Rigidity with few locations: Vertex Spanning Planar Laman Graphs in Triangulated Surfaces

Eran Nevo

The Hebrew University, based on joint work with Simion Tarabykin

FPSAC'22,
Indian Institute of Science, Bangalore, India, July 2022

What is infinitesimal rigidity?

$G=([n], E)$ is a finite graph. $([n]=\{1,2, \ldots, n\}$.
$p:[n] \rightarrow \mathbb{R}^{d}$.
Assume $n \geq d+1$.

What is infinitesimal rigidity?

$G=([n], E)$ is a finite graph. $([n]=\{1,2, \ldots, n\}$.
$p:[n] \rightarrow \mathbb{R}^{d}$.
Assume $n \geq d+1$.
The framework (G, p) is infinitesimally rigid if

$$
\operatorname{rank}(\mathrm{R}(\mathrm{G}, \mathrm{p}))=\mathrm{dn}-\binom{\mathrm{d}+1}{2}
$$

where the rigidity matrix $R(G, p) \in M_{d n \times|E|}(\mathbb{R})$ is defined by: column $i j \in E$ equals (say $i<j$)
$[0, \ldots, 0, p(i)-p(j), 0 \ldots, 0, p(j)-p(i), 0, \ldots, 0]^{T}$.

What is infinitesimal rigidity?

$G=([n], E)$ is a finite graph. $([n]=\{1,2, \ldots, n\}$.
$p:[n] \rightarrow \mathbb{R}^{d}$.
Assume $n \geq d+1$.
The framework (G, p) is infinitesimally rigid if

$$
\operatorname{rank}(\mathrm{R}(\mathrm{G}, \mathrm{p}))=\mathrm{dn}-\binom{\mathrm{d}+1}{2}
$$

where the rigidity matrix $R(G, p) \in M_{d n \times|E|}(\mathbb{R})$ is defined by: column $i j \in E$ equals (say $i<j$)
$[0, \ldots, 0, p(i)-p(j), 0 \ldots, 0, p(j)-p(i), 0, \ldots, 0]^{T}$.
p is generic if its $d n$ entries are algebraically independent over \mathbb{Q}.
Fact: for generic $p, \operatorname{rank}\left(\mathrm{R}\left(\mathrm{K}_{\mathrm{n}}, \mathrm{p}\right)\right)=\mathrm{dn}-\binom{\mathrm{d}+1}{2}$.

What is infinitesimal rigidity?

$G=([n], E)$ is a finite graph. $([n]=\{1,2, \ldots, n\}$.
$p:[n] \rightarrow \mathbb{R}^{d}$.
Assume $n \geq d+1$.
The framework (G, p) is infinitesimally rigid if

$$
\operatorname{rank}(\mathrm{R}(\mathrm{G}, \mathrm{p}))=\mathrm{dn}-\binom{\mathrm{d}+1}{2}
$$

where the rigidity matrix $R(G, p) \in M_{d n \times|E|}(\mathbb{R})$ is defined by: column $i j \in E$ equals (say $i<j$)
$[0, \ldots, 0, p(i)-p(j), 0 \ldots, 0, p(j)-p(i), 0, \ldots, 0]^{T}$.
p is generic if its $d n$ entries are algebraically independent over \mathbb{Q}.
Fact: for generic $p, \operatorname{rank}\left(\mathrm{R}\left(\mathrm{K}_{\mathrm{n}}, \mathrm{p}\right)\right)=\mathrm{dn}-\binom{\mathrm{d}+1}{2}$.
G is (generically) d-rigid if (G, p) is infinitesimally rigid for some (equivalently all) generic $p:[n] \rightarrow \mathbb{R}^{d}$.

Examples:
(1) $G=\Delta, \mathbb{R}^{2}$:
$p=$ flat triangle: $\overrightarrow{0} \overrightarrow{0}$ Non trival infi. motion
$\Rightarrow(G, \rho)$ is not infi. rigid.
pgeneric: Ω is infi. rigid.
2) $G=\downarrow \Rightarrow G$ is 2-rigid.
G is NOT 3-rigid $\left(|E|<3 \cdot 4-\binom{3+1}{2}=6\right)$
(3)

$(G P)$ is infi. rigid.

$$
\begin{aligned}
\rho: V & \rightarrow R^{1} \\
& \cdot \mapsto 1 \\
& \mapsto \mapsto-1
\end{aligned}
$$

Main objective

$G=(V, E)$ is a finite graph.
$A \subseteq \mathbb{R}^{d}$.

Definition

G is A-rigid if there exists $p: V \rightarrow A$ such that the framework (G, p) is infinitesimally rigid.

Main objective

$G=(V, E)$ is a finite graph.
$A \subseteq \mathbb{R}^{d}$.

Definition

G is A-rigid if there exists $p: V \rightarrow A$ such that the framework (G, p) is infinitesimally rigid.
\mathcal{F} a family of generically d-rigid graphs. $\mathcal{F}(n)$ is its subfamily of $G \in \mathcal{F},|V(G)| \leq n$.

Definition

\mathcal{F} is d-rigid with c locations if there exists $A \subseteq \mathbb{R}^{d}$ of size c s.t all
$G \in \mathcal{F}$ are A-rigid.
$c_{d}(\mathcal{F})$ is the minimal such c.
Main interest:

1. Families with bounded $c_{d}(\mathcal{F})$.
2. Growth of $c_{d}(\mathcal{F}(n))$ as $n \rightarrow \infty$.

All d-rigid graphs

$$
\mathcal{F}_{d}=\{\text { all } d \text {-rigid graphs }\} .
$$

Fekete-Jordan 2005

$$
\begin{aligned}
& c_{1}\left(\mathcal{F}_{1}\right)=2 \text {. (As a spanning tree is bipartite.) } \\
& c_{2}\left(\mathcal{F}_{2}(n)\right)=\Omega(\sqrt{n}) .
\end{aligned}
$$

Their argument shows: for $d \geq 2, c_{d}\left(\mathcal{F}_{d}(n)\right)=\Omega(\sqrt{n})$.
Sketch: let H be minimally d-rigid on $k \geq d$ vertices. $G=G(H)$ is obtained by: for each pair of vertices $v, u \in H$ choose a d-subset $B=B(v, u) \subseteq V(H)$ containing them and connect a new vertex v_{B} to all vertices in B.
Then $|V(G)|=k+\binom{k}{2}$, and in a d-rigid realization of G each vertex of H must have a different location!

Király 2021

$$
c_{2}\left(\mathcal{F}_{2}(n)\right)=\Theta(\sqrt{n})
$$

Planar graphs

Király 2021 (answers Whiteley)
 $c_{2}($ Planar Laman $) \leq 26 .($ Laman $:=$ edge-minimal 2-rigid $)$

```
Adiprasito-N. }202
c3}(\mathrm{ Maximal Planar })\leq76
```


Planar graphs

Király 2021 (answers Whiteley)

$c_{2}($ Planar Laman $) \leq 26 .($ Laman $:=$ edge-minimal 2-rigid $)$

Adiprasito-N. 2020

$c_{3}($ Maximal Planar $) \leq 76$.
The main algebraic statement, allowing inductive proofs in both results, is about moving vertices into A :

Adiprasito-N. 2020, also Király 2021

Assume (G, p) is infinitesimally rigid in $\mathbb{R}^{d}, \operatorname{deg}_{G}(v)=c, A \subseteq \mathbb{R}^{d}$ with generic coordinates, $|A| \geq\binom{ d+c}{d}$.
Then there exists $a \in A$ s.t. $\left(G, p^{\prime}\right)$ is infinitesimally rigid, where $p^{\prime}: V \rightarrow \mathbb{R}^{d}$ is defined by $p^{\prime}(v)=a$ and $p^{\prime}(u)=p(u)$ for all $u \in V-v$.

Graphs on surfaces

Let M_{g} denotes the surface of genus g (orientable or not). Let $\mathcal{F}\left(M_{g}\right)$ be the family of graphs of triangulations of M_{g}.

Fogelsanger 1988

$c_{3}\left(\mathcal{F}\left(M_{g}\right)\right) \leq \aleph_{0}$ for all g, namely, every triangulated surface has a 3-rigid graph.

Graphs on surfaces

Let M_{g} denotes the surface of genus g (orientable or not). Let $\mathcal{F}\left(M_{g}\right)$ be the family of graphs of triangulations of M_{g}.

Fogelsanger 1988

$c_{3}\left(\mathcal{F}\left(M_{g}\right)\right) \leq \aleph_{0}$ for all g,
namely, every triangulated surface has a 3-rigid graph.

Adiprasito-N. 2020

$c_{3}\left(\mathcal{F}\left(M_{g}\right)\right) \leq c(g)$ for some constant $c(g)$ depending on g.

Graphs on surfaces

Let M_{g} denotes the surface of genus g (orientable or not). Let $\mathcal{F}\left(M_{g}\right)$ be the family of graphs of triangulations of M_{g}.

Fogelsanger 1988

$c_{3}\left(\mathcal{F}\left(M_{g}\right)\right) \leq \aleph_{0}$ for all g,
namely, every triangulated surface has a 3-rigid graph.

Adiprasito-N. 2020

$c_{3}\left(\mathcal{F}\left(M_{g}\right)\right) \leq c(g)$ for some constant $c(g)$ depending on g.
Let $\mathcal{L}\left(M_{g}\right)$ be the Laman graphs embedable in M_{g}.

Király 2021

$c_{2}\left(\mathcal{L}\left(M_{g}\right)\right) \leq c(g)$ for some constant $c(g)=O(\sqrt{g})$.
Open: are there absolute constants c_{3}, c_{2} s.t. for all g :
$c_{3}\left(\mathcal{F}\left(M_{g}\right)\right) \leq c_{3}$?
$c_{2}\left(\mathcal{L}\left(M_{g}\right)\right) \leq c_{2}$?

New results

Intermediate problem

Does every graph of a triangulation of a surface M_{g} contain a vertex spanning planar Laman subgraph?

Note: if YES then $c_{2}\left(\mathcal{F}\left(M_{g}\right)\right) \leq 26$.

Theorem (N.- Simion Tarabykin)

YES if the Euler characteristic $\chi\left(M_{g}\right) \geq 0$.

More strongly

N.-Tarabykin

- Every triangulation of the projective plane $\mathbb{R} P^{2}$ contains a spanning disc.
- Every triangulation of the Torus T contains a spanning cylinder.
- Every triangulation of the Klein bottle K contains a vertex spanning, planar, 2-dimensional complex; it is either a cylinder, or a pinched disc, or a connected sum of two triangulated discs along a triangle.

Then these vertex spanning subcomplexes are indeed 2-rigid, hence contain a spanning planar Laman subgraph, and Király's result apply.

Irreducible triangulations

A triangulation Δ of M_{g} is irreducible if each contraction of an edge of Δ changes the tolopogy; equivalently, each edge belongs to an empty triangle of Δ.

Barnette-Edelson 1988/9

For all g, M_{g} has finitely many minimal triangulations.

Irreducible triangulations

A triangulation Δ of M_{g} is irreducible if each contraction of an edge of Δ changes the tolopogy; equivalently, each edge belongs to an empty triangle of Δ.

Barnette-Edelson 1988/9

For all g, M_{g} has finitely many minimal triangulations.
When $\chi\left(M_{g}\right) \geq 0$ the minimal triangulations are characterized:
2 such $\mathbb{R} P^{2}$: Barnette 1982.
21 such T : Lavrenchenko 1990.
29 such K: Lavrenchenko-Negami 1997, Sulanke 2006.

$R P 2_{1}:(5,5,5,5,5,5)$

$R \mathrm{RP} 2_{2}:(6,6,6,6,4,4,4)$

Some spanning subcomplexes in minimal triangulations

$\mathrm{T}_{1}:(6,6,6,6,6,6,6)$

$\mathrm{T}_{6}:(6,6,6,6,6,6,6,6,6)$

$\mathrm{T}_{2}:(6,6,6,6,6,6,6,6)$

$\mathrm{T}_{7}:(6,6,6,6,6,6,6,6,6)$

$\mathrm{T}_{3}:(7,7,6,6,6,6,5,5)$

$\mathrm{T}_{8}:(8,8,8,5,5,5,5,5,5)$

$\mathrm{T}_{4}:(7,7,7,6,6,5,5,5)$

$\mathrm{T}_{9}:(8,7,7,6,6,5,5,5,5)$

$\mathrm{T}_{5}:(7,7,7,7,6,5,5,4)$

$\mathrm{Kc}_{1}:(8,8,8,5,5,5,5,5,5)$

$\mathrm{T}_{10}:(8,7,7,6,6,5,5,5,5)$

$\mathrm{Kc}_{2}:(9,9,7,6,6,5,5,5,4,4)$

Induction via vertex splits

Figure: Above: edge contraction; reverse arrow for vertex split. Below: cone over boundary interval in the spanning subsurface.

We want the vertex split $\Delta \rightarrow \Delta^{\prime}$ to allow an extension $S^{\prime} \subseteq \Delta^{\prime}$ of the spanning disc/cylinder/etc $S \subseteq \Delta$.

Extension

Definition: extension

A spanning subsurface $S \subseteq \Delta$ is extendible if for every vertex split $\Delta \rightarrow \Delta^{\prime}$ there exists $S^{\prime} \subseteq \Delta^{\prime}$ s.t. either
(i) S^{\prime} is obtained from S by a split at the same vertex, or
(ii) S^{\prime} is obtained from S by coning over an interval in its boundary.

Note: then $S^{\prime} \subseteq \Delta^{\prime}$ is spanning and homeomorphic to S.

Theorem (N.-Tarabykin)

Let Δ triangulate some M_{g}, and let $S \subseteq \Delta$ be a vertex spanning subsurface. Then:
(1) S is extendible in Δ iff it includes at least one edge from every triangle in Δ.
(2) If S is extendible then it has an extendible extension $S^{\prime} \subseteq \Delta^{\prime}$.

The easy direction

Figure: Non extendible subcomplex.

Note: all S we chose in irreducible triangulations are extendible subsurfaces, except for the 4 in the "crosscap" triangulations of the Klein bottle, which are pinched discs.

Figure: $S \rightarrow S^{\prime}$ via coning over boundary interval.

Figure: $S \rightarrow S^{\prime}$ via vertex split.

What's left: crosscap triangulation of K

$A B C$ is a noncontractible cycle in each of the 4 crosscap irreducible triangulations:

$\mathrm{Kc}_{1}:(8,8,8,5,5,5,5,5,5)$

$\mathrm{Kc}_{3}:(10,10,6,6,6,6,6,4,4,4,4)$

$\mathrm{Kc}_{2}:(9,9,7,6,6,5,5,5,4,4)$

$\mathrm{Kc}_{4}:(10,8,8,6,6,6,6,4,4,4,4)$

Each is a connected sum of two $\mathbb{R} P^{2}$'s along the triangle $A B C$; this triangle can be part of the spanning disc in each $\mathbb{R} P^{2}$.

Does $A B C$ survive the vertex splits?

If YES , then again the triangulation Δ of K is a connected sum of two $\mathbb{R} P^{2}$'s along $A B C$, and $A B C$ can be taken as a triangle in each spanning disc.
The connected sum of those discs is a planar strongly connected 2-complex.

If NOT

Then some vertex split induced a vertex split of the cycle $A B C$.

Commutativity claim

The vertex splits can be rearranged s.t. the first one splits $A B C$.
If C splits first (similaly for A, B), choose S a spanning pinched

$\mathrm{Kc}_{1}:(8,8,8,5,5,5,5,5,5)$

$\mathrm{Kc}_{3}:(10,10,6,6,6,6,6,4,4,4,4)$

$\mathrm{Kc}_{2}:(9,9,7,6,6,5,5,5,4,4)$

$\mathrm{Kc}_{4}:(10,8,8,6,6,6,6,4,4,4,4)$

From a pinched disc to a cylinder
The first split makes S^{\prime} a spanning cylinder.

Figure: Resolving a singularity.
The Extension Theorem shows that further splits preserve having a spanning cylinder.

This completes the proof.

Open problems

- All surfaces: (i) Is $c_{3}\left(\cup_{g} \mathcal{F}\left(M_{g}\right)\right)$ finite?
(ii) Is $c_{2}\left(\cup_{g} \mathcal{L}\left(M_{g}\right)\right)$ finite?
(iii) If NO in (i), is $c_{2}\left(\cup_{g} \mathcal{F}\left(M_{g}\right)\right)$ finite? E.g. via:

Open problems

- All surfaces: (i) Is $c_{3}\left(\cup_{g} \mathcal{F}\left(M_{g}\right)\right)$ finite?
(ii) Is $c_{2}\left(\cup_{g} \mathcal{L}\left(M_{g}\right)\right)$ finite?
(iii) If NO in (i), is $c_{2}\left(\cup_{g} \mathcal{F}\left(M_{g}\right)\right)$ finite? E.g. via:
- Does any triangulated surface contain a vertex spanning planar Laman graph?

Open problems

- All surfaces: (i) Is $c_{3}\left(\cup_{g} \mathcal{F}\left(M_{g}\right)\right)$ finite?
(ii) Is $c_{2}\left(\cup_{g} \mathcal{L}\left(M_{g}\right)\right)$ finite?
(iii) If NO in (i), is $c_{2}\left(\cup_{g} \mathcal{F}\left(M_{g}\right)\right)$ finite? E.g. via:
- Does any triangulated surface contain a vertex spanning planar Laman graph?
- What about triangulations of higher dimensional manifolds, or even just spheres?

Open problems

- All surfaces: (i) Is $c_{3}\left(\cup_{g} \mathcal{F}\left(M_{g}\right)\right)$ finite?
(ii) Is $c_{2}\left(\cup_{g} \mathcal{L}\left(M_{g}\right)\right)$ finite?
(iii) If NO in (i), is $c_{2}\left(\cup_{g} \mathcal{F}\left(M_{g}\right)\right)$ finite? E.g. via:
- Does any triangulated surface contain a vertex spanning planar Laman graph?
- What about triangulations of higher dimensional manifolds, or even just spheres?
- All d-rigid graphs, $d>2$: is $c_{d}\left(F_{d}(n)\right)=o(n)$?

Open problems

- All surfaces: (i) Is $c_{3}\left(\cup_{g} \mathcal{F}\left(M_{g}\right)\right)$ finite?
(ii) Is $c_{2}\left(\cup_{g} \mathcal{L}\left(M_{g}\right)\right)$ finite?
(iii) If NO in (i), is $c_{2}\left(\cup_{g} \mathcal{F}\left(M_{g}\right)\right)$ finite? E.g. via:
- Does any triangulated surface contain a vertex spanning planar Laman graph?
- What about triangulations of higher dimensional manifolds, or even just spheres?
- All d-rigid graphs, $d>2$: is $c_{d}\left(F_{d}(n)\right)=o(n)$?

THANK YOU!
 arXiv:2205.00558

