1

|βi2
|

−−→ · · ·
|βis |−−→ ws ( =: end(A))

is a directed path in QBG(W ). Set

down(A) :=
∑

1≤k≤s
wk−1 → wk is a quantum edge

|βk |∨,

n(A) := |{j ∈ A | βj ∈ −∆+}|.

Remark

We can also define statistics wt(A) ∈ P and height(A) ∈ Z.

A(w , Γ) := {A ⊂ {1, . . . , r} | A is w -admissible} with sign A 7→ (−1)n(A)
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Yang-Baxter transformation

λ ∈ P

Γ = (β1, . . . , βr ): a λ-chain

Definition (e.g., Lenart-Postnikov (2007))

A Yang-Baxter transformation (YB): a procedure to obtain a new λ-chain

(1) Take a segment (βt+1, . . . , βt+q) of Γ s.t.

〈βt+1, β
∨
t+q〉 ≤ 0,

(βt+1, . . . , βt+q) = (α, sα(β), sαsβ(α), . . . , sβ(α), β) for some α, β.

(2) Reverse (βt+1, . . . , βt+q) in Γ:

Γ′ := (β1, . . . , βt , βt+q, . . . , βt+1, βt+q+1, . . . , βr ).

→ Γ′: λ-chain
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Deletion

λ ∈ P

Γ = (β1, . . . , βr ): a λ-chain

Definition (e.g., Lenart-Postnikov (2007))

A deletion (D): a procedure to obtain a new λ-chain

(1) Take a segment (βt+1, βt+2) in Γ s.t. βt+2 = −βt+1.

(2) Delete the segment (βt+1, βt+2) in Γ:

Γ′ := (β1, . . . , βt , βt+3, . . . , βr ).

→ Γ′: λ-chain

Fact (e.g., Lenart-Naito-Sagaki, Lenart-Postnikov)

From any λ-chain, we can obtain any reduced λ-chain by repeated
application of (YB) and (D).
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Quantum Yang-Baxter move

Theorem (Lenart-Lubovsky (2018))

Let λ ∈ P+, and take reduced λ-chains Γ1, Γ2 s.t. Γ1
(YB)−−−→ Γ2. There

exists a bijection Y : A(e, Γ1) → A(e, Γ2) s.t.

end(Y (A)) = end(A),

down(Y (A)) = down(A),

wt(Y (A)) = wt(A), and

height(Y (A)) = height(A).

This Y is called a quantum Yang-Baxter (QYB) move.

A QYB move is a structure-preserving bijection.
→ A(e, Γ) does not depend on the choice of Γ.

It is, in fact, an affine crystal isomorphism.

It is a root system generalization of jeu de taquin in type A.
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Generalization of QYB moves (1/2)

Theorem (KLN (2021))

Let λ ∈ P and w ∈ W. Take λ-chains Γ1, Γ2 s.t.

Γ1
(YB)−−−→ Γ2 or

Γ1
(D)−−→ Γ2 in which a segment (β,−β) in Γ1, with β not a simple

root, is deleted.

There exist explicit subsets A0(w , Γ1) ⊂ A(w , Γ1) and
A0(w , Γ2) ⊂ A(w , Γ2) s.t.

(1) there exists a bijection Y : A0(w , Γ1) → A0(w , Γ2) which preserves
sign (−1)n(A) and which preserves end(·), down(·), wt(·), and
height(·),

(2) there exist involutions Ik on A(w , Γk) \ A0(w , Γk) (k = 1, 2) which
reverse sign (−1)n(A) and which preserve end(·), down(·), wt(·), and
height(·).
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Generalization of QYB moves (2/2)

Theorem (KLN (2021))

(1) a bijection Y : A0(w , Γ1) → A0(w , Γ2) which preserves sign (−1)n(A)

and which preserves end(·), down(·), wt(·), and height(·),
(2) involutions Ik on A(w , Γk) \ A0(w , Γk) (k = 1, 2) which reverse sign

(−1)n(A) and which preserve end(·), down(·), wt(·), and height(·).

I1

Y

I2

A0(w , Γ1) A0(w , Γ2)

A(w , Γ1) A(w , Γ2)

→ We obtain a sijection (I1, I2,Y ): a generalized QYB move.
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Generating functions

Waf = W ⋉ Q∨ = {wtξ | w ∈ W , ξ ∈ Q∨}: the affine Weyl group

x = wtξ ∈ Waf

Γ: λ-chain (λ ∈ P)

Definition

A generating function GΓ(x) ∈ (Z[q, q−1][P])[Waf ] ⇔

GΓ(x) :=
∑

A∈A(w ,Γ)

(−1)n(A)q− height(A)−⟨λ,ξ⟩ewt(A) end(A)tξ+down(A).
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Preservation of generating functions

Theorem (KLN (2021))

Let λ ∈ P, x ∈ Waf . Take λ-chains Γ1, Γ2 s.t.

Γ1
(YB)−−−→ Γ2 or

Γ1
(D)−−→ Γ2 in which a segment (β,−β) in Γ1, with β not a simple

root, is deleted.

Then GΓ1(x) = GΓ2(x).
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Conclusion

We obtain a generalization of QYB move A(w , Γ) ⇒ A(w , Γ′) as a
sijection.

Generating functions are preserved under deformation procedures
(YB) and (D) (deletes (β,−β) with β not a simple root).

As an application, we give a combinatorial proof of the Chevalley
multiplication formula in the equivariant K -group of semi-infinite flag
manifolds, first proved by Lenart-Naito-Sagaki.
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