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What is infinitesimal rigidity?

G = ([n],E ) is a finite graph. ([n] = {1, 2, . . . , n}.)
p : [n]→ Rd .
Assume n ≥ d + 1.

The framework (G , p) is infinitesimally rigid if

rank(R(G, p)) = dn−
(
d + 1

2

)
,

where the rigidity matrix R(G , p) ∈ Mdn×|E |(R) is defined by:
column ij ∈ E equals (say i < j)
[0, . . . , 0, p(i)− p(j), 0 . . . , 0, p(j)− p(i), 0, . . . , 0]T .

p is generic if its dn entries are algebraically independent over Q.

Fact: for generic p, rank(R(Kn,p)) = dn−
(
d+1
2

)
.

G is (generically) d-rigid if (G , p) is infinitesimally rigid for some
(equivalently all) generic p : [n]→ Rd .
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Examples:
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Main objective

G = (V ,E ) is a finite graph.
A ⊆ Rd .

Definition

G is A-rigid if there exists p : V → A such that the framework
(G , p) is infinitesimally rigid.

F a family of generically d-rigid graphs. F(n) is its subfamily of
G ∈ F , |V (G )| ≤ n.

Definition

F is d-rigid with c locations if there exists A ⊆ Rd of size c s.t all
G ∈ F are A-rigid.
cd(F) is the minimal such c.

Main interest:
1. Families with bounded cd(F).
2. Growth of cd(F(n)) as n→∞.

Eran Nevo Rigidity with few locations: Vertex Spanning Planar Laman Graphs in Triangulated Surfaces



Main objective

G = (V ,E ) is a finite graph.
A ⊆ Rd .

Definition

G is A-rigid if there exists p : V → A such that the framework
(G , p) is infinitesimally rigid.

F a family of generically d-rigid graphs. F(n) is its subfamily of
G ∈ F , |V (G )| ≤ n.

Definition

F is d-rigid with c locations if there exists A ⊆ Rd of size c s.t all
G ∈ F are A-rigid.
cd(F) is the minimal such c.

Main interest:
1. Families with bounded cd(F).
2. Growth of cd(F(n)) as n→∞.

Eran Nevo Rigidity with few locations: Vertex Spanning Planar Laman Graphs in Triangulated Surfaces



All d-rigid graphs

Fd = {all d-rigid graphs}.

Fekete-Jordan 2005

c1(F1) = 2. (As a spanning tree is bipartite.)
c2(F2(n)) = Ω(

√
n).

Their argument shows: for d ≥ 2, cd(Fd(n)) = Ω(
√
n).

Sketch: let H be minimally d-rigid on k ≥ d vertices.
G = G (H) is obtained by: for each pair of vertices v , u ∈ H
choose a d-subset B = B(v , u) ⊆ V (H) containing them and
connect a new vertex vB to all vertices in B.
Then |V (G )| = k +

(k
2

)
, and in a d-rigid realization of G each

vertex of H must have a different location!

Király 2021

c2(F2(n)) = Θ(
√
n).
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Planar graphs

Király 2021 (answers Whiteley)

c2(Planar Laman) ≤ 26. (Laman:= edge-minimal 2-rigid)

Adiprasito-N. 2020

c3(Maximal Planar) ≤ 76.

The main algebraic statement, allowing inductive proofs in both
results, is about moving vertices into A:

Adiprasito-N. 2020, also Király 2021

Assume (G , p) is infinitesimally rigid in Rd , degG (v) = c , A ⊆ Rd

with generic coordinates, |A| ≥
(d+c

d

)
.

Then there exists a ∈ A s.t. (G , p′) is infinitesimally rigid, where
p′ : V → Rd is defined by p′(v) = a and p′(u) = p(u) for all
u ∈ V − v .
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Graphs on surfaces

Let Mg denotes the surface of genus g (orientable or not).
Let F(Mg ) be the family of graphs of triangulations of Mg .

Fogelsanger 1988

c3(F(Mg )) ≤ ℵ0 for all g ,
namely, every triangulated surface has a 3-rigid graph.

Adiprasito-N. 2020

c3(F(Mg )) ≤ c(g) for some constant c(g) depending on g .

Let L(Mg ) be the Laman graphs embedable in Mg .

Király 2021

c2(L(Mg )) ≤ c(g) for some constant c(g) = O(
√
g).

Open: are there absolute constants c3, c2 s.t. for all g :
c3(F(Mg )) ≤ c3?
c2(L(Mg )) ≤ c2?
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New results

Intermediate problem

Does every graph of a triangulation of a surface Mg contain a
vertex spanning planar Laman subgraph?

Note: if YES then c2(F(Mg )) ≤ 26.

Theorem (N.- Simion Tarabykin)

YES if the Euler characteristic χ(Mg ) ≥ 0.
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More strongly

N.-Tarabykin

Every triangulation of the projective plane RP2 contains a
spanning disc.

Every triangulation of the Torus T contains a spanning
cylinder.

Every triangulation of the Klein bottle K contains a vertex
spanning, planar, 2-dimensional complex; it is either a
cylinder, or a pinched disc, or a connected sum of two
triangulated discs along a triangle.

Then these vertex spanning subcomplexes are indeed 2-rigid, hence
contain a spanning planar Laman subgraph, and Király’s result
apply.
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Irreducible triangulations

A triangulation ∆ of Mg is irreducible if each contraction of an
edge of ∆ changes the tolopogy; equivalently, each edge belongs
to an empty triangle of ∆.

Barnette-Edelson 1988/9

For all g , Mg has finitely many minimal triangulations.

When χ(Mg ) ≥ 0 the minimal triangulations are characterized:
2 such RP2: Barnette 1982.
21 such T : Lavrenchenko 1990.
29 such K : Lavrenchenko-Negami 1997, Sulanke 2006.
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Some spanning subcomplexes in minimal triangulations
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Induction via vertex splits

Figure: Above: edge contraction; reverse arrow for vertex split.
Below: cone over boundary interval in the spanning subsurface.

We want the vertex split ∆→ ∆′ to allow an extension S ′ ⊆ ∆′ of
the spanning disc/cylinder/etc S ⊆ ∆.
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Extension

Definition: extension

A spanning subsurface S ⊆ ∆ is extendible if for every vertex split
∆→ ∆′ there exists S ′ ⊆ ∆′ s.t. either
(i) S ′ is obtained from S by a split at the same vertex, or
(ii) S ′ is obtained from S by coning over an interval in its boundary.

Note: then S ′ ⊆ ∆′ is spanning and homeomorphic to S .

Theorem (N.-Tarabykin)

Let ∆ triangulate some Mg , and let S ⊆ ∆ be a vertex spanning
subsurface. Then:
(1) S is extendible in ∆ iff it includes at least one edge from every
triangle in ∆.
(2) If S is extendible then it has an extendible extension S ′ ⊆ ∆′.
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The easy direction

Figure: Non extendible subcomplex.

Note: all S we chose in irreducible triangulations are extendible
subsurfaces, except for the 4 in the “crosscap” triangulations of
the Klein bottle, which are pinched discs.
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How to choose an extendible S ′?

Figure: S → S ′ via coning over boundary interval.
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Figure: S → S ′ via vertex split.
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What’s left: crosscap triangulation of K

ABC is a noncontractible cycle in each of the 4 crosscap
irreducible triangulations:

Each is a connected sum of two RP2’s along the triangle ABC ;
this triangle can be part of the spanning disc in each RP2.
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Does ABC survive the vertex splits?

If YES, then again the triangulation ∆ of K is a connected sum of
two RP2’s along ABC , and ABC can be taken as a triangle in
each spanning disc.
The connected sum of those discs is a planar strongly connected
2-complex.
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If NOT

Then some vertex split induced a vertex split of the cycle ABC .

Commutativity claim

The vertex splits can be rearranged s.t. the first one splits ABC .

If C splits first (similaly for A,B), choose S a spanning pinched

disc at C .
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From a pinched disc to a cylinder

The first split makes S ′ a spanning cylinder.

Figure: Resolving a singularity.
The Extension Theorem shows that further splits preserve having a
spanning cylinder. This completes the proof. �
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Open problems

All surfaces: (i) Is c3(∪g F(Mg )) finite?
(ii) Is c2(∪g L(Mg )) finite?
(iii) If NO in (i), is c2(∪g F(Mg )) finite? E.g. via:

Does any triangulated surface contain a vertex spanning
planar Laman graph?

What about triangulations of higher dimensional manifolds, or
even just spheres?

All d-rigid graphs, d > 2: is cd(Fd(n)) = o(n)?

THANK YOU!
arXiv:2205.00558
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