Rotor-Routing Induces the Only Consistent Sandpile Torsor Structure on Plane Graphs FPSAC 2022

Alex McDonough (UC Davis)

Joint work with Ankan Ganguly (Brown University)

Full paper: • arXiv:2203.15079

Animations:
https://youtu.be/2StlAfnONMs

July 18, 2022

Ribbon Graphs

• A ribbon graph G (also called a combinatorial map) is a graph along with a choice of cyclic order of edges around each vertex (clockwise for this talk). Ribbon graphs are used to represent graph embeddings.

• A *plane graph* is a ribbon graph with no edge crossings (a planar embedding). Of the ribbon graphs above, only the middle is a plane graph.

Single-Chip Rotor-Routing Algorithm (With Sink)

Input: a ribbon graph G, a spanning tree T, a *sink* vertex s, and a *chip* c on any non-sink vertex.

- Orient the edges of T toward s. Every vertex v ∈ V(G) \ s has a single outgoing edge called the rotor at v.
- Provide the rotor at c and then move c along it.
- Sepeat step 2 until c reaches the sink, then remove c.
- **③** Forget the orientation of the rotors and let T' be their edges.
- **Output**: T'

► See Clip 1

• Rotor-routing was introduced under the name "Eulerian Walkers Model" by Priezzhev, D. Dhar, A. Dhar, and Krishnamurthy in 1996. The following lemmas are implied by their results:

Lemma

The output T' is always a spanning tree.

Lemma

If the single-chip rotor-routing algorithm is performed multiple times, the order of chips does not affect the final tree. • See Clip 2

• The 2008 paper "Chip Firing and Rotor-Routing on Directed Graphs" by Holroyd, Levine, Mészáros, Peres, Propp, and Wilson is an excellent survey of rotor-routing and sandpile ideas.

Multiple-Chip Rotor-Routing Algorithm (With Sink)

Input: a ribbon graph G, a spanning tree T, a *sink* vertex s, and a collection C of *chips* on non-sink vertices.

- Orient the edges of T toward s. Every vertex v ∈ V(G) \ s has a single outgoing edge called the rotor at v.
- **Objective** Choose any $c \in C$. Rotate the rotor at c and then move c along it. If c reaches the sink, remove it from C.
- Solution Repeat step 2 until $C = \emptyset$.
- **③** Forget the orientation of the rotors and let T' be their edges.

Output: T'

The Sandpile Group of a Graph

- Let G be a finite connected graph with vertices V(G).
- A *degree 0 divisor* is an assignment of an integral number of "chips" to each vertex (allowing negative chips) so that there are 0 total chips.
- The degree 0 divisors under pointwise addition form a group called $Div^{0}(G)$.
- The Laplacian matrix Δ is D − A, where D is the degree matrix of G and A is the adjacency matrix of G.

Definition

The sandpile group $\mathcal{S}(G)$ is $\operatorname{Div}^{0}(G)/\operatorname{im}_{\mathbb{Z}}(\Delta)$. \bullet See Clip 3

The Sandpile Group of a Graph

- Let G be a finite connected graph with vertices V(G).
- A *degree 0 divisor* is an assignment of an integral number of "chips" to each vertex (allowing negative chips) so that there are 0 total chips.
- The degree 0 divisors under pointwise addition form a group called $Div^{0}(G)$.
- The Laplacian matrix Δ is D − A, where D is the degree matrix of G and A is the adjacency matrix of G.

Definition

The sandpile group $\mathcal{S}(G)$ is $\operatorname{Div}^{0}(G)/\operatorname{im}_{\mathbb{Z}}(\Delta)$. \bullet See Clip 3

Theorem (sandpile matrix-tree theorem for graphs, Biggs 1999)

The size of $\mathcal{S}(G)$ is the number of spanning trees of G.

6/19

Sandpile Rotor-Routing Algorithm (With Sink)

Input: a ribbon graph G, a spanning tree T, a sink vertex s, and an element of the sandpile group $S \in S(G)$.

- Orient the edges of T toward s. Every vertex v ∈ V(G) \ s has a single outgoing edge called the rotor at v. Let D be any representative of S such that D(v) ≥ 0 for v ≠ s. Let C be a set of D(v) chips at each v ≠ s.
- **②** Choose any $c \in C$. Rotate the rotor at c and then move c along it. If c reaches the sink, remove it from C.
- **③** Repeat step 2 until $C = \emptyset$
- Forget the orientation of the rotors and let T' be their edges.

Output: T'

Rotor-Routing and the Sandpile Group

Theorem (HLMPPW, 2008)

The algorithm in the previous slide is well defined. • See Clip 4

Theorem (HLMPPW, 2008)

The algorithm in the previous slide is well defined. \bigcirc See Clip 4 Furthermore, for any spanning trees T and T', there is exactly one $S \in S(G)$ that maps T to T'.

• In other words, rotor routing defines a *free transitive action* of S(G) on the spanning trees of G.

Theorem (HLMPPW, 2008)

The algorithm in the previous slide is well defined. \bigcirc See Clip 4 Furthermore, for any spanning trees T and T', there is exactly one $S \in S(G)$ that maps T to T'.

• In other words, rotor routing defines a *free transitive action* of S(G) on the spanning trees of G.

Question (Ellenberg, 2012)

When is the rotor-routing action preserved after changing the sink vertex?

イロト イヨト イヨト イヨト

Theorem (HLMPPW, 2008)

The algorithm in the previous slide is well defined. \bigcirc See Clip 4 Furthermore, for any spanning trees T and T', there is exactly one $S \in S(G)$ that maps T to T'.

• In other words, rotor routing defines a *free transitive action* of S(G) on the spanning trees of G.

Question (Ellenberg, 2012)

When is the rotor-routing action preserved after changing the sink vertex?

Theorem (Chan-Church-Grochow, 2013)

The rotor-routing action is preserved regardless of sink vertex if and only if G is a plane graph. \bullet See Clip 5

イロト イヨト イヨト イヨト

Sink-Free Rotor-Routing Algorithm

Input: a plane graph *G*, a spanning tree *T*, and an element of the sandpile group $S \in S(G)$.

- Choose any s ∈ V(G). Orient the edges of T toward s. Every vertex v ∈ V(G) \ s has a single outgoing edge called the rotor at v. Let D be any representative of S such that D(v) ≥ 0 for v ≠ s. Let C be a set of D(v) chips at each v ≠ s.
- Oboose any c ∈ C. Rotate the rotor at c and then move c along it. If c reaches the sink, remove it from C.
- **③** Repeat step 2 until $C = \emptyset$

Solution 9 Forget the orientation of the rotors and let T' be their edges.

Output: T' We write that $r_G([D], T) = T'$.

< □ > < □ > < □ > < □ > < □ >

A sandpile torsor action on a plane graph G is a free transitive action of S(G) on the spanning trees of G.

(日) (四) (日) (日) (日)

A sandpile torsor action on a plane graph G is a free transitive action of S(G) on the spanning trees of G.

Definition

A *sandpile torsor algorithm* is a function which assigns a sandpile torsor action to every plane graph.

A sandpile torsor action on a plane graph G is a free transitive action of S(G) on the spanning trees of G.

Definition

A *sandpile torsor algorithm* is a function which assigns a sandpile torsor action to every plane graph.

• We saw that rotor-routing induces a sandpile torsor algorithm, but are there other natural algorithms?

• in 2012, Baker and Wang used the *Bernardi process* to define another sandpile torsor algorithm.

• in 2012, Baker and Wang used the *Bernardi process* to define another sandpile torsor algorithm.

Theorem (Baker-Wang, 2012)

On plane graphs, the rotor-routing algorithm and Bernardi algorithm are equivalent.

< D > < P > < E > < E</p>

• in 2012, Baker and Wang used the *Bernardi process* to define another sandpile torsor algorithm.

Theorem (Baker-Wang, 2012)

On plane graphs, the rotor-routing algorithm and Bernardi algorithm are equivalent.

• Other descriptions were found for this algorithm (see Yuen 2017 and Kálmán-Lee-Tóthmérész 2022+), but these are still identical to rotor-routing.

< D > < P > < E > < E</p>

• in 2012, Baker and Wang used the *Bernardi process* to define another sandpile torsor algorithm.

Theorem (Baker-Wang, 2012)

On plane graphs, the rotor-routing algorithm and Bernardi algorithm are equivalent.

• Other descriptions were found for this algorithm (see Yuen 2017 and Kálmán-Lee-Tóthmérész 2022+), but these are still identical to rotor-routing.

Conjecture (Klivans, 2018)

For plane graphs, there is only one sandpile torsor structure.

• in 2012, Baker and Wang used the *Bernardi process* to define another sandpile torsor algorithm.

Theorem (Baker-Wang, 2012)

On plane graphs, the rotor-routing algorithm and Bernardi algorithm are equivalent.

• Other descriptions were found for this algorithm (see Yuen 2017 and Kálmán-Lee-Tóthmérész 2022+), but these are still identical to rotor-routing.

Conjecture (Klivans, 2018)

For plane graphs, there is only one sandpile torsor structure.

• The first challenge to tackling this conjecture is defining *sandpile torsor structure*.

< □ > < □ > < □ > < □ > < □ >

Sandpile Torsor Structure

Proposition (Ganguly-M., 2022+)

Rotor-routing produces 4 closely related sandpile torsor algorithms:

- clockwise rotor-routing,
- counterclockwise rotor-routing,
- inverse clockwise rotor-routing, and
- inverse counterclockwise rotor-routing.

Sandpile Torsor Structure

Proposition (Ganguly-M., 2022+)

Rotor-routing produces 4 closely related sandpile torsor algorithms:

- clockwise rotor-routing,
- counterclockwise rotor-routing,
- inverse clockwise rotor-routing, and
- inverse counterclockwise rotor-routing.

Definition

Two sandpile torsor algorithms have the same *structure* if they differ by inverting the action and/or the ribbon structure.

Image: A matrix and a matrix

Sandpile Torsor Structure

Proposition (Ganguly-M., 2022+)

Rotor-routing produces 4 closely related sandpile torsor algorithms:

- clockwise rotor-routing,
- counterclockwise rotor-routing,
- inverse clockwise rotor-routing, and
- inverse counterclockwise rotor-routing.

Definition

Two sandpile torsor algorithms have the same *structure* if they differ by inverting the action and/or the ribbon structure.

• To prevent simple but contrived counterexamples to Klivans' conjecture, we want our algorithm to act *consistently* across different plane graphs.

A Consistency Condition

Theorem (Ganguly-M., 2022+)

Let G be a plane graph with a spanning tree T, and **incident** vertices c and s. Let $T' = r_G([c-s], T)$.

9 For any $e \in E(G)$ (not incident to both c and s), if $e \in T \cap T'$, then

$$r_G([c-s],T)\setminus e=r_{G/e}([c-s],T\setminus e).$$

 \blacktriangleright See Clip 6

3 For any
$$e \in E(G)$$
, if $e \notin T \cup T'$, then

$$r_G([c-s], T) = r_{G \setminus e}([c-s], T).$$

 \checkmark See Clip 7

So For any e ∈ E(G), if there is a cut vertex x such that all paths from e to c or s pass through x, then

$$e \in T \iff e \in T'$$
. \blacktriangleright See Clip 8

A sandpile torsor algorithm is *consistent* if it satisfies the 3 properties on the previous slide.

A sandpile torsor algorithm is *consistent* if it satisfies the 3 properties on the previous slide.

Theorem (Ganguly-M.,2022+)

Every consistent sandpile torsor algorithm has the same structure as rotor-routing (i.e. it is unique up to two \mathbb{Z}_2 actions).

A sandpile torsor algorithm is *consistent* if it satisfies the 3 properties on the previous slide.

Theorem (Ganguly-M.,2022+)

Every consistent sandpile torsor algorithm has the same structure as rotor-routing (i.e. it is unique up to two \mathbb{Z}_2 actions).

- To prove this, we first prove that it suffices to consider a subset of situations where rotor-routing takes just one step.
- We then use induction to reduce to 4 special cases.
- Resolving these cases requires a variety of methods and a great deal of work.

< D > < P > < E > < E</p>

Regular Matroids

- In 2017, Backman, Baker, and Yuen showed how to generalize the Bernardi action to *regular matroids*.
- Instead of a ribbon structure, they require *acyclic circuit and cocircuit signatures*.
- The definitions of consistency and sandpile torsor structure generalize naturally to regular matroids.

Conjecture

- The Backman-Baker-Yuen algorithm is consistent.
- All consistent sandpile torsor algorithms on regular matroids have the same structure.

< D > < P > < E > < E</p>

Thanks for Listening!

Sources I

Spencer Backman, Matthew Baker, and Chi Ho Yuen.

Geometric bijections for regular matroids, zonotopes, and Ehrhart theory.

In Forum of Mathematics, Sigma, volume 7. Cambridge University Press, 2019.

Norman L Biggs.

Chip-firing and the critical group of a graph. Journal of Algebraic Combinatorics, 9(1):25–45, 1999.

Matthew Baker and Yao Wang.

The Bernardi process and torsor structures on spanning trees. International Mathematics Research Notices, 2017.

Melody Chan, Thomas Church, and Joshua A Grochow. Rotor-routing and spanning trees on planar graphs. International Mathematics Research Notices, 2015(11), 2014.

Scott Corry and David Perkinson.

Divisors and sandpiles, volume 114. American Mathematical Soc., 2018.

Sources II

Jordan Ellenberg.

What is the sandpile torsor? MathOverflow, 2011.

Emeric Gioan.

Circuit-cocircuit reversing systems in regular matroids.

Annals of Combinatorics, 12:171-182, 2008.

Ankan Ganguly and Alex McDonough.

Rotor-routing induces the only consistent sandpile torsor structure on plane graphs. *arXiv preprint arXiv:2203.15079*, 2022.

Alexander E Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp, and David B Wilson.

Chip-firing and rotor-routing on directed graphs.

In In and Out of Equilibrium 2, pages 331-364. Springer, 2008.

Caroline Klivans.

The Mathematics of Chip firing.

Chapman & Hall, 2018.

Sources III

Tamás Kálmán, Seunghun Lee, and Lilla Tóthmérész.

The sandpile group of a trinity and a canonical definition for the planar bernardi action, 2019.

Itamar Landau and Lionel Levine.

The rotor-router model on regular trees.

Journal of Combinatorial Theory, Series A, 116(2):421-433, 2009.

Chi Ho Yuen.

Geometric Bijections of Graphs and Regular Matroids.

PhD thesis, Georgia Tech, 2018.

• • • • • • • • • • • •