Rigidity with few locations: Vertex Spanning Planar Laman Graphs in Triangulated Surfaces

#### Eran Nevo

The Hebrew University, based on joint work with Simion Tarabykin

### FPSAC'22, Indian Institute of Science, Bangalore, India, July 2022

$$G = ([n], E)$$
 is a finite graph.  $([n] = \{1, 2, ..., n\}.)$   
 $p : [n] \rightarrow \mathbb{R}^d$ .  
Assume  $n \ge d + 1$ .

イロト イヨト イヨト イヨト

$$G = ([n], E)$$
 is a finite graph.  $([n] = \{1, 2, ..., n\}.)$   
 $p : [n] \rightarrow \mathbb{R}^d$ .  
Assume  $n \ge d + 1$ .

The framework (G, p) is infinitesimally rigid if

$$\operatorname{rank}(R(G, p)) = \operatorname{dn} - {\binom{d+1}{2}},$$

where the *rigidity matrix*  $R(G, p) \in M_{dn \times |E|}(\mathbb{R})$  is defined by: column  $ij \in E$  equals (say i < j)  $[0, \ldots, 0, p(i) - p(j), 0, \ldots, 0, p(j) - p(i), 0, \ldots, 0]^T$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

$$G = ([n], E)$$
 is a finite graph.  $([n] = \{1, 2, \dots, n\}.)$   
 $p : [n] \rightarrow \mathbb{R}^d$ .  
Assume  $n \ge d + 1$ .

The framework (G, p) is infinitesimally rigid if

$$\operatorname{rank}(\operatorname{R}(\operatorname{G},\operatorname{p})) = \operatorname{dn} - {\binom{\mathrm{d}+1}{2}},$$

where the *rigidity matrix*  $R(G, p) \in M_{dn \times |E|}(\mathbb{R})$  is defined by: column  $ij \in E$  equals (say i < j)  $[0, \ldots, 0, p(i) - p(j), 0, \ldots, 0, p(j) - p(i), 0, \ldots, 0]^T$ .

*p* is *generic* if its *dn* entries are algebraically independent over  $\mathbb{Q}$ . Fact: for generic *p*, rank(R(K<sub>n</sub>, p)) = dn -  $\binom{d+1}{2}$ .

イロト イポト イヨト イヨト 二日

$$G = ([n], E)$$
 is a finite graph.  $([n] = \{1, 2, \dots, n\}.)$   
 $p : [n] \rightarrow \mathbb{R}^d$ .  
Assume  $n \ge d + 1$ .

The framework (G, p) is infinitesimally rigid if

$$\operatorname{rank}(\operatorname{R}(\operatorname{G},\operatorname{p})) = \operatorname{dn} - {\binom{\mathrm{d}+1}{2}},$$

where the *rigidity matrix*  $R(G, p) \in M_{dn \times |E|}(\mathbb{R})$  is defined by: column  $ij \in E$  equals (say i < j)  $[0, \ldots, 0, p(i) - p(j), 0, \ldots, 0, p(j) - p(i), 0, \ldots, 0]^T$ .

p is *generic* if its dn entries are algebraically independent over  $\mathbb{Q}$ .

Fact: for generic p,  $rank(R(K_n, p)) = dn - {d+1 \choose 2}$ .

*G* is (generically) *d-rigid* if (G, p) is infinitesimally rigid for some (equivalently all) generic  $p : [n] \to \mathbb{R}^d$ .

イロト 不得 トイラト イラト 二日

Examples:

$$\mathcal{O} \ \mathcal{G} = \Delta, \ \mathcal{B}^2$$
:  
 $p = flat \ triangle: \qquad \mathcal{I} \quad \mathcal{J} \quad \mathcal{S}$  Non trival infi. motion  
 $\Rightarrow (\mathcal{G}, p) \ is \ not \ infi. \ rigid.$   
 $p \ generic: \qquad \Delta \ is \ infi. \ rigid.$ 

2) 
$$G = \langle D \rangle \Rightarrow G$$
 is 2-rigid.  
G is Not 3-rigid ( $|E| < 3.4 - \binom{3+1}{2} = 6$ )

(G, P) is infir rigid.  $P: V \rightarrow R^{4}$   $P: V \rightarrow R^{4}$ 

Rigidity with few locations: Vertex Spanning Planar Laman Gra

# Main objective

G = (V, E) is a finite graph.  $A \subseteq \mathbb{R}^d$ .

### Definition

G is A-rigid if there exists  $p: V \rightarrow A$  such that the framework (G, p) is infinitesimally rigid.

・ロト ・回ト ・ヨト ・ヨト

# Main objective

G = (V, E) is a finite graph.  $A \subset \mathbb{R}^d$ .

### Definition

G is A-rigid if there exists  $p: V \to A$  such that the framework (G, p) is infinitesimally rigid.

 $\mathcal{F}$  a family of generically *d*-rigid graphs.  $\mathcal{F}(n)$  is its subfamily of  $G \in \mathcal{F}, |V(G)| < n.$ 

### Definition

 $\mathcal{F}$  is *d*-rigid with *c* locations if there exists  $A \subseteq \mathbb{R}^d$  of size *c* s.t all  $G \in \mathcal{F}$  are A-rigid.  $c_d(\mathcal{F})$  is the minimal such c.

### Main interest:

- 1. Families with bounded  $c_d(\mathcal{F})$ .
- 2. Growth of  $c_d(\mathcal{F}(n))$  as  $n \to \infty$ .

# All *d*-rigid graphs

 $\mathcal{F}_d = \{ all \ d\text{-rigid graphs} \}.$ 

### Fekete-Jordan 2005

 $c_1(\mathcal{F}_1) = 2$ . (As a spanning tree is bipartite.)  $c_2(\mathcal{F}_2(n)) = \Omega(\sqrt{n})$ .

Their argument shows: for  $d \ge 2$ ,  $c_d(\mathcal{F}_d(n)) = \Omega(\sqrt{n})$ . Sketch: let H be minimally d-rigid on  $k \ge d$  vertices. G = G(H) is obtained by: for each pair of vertices  $v, u \in H$ choose a d-subset  $B = B(v, u) \subseteq V(H)$  containing them and connect a new vertex  $v_B$  to all vertices in B. Then  $|V(G)| = k + {k \choose 2}$ , and in a d-rigid realization of G each vertex of H must have a different location!

#### Király 2021

$$c_2(\mathcal{F}_2(n)) = \Theta(\sqrt{n}).$$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

### Király 2021 (answers Whiteley)

 $c_2$ (Planar Laman)  $\leq 26$ . (Laman:= edge-minimal 2-rigid)

Adiprasito-N. 2020

 $c_3$ (Maximal Planar)  $\leq 76$ .

ヘロア 人間 アメヨア 人間 アー

Э

### Király 2021 (answers Whiteley)

 $c_2$ (Planar Laman)  $\leq 26$ . (Laman:= edge-minimal 2-rigid)

### Adiprasito-N. 2020

 $c_3$ (Maximal Planar)  $\leq 76$ .

The main algebraic statement, allowing inductive proofs in both results, is about moving vertices into *A*:

#### Adiprasito-N. 2020, also Király 2021

Assume (G, p) is infinitesimally rigid in  $\mathbb{R}^d$ ,  $\deg_G(v) = c$ ,  $A \subseteq \mathbb{R}^d$ with generic coordinates,  $|A| \ge \binom{d+c}{d}$ . Then there exists  $a \in A$  s.t. (G, p') is infinitesimally rigid, where  $p' : V \to \mathbb{R}^d$  is defined by p'(v) = a and p'(u) = p(u) for all  $u \in V - v$ .

## Graphs on surfaces

Let  $M_g$  denotes the surface of genus g (orientable or not). Let  $\mathcal{F}(M_g)$  be the family of graphs of triangulations of  $M_g$ .

### Fogelsanger 1988

 $c_3(\mathcal{F}(M_g)) \leq \aleph_0$  for all g, namely, every triangulated surface has a 3-rigid graph.

イロン イヨン イヨン ・ ヨン

## Graphs on surfaces

Let  $M_g$  denotes the surface of genus g (orientable or not). Let  $\mathcal{F}(M_g)$  be the family of graphs of triangulations of  $M_g$ .

### Fogelsanger 1988

 $c_3(\mathcal{F}(M_g)) \leq \aleph_0$  for all g, namely, every triangulated surface has a 3-rigid graph.

#### Adiprasito-N. 2020

 $c_3(\mathcal{F}(M_g)) \leq c(g)$  for some constant c(g) depending on g.

## Graphs on surfaces

Let  $M_g$  denotes the surface of genus g (orientable or not). Let  $\mathcal{F}(M_g)$  be the family of graphs of triangulations of  $M_g$ .

### Fogelsanger 1988

 $c_3(\mathcal{F}(M_g)) \leq \aleph_0$  for all g, namely, every triangulated surface has a 3-rigid graph.

### Adiprasito-N. 2020

 $c_3(\mathcal{F}(M_g)) \leq c(g)$  for some constant c(g) depending on g.

Let  $\mathcal{L}(M_g)$  be the Laman graphs embedable in  $M_g$ .

### Király 2021

$$c_2(\mathcal{L}(M_g)) \leq c(g)$$
 for some constant  $c(g) = O(\sqrt{g}).$ 

Open: are there absolute constants  $c_3, c_2$  s.t. for all g:  $c_3(\mathcal{F}(M_g)) \leq c_3$ ?  $c_2(\mathcal{L}(M_g)) \leq c_2$ ?

#### Intermediate problem

Does every graph of a triangulation of a surface  $M_g$  contain a vertex spanning planar Laman subgraph?

Note: if YES then  $c_2(\mathcal{F}(M_g)) \leq 26$ .

Theorem (N.- Simion Tarabykin)

YES if the Euler characteristic  $\chi(M_g) \ge 0$ .

(日) (四) (三) (三) (三)

### N.-Tarabykin

- Every triangulation of the projective plane  $\mathbb{R}P^2$  contains a spanning disc.
- Every triangulation of the Torus *T* contains a spanning cylinder.
- Every triangulation of the Klein bottle *K* contains a vertex spanning, planar, 2-dimensional complex; it is either a cylinder, or a pinched disc, or a connected sum of two triangulated discs along a triangle.

Then these vertex spanning subcomplexes are indeed 2-rigid, hence contain a spanning planar Laman subgraph, and Király's result apply.

(日) (四) (三) (三) (三)

## Irreducible triangulations

A triangulation  $\Delta$  of  $M_g$  is irreducible if each contraction of an edge of  $\Delta$  changes the tolopogy; equivalently, each edge belongs to an *empty* triangle of  $\Delta$ .

Barnette-Edelson 1988/9

For all g,  $M_g$  has finitely many minimal triangulations.

・ 同 ト ・ ヨ ト ・ ヨ ト

## Irreducible triangulations

A triangulation  $\Delta$  of  $M_g$  is irreducible if each contraction of an edge of  $\Delta$  changes the tolopogy; equivalently, each edge belongs to an *empty* triangle of  $\Delta$ .

#### Barnette-Edelson 1988/9

For all g,  $M_g$  has finitely many minimal triangulations.

When  $\chi(M_g) \ge 0$  the minimal triangulations are characterized: 2 such  $\mathbb{R}P^2$ : Barnette 1982.

21 such T: Lavrenchenko 1990.

29 such K: Lavrenchenko-Negami 1997, Sulanke 2006.



 $RP2_1$ :(5,5,5,5,5,5)



 $RP2_2$ :(6,6,6,6,4,4,4)

# Some spanning subcomplexes in minimal triangulations



Rigidity with few locations: Vertex Spanning Planar Laman Gra

Eran Nevo

### Induction via vertex splits



Figure: Above: edge contraction; reverse arrow for vertex split. Below: cone over boundary interval in the spanning subsurface.

![](_page_19_Figure_3.jpeg)

We want the vertex split  $\Delta \rightarrow \Delta'$  to allow an extension  $S' \subseteq \Delta'$  of the spanning disc/cylinder/etc  $S \subseteq \Delta$ .

### Definition: extension

A spanning subsurface  $S \subseteq \Delta$  is *extendible* if for every vertex split  $\Delta \rightarrow \Delta'$  there exists  $S' \subseteq \Delta'$  s.t. either (i) S' is obtained from S by a split at the same vertex, or

(ii) S' is obtained from S by coning over an interval in its boundary.

Note: then  $S' \subseteq \Delta'$  is spanning and homeomorphic to S.

#### Theorem (N.-Tarabykin)

Let  $\Delta$  triangulate some  $M_g$ , and let  $S \subseteq \Delta$  be a vertex spanning subsurface. Then:

(1) S is extendible in  $\Delta$  iff it includes at least one edge from every triangle in  $\Delta$ .

(2) If S is extendible then it has an extendible extension  $S' \subseteq \Delta'$ .

イロン イヨン イヨン イヨン

## The easy direction

![](_page_21_Figure_1.jpeg)

Figure: Non extendible subcomplex.

Note: all S we chose in irreducible triangulations are extendible subsurfaces, except for the 4 in the "crosscap" triangulations of the Klein bottle, which are *pinched* discs.

### How to choose an extendible S'?

![](_page_22_Figure_1.jpeg)

Figure:  $S \rightarrow S'$  via coning over boundary interval.

<回と < 回と < 回と

![](_page_23_Figure_0.jpeg)

Figure:  $S \rightarrow S'$  via vertex split.

<ロ> <同> <同> < 同> < 同>

臣

![](_page_24_Figure_0.jpeg)

# What's left: crosscap triangulation of K

*ABC* is a noncontractible cycle in each of the 4 crosscap irreducible triangulations:

![](_page_25_Figure_2.jpeg)

Each is a connected sum of two  $\mathbb{R}P^2$ 's along the triangle *ABC*; this triangle can be part of the spanning disc in each  $\mathbb{R}P^2$ .

If YES, then again the triangulation  $\Delta$  of K is a connected sum of two  $\mathbb{R}P^2$ 's along ABC, and ABC can be taken as a triangle in each spanning disc.

The connected sum of those discs is a planar strongly connected 2-complex.

![](_page_26_Figure_3.jpeg)

# If NOT

Then some vertex split induced a vertex split of the cycle ABC.

### Commutativity claim

The vertex splits can be rearranged s.t. the first one splits ABC.

If C splits first (similaly for A, B), choose S a spanning pinched

![](_page_27_Picture_5.jpeg)

 $Kc_1$ :(8,8,8,5,5,5,5,5,5)

![](_page_27_Picture_7.jpeg)

 $Ke_2{:}(9,\!9,\!7,\!6,\!6,\!5,\!5,\!5,\!4,\!4)$ 

![](_page_27_Figure_9.jpeg)

Eran Nevo

![](_page_27_Figure_10.jpeg)

Rigidity with few locations: Vertex Spanning Planar Laman Gra

イロト イヨト イヨト

## From a pinched disc to a cylinder

The first split makes S' a spanning cylinder.

![](_page_28_Figure_2.jpeg)

![](_page_28_Picture_3.jpeg)

Figure: Resolving a singularity.

The Extension Theorem shows that further splits preserve having a spanning cylinder. This completes the proof.  $\Box$ 

• All surfaces: (i) Is  $c_3(\cup_g \mathcal{F}(M_g))$  finite? (ii) Is  $c_2(\cup_g \mathcal{L}(M_g))$  finite? (iii) If NO in (i), is  $c_2(\cup_g \mathcal{F}(M_g))$  finite? E.g. via:

(日) (四) (三) (三) (三)

- All surfaces: (i) Is  $c_3(\cup_g \mathcal{F}(M_g))$  finite? (ii) Is  $c_2(\cup_g \mathcal{L}(M_g))$  finite? (iii) If NO in (i), is  $c_2(\cup_g \mathcal{F}(M_g))$  finite? E.g. via:
- Does any triangulated surface contain a vertex spanning planar Laman graph?

イロト イヨト イヨト イヨト

- All surfaces: (i) Is  $c_3(\cup_g \mathcal{F}(M_g))$  finite? (ii) Is  $c_2(\cup_g \mathcal{L}(M_g))$  finite? (iii) If NO in (i), is  $c_2(\cup_g \mathcal{F}(M_g))$  finite? E.g. via:
- Does any triangulated surface contain a vertex spanning planar Laman graph?
- What about triangulations of higher dimensional manifolds, or even just spheres?

・ 同 ト ・ ヨ ト ・ ヨ ト

- All surfaces: (i) Is  $c_3(\cup_g \mathcal{F}(M_g))$  finite? (ii) Is  $c_2(\cup_g \mathcal{L}(M_g))$  finite? (iii) If NO in (i), is  $c_2(\cup_g \mathcal{F}(M_g))$  finite? E.g. via:
- Does any triangulated surface contain a vertex spanning planar Laman graph?
- What about triangulations of higher dimensional manifolds, or even just spheres?
- All d-rigid graphs, d > 2: is  $c_d(F_d(n)) = o(n)$ ?

イロト イポト イヨト イヨト 二日

- All surfaces: (i) Is  $c_3(\cup_g \mathcal{F}(M_g))$  finite? (ii) Is  $c_2(\cup_g \mathcal{L}(M_g))$  finite? (iii) If NO in (i), is  $c_2(\cup_g \mathcal{F}(M_g))$  finite? E.g. via:
- Does any triangulated surface contain a vertex spanning planar Laman graph?
- What about triangulations of higher dimensional manifolds, or even just spheres?
- All d-rigid graphs, d > 2: is  $c_d(F_d(n)) = o(n)$ ?

## THANK YOU! arXiv:2205.00558

イロト イポト イヨト イヨト