Rank Polynomials of Fence Posets are Unimodal *joint with Ezgi Kantarci Oğuz*

MOHAN RAVICHANDRAN

Boğaziçi University İstanbul, Turkey

July 19, 2022

IMBM

http://www.imbm.org.tr

For some background on the events at Bogazici, see shorturl.at/bdkrx and shorturl.at/ikW01

For a statement by the AMS, see $\frac{1}{k\times L58}$

The Istanbul Center for Mathematical Sciences (ICMS/IMBM) is a research center in Bogazici University that has since 2006 hosted hundreds of research talks as well as summer schools, conferences and workshops.

The center was shut down by the Bogazici University rectorate in May 2022.

The official reason was that the alumni office had run out of office space, but the real reason was to penalize the mathematics and physics departments of Bogazici for speaking up against the erosion of academic freedom and civil rights under the current university administration, appointed in January 2021.

Rank Polynomials of Fence Posets are Unimodal *joint with Ezgi Kantarci Oğuz*

MOHAN RAVICHANDRAN

Boğaziçi University İstanbul, Turkey

July 19, 2022

What are fences?

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s)$ be a composition of *n*. The fence poset of α , denoted $F(\alpha)$ is the poset on x_1, x_2, \dots, x_{n+1} with the order relations:

$$x_1 \preceq x_2 \preceq \cdots \preceq x_{\alpha_1+1} \succeq x_{\alpha_1+2} \succeq \cdots \succeq x_{\alpha_1+\alpha_2+1} \preceq x_{\alpha_1+\alpha_2+2} \preceq \cdots$$

For a composition of n, we get a poset of n + 1 nodes.

MOHAN RAVICHANDRAN

$$\#I = rank(I)$$

#I = rank(I)

$$\#I = rank(I)$$

1 ideal of rank 0,

$$\#I = rank(I)$$

1 ideal of rank 0,

$$\#I = rank(I)$$

1 ideal of rank 0,

$$\#I = rank(I)$$

1 ideal of rank 0, 3 ideals of rank 1, 5 ideals of rank 2, ...

$$\#I = rank(I)$$

1 ideal of rank 0, 3 ideals of rank 1, 5 ideals of rank 2, ... $(1,3,5,6,6,5,3,2,1) \leftarrow \text{Rank sequence.}$

$$\#I = rank(I)$$

1 ideal of rank 0, 3 ideals of rank 1, 5 ideals of rank 2, ... $(1,3,5,6,6,5,3,2,1) \leftarrow \text{Rank sequence.}$ $1+3q+5q^2+6q^3+6q^4+5q^5+3q^6+2q^7+q^8 \leftarrow \text{Rank polynomial.}$

Recently, a q-deformation rational numbers was introduced by Morier-Genoud and Ovsienko¹. Their definition has a *convergence* property, which allows us to extend them to real numbers.

MOHAN RAVICHANDRAN

¹Morier-Genoud and Ovsienko, "q-deformed rationals and q-continued fractions".

Recently, a q-deformation rational numbers was introduced by Morier-Genoud and Ovsienko¹. Their definition has a *convergence* property, which allows us to extend them to real numbers.

For a given rational number r/s, we first write it as a continued fraction.

 $a_i \in \mathbb{Z}, a_i \ge 1 \text{ for } i \ge 2$ $c_i \in \mathbb{Z}, c_i \ge 2 \text{ for } i \ge 2$

¹Morier-Genoud and Ovsienko, "q-deformed rationals and q-continued fractions".

MOHAN RAVICHANDRAN

Then we replace the expansion terms with q-integers $(q^{-1}$ -integers for $a_{2k})$, and the 1's with powers of q.

$$\left[\frac{r}{s}\right]_{q} := [a_{1}]_{q} + \frac{q^{a_{1}}}{[a_{2}]_{q^{-1}} + \frac{q^{-a_{2}}}{\vdots}} = [c_{1}]_{q} - \frac{q^{c_{1}-1}}{[c_{2}]_{q} - \frac{q^{c_{2}-1}}{\vdots}} + \frac{q^{a_{2m-1}}}{[c_{2}]_{q} - \frac{q^{c_{2}-1}}{\vdots}} = [c_{1}]_{q} - \frac{q^{c_{2}-1}}{[c_{2}]_{q} - \frac{q^{c_{2}-1}}{\vdots}}$$

Then we replace the expansion terms with q-integers $(q^{-1}$ -integers for $a_{2k})$, and the 1's with powers of q.

$$\begin{bmatrix} r\\ s \end{bmatrix}_q := [a_1]_q + \frac{q^{a_1}}{[a_2]_{q^{-1}} + \frac{q^{-a_2}}{\vdots}} = [c_1]_q - \frac{q^{c_1-1}}{[c_2]_q - \frac{q^{c_2-1}}{\vdots}} = [c_1]_q - \frac{q^{c_1-1}}{[c_2]_q - \frac{q^{c_2-1}}{\vdots}}$$

A cool thing: The two expressions give the same q-deformation.

Then we replace the expansion terms with *q*-integers $(q^{-1}$ -integers for $a_{2k})$, and the 1's with powers of *q*.

$$\begin{bmatrix} r\\ s \end{bmatrix}_{q} := [a_{1}]_{q} + \frac{q^{a_{1}}}{[a_{2}]_{q^{-1}} + \frac{q^{-a_{2}}}{\vdots}} = [c_{1}]_{q} - \frac{q^{c_{1}-1}}{[c_{2}]_{q} - \frac{q^{c_{2}-1}}{\vdots}} = [c_{1}]_{q} - \frac{q^{c_{1}-1}}{[c_{2}]_{q} - \frac{q^{c_{2}-1}}{\vdots}}$$

A cool thing: The two expressions give the same *q*-deformation.

Another cool thing: $\left[\frac{r}{s}\right]_q = \frac{R(q)}{S(q)}$ where $R(q), S(q) \in \mathbb{Z}[q]$ are polynomials that evaluate to r and s respectively.

Then we replace the expansion terms with *q*-integers $(q^{-1}$ -integers for $a_{2k})$, and the 1's with powers of *q*.

$$\begin{bmatrix} r\\ s \end{bmatrix}_{q} := [a_{1}]_{q} + \frac{q^{a_{1}}}{[a_{2}]_{q^{-1}} + \frac{q^{-a_{2}}}{\vdots}} = [c_{1}]_{q} - \frac{q^{c_{1}-1}}{[c_{2}]_{q} - \frac{q^{c_{2}-1}}{\vdots}} = [c_{1}]_{q} - \frac{q^{c_{1}-1}}{[c_{2}]_{q} - \frac{q^{c_{2}-1}}{\vdots}}$$

A cool thing: The two expressions give the same *q*-deformation.

Another cool thing: $\left[\frac{r}{s}\right]_q = \frac{R(q)}{S(q)}$ where $R(q), S(q) \in \mathbb{Z}[q]$ are polynomials that evaluate to r and s respectively.

Also, when $\frac{r}{s} \ge 0$ the coefficients are non-negative.

MOHAN RAVICHANDRAN

MOHAN RAVICHANDRAN

In general, if r/s corresponds to $[a_1, a_2, \ldots, a_{2m}]$, we have

$$\begin{bmatrix} r \\ s \end{bmatrix}_q = \frac{\text{Rank polynomial for } (a_1 - 1, a_2, a_3, \dots, a_{2m} - 1)}{\text{Rank polynomial for } (0, a_2 - 1, a_3, \dots, a_{2m} - 1)}$$

A closer look at rank sequences for fences

A closer look at rank sequences for fences

Conjecture (Morier-Genoud, Ovsienko, 2020)

The rank polynomials of fence posets are unimodal.

MOHAN RAVICHANDRAN

Consider $(2, 1, 1, 3) \rightarrow (1, 3, 5, 6, 6, 5, 3, 2, 1)$.

Consider $(2, 1, 1, 3) \rightarrow (1, 3, 5, 6, 6, 5, 3, 2, 1)$.

We have $1 \le 1 \le 2 \le 3 \le 3 \le 5 \le 5 \le 6 \le 6$.

We call such a sequence bottom-interlacing:

$$a_n \leq a_0 \leq a_{n-1} \leq a_1 \leq \ldots \leq a_{\lfloor n/2 \rfloor}.$$
 (BI)

Consider $(2, 1, 1, 3) \rightarrow (1, 3, 5, 6, 6, 5, 3, 2, 1)$. We have $1 \le 1 \le 2 \le 3 \le 3 \le 5 \le 5 \le 6 \le 6$.

We call such a sequence bottom-interlacing:

$$a_n \leq a_0 \leq a_{n-1} \leq a_1 \leq \ldots \leq a_{\lfloor n/2 \rfloor}.$$
 (BI)

We call similarly have top-interlacing sequences:

$$a_0 \leq a_n \leq a_1 \leq a_{n-1} \leq \ldots \leq a_{\lceil n/2 \rceil}.$$
 (TI)

Consider $(2, 1, 1, 3) \rightarrow (1, 3, 5, 6, 6, 5, 3, 2, 1)$. We have $1 \le 1 \le 2 \le 3 \le 3 \le 5 \le 5 \le 6 \le 6$.

We call such a sequence bottom-interlacing:

$$a_n \leq a_0 \leq a_{n-1} \leq a_1 \leq \ldots \leq a_{\lfloor n/2 \rfloor}.$$
 (BI)

We call similarly have top-interlacing sequences:

$$a_0 \leq a_n \leq a_1 \leq a_{n-1} \leq \ldots \leq a_{\lceil n/2 \rceil}.$$
 (TI)

For example, the rank sequence (1, 2, 4, 5, 6, 6, 4, 2, 1) of (2, 2, 3) is top interlacing:

$$1 \le 1 \le 2 \le 2 \le 4 \le 4 \le 5 \le 6 \le 6.$$

MOHAN RAVICHANDRAN

(

$$\begin{array}{rcl} (2,2,3) & \to & (1,2,4,5,6,6,4,2,1) \to \mathsf{TI} \\ (2,3,2) & \to & (1,2,4,6,7,6,4,2,1) \to \mathsf{BI},\mathsf{TI} \text{ (symmetric)} \\ (2,1,4) & \to & (1,2,3,3,4,4,3,2,1) \to \mathsf{TI} \\ 2,1,2,1,1) & \to & (1,3,6,7,8,7,5,3,1) \to \mathsf{BI} \end{array}$$
Conjecture (McConville, Sagan, Smyth, 2021²)

Suppose $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_s)$. (a) If s = 1 then $r(\alpha) = (1, 1, \dots, 1)$ is symmetric. (b) If s is even, then $r(\alpha)$ is bottom interlacing. (c) If s > 3 is odd we have: (i) If $\alpha_1 > \alpha_s$ then $r(\alpha)$ is bottom interlacing. (ii) If $\alpha_1 < \alpha_s$ then $r(\alpha)$ is top interlacing. (iii) If $\alpha_1 = \alpha_s$ then $r(\alpha)$ is symmetric, bottom interlacing, or top interlacing depending on whether $r(\alpha_2, \alpha_3, \ldots, \alpha_{s-1})$ is symmetric, top interlacing, or bottom interlacing, respectively.

MOHAN RAVICHANDRAN

²McConville, B. E. Sagan, and Smyth, *On a rank-unimodality conjecture of Morier-Genoud and Ovsienko*.

Comments

 While these sequences are indeed unimodal (our main result), they do not satisfy stronger properties like log concavity or real rootedness.

- Indeed, these sequences are often 'barely' unimodal. For instance when $\alpha=({\bf 6},{\bf 1},{\bf 1},{\bf 1}),$ we have that

r[(6,1,1,1)] = (1,3,4,5,5,5,5,4,3,2,1).

– While the peak of the sequence for any composition of n for n odd is always at $\lfloor n/2 \rfloor$ or $\lceil n/2 \rceil$, there seems to be no clear way of deciding between these possibilities.

- There are of course several identities such as

 $R[(\alpha_1,\ldots,\alpha_s)=R[(\alpha_1-1,\ldots,\alpha_s)+q^{\alpha_1}R_{\downarrow}[(\alpha_2,\ldots,\alpha_s)],$

where *R* is the rank polynomial and R_{\downarrow} is the rank polynomial of fence that starts with a down step. Alas, working with these only leads to frustration and grief.

MOHAN RAVICHANDRAN

- Start with the path graph on *n* nodes and orient the edges one way or the other, to get a *Type A Dynkin quiver*.

An indecomposable representation of this quiver is essentially a lower ideal of the associated fence poset (with the dimension being the size of the lower ideal). Consequently, we have unimodality for the number of indecomposable reps ranked by dimension.

- The poset $F(\alpha)$ has several different descriptions.

* In terms of perfect matchings (alternately in terms of lattice paths) on snake graphs. (Propp).

* In terms of perfect matchings on angles, structures related to cluster algebras (Yurisuka).

* T paths, also structures related to cluster algebras, (Schiffler-Thomas).

* S paths, coming from polygon cluster algebras (Clausen).

The *circular* fence has rank sequence (1, 2, 3, 4, 4, 3, 2, 1).

The *circular* fence has rank sequence (1, 2, 3, 4, 4, 3, 2, 1).

It is symmetric. Is this always so?

The *circular* fence has rank sequence (1, 2, 3, 4, 4, 3, 2, 1).

It is symmetric. Is this always so?

Answer: Yes, but it is not trivial to prove.

Theorem (Kantarcı Oğuz, Ravichandran, 2021³)

Rank polynomials of circular fence posets are symmetric.

⁴Elizalde and B. Sagan, *Partial rank symmetry of distributive lattices for fences*.

MOHAN RAVICHANDRAN

³Kantarcı Oğuz and Ravichandran, *Rank Polynomials of Fence Posets are Unimodal*.

Theorem (Kantarcı Oğuz, Ravichandran, 2021³)

Rank polynomials of circular fence posets are symmetric.

Our proof:

We have one case that is trivially symmetric: $(k, 1, 1, \dots, 1)$.

We show that moving a node from one segment to the next does not break symmetry.

⁴Elizalde and B. Sagan, *Partial rank symmetry of distributive lattices for fences*.

MOHAN RAVICHANDRAN

³Kantarcı Oğuz and Ravichandran, *Rank Polynomials of Fence Posets are Unimodal.*

Theorem (Kantarcı Oğuz, Ravichandran, 2021³)

Rank polynomials of circular fence posets are symmetric.

Our proof:

We have one case that is trivially symmetric: (k, 1, 1, ..., 1).

We show that moving a node from one segment to the next does not break symmetry.

>> Recent bijective proof by Sagan and Elizalde⁴.

³Kantarcı Oğuz and Ravichandran, *Rank Polynomials of Fence Posets are Unimodal*.

⁴Elizalde and B. Sagan, *Partial rank symmetry of distributive lattices for fences*.

MOHAN RAVICHANDRAN

Rank Polynomials of Fence Posets are Unimodal

$$\begin{array}{rll} \text{symmetric piece} & (1,2,3,5,5,5,3,2,1) & b_0 = b_n, \ b_1 = b_{n-1}, \dots \\ & + & \\ \text{smaller piece,} & (0,1,2,1,1,0,0,0,0) & c_0 \geq c_n, \ c_1 \geq c_{n-1}, \dots \\ \text{shifted center} & \end{array}$$

$$\sum_{l} q^{\mathsf{rank}(l)} \qquad (1,3,5,6,6,5,3,2,1) \quad a_0 \ge a_n, \ a_1 \ge a_{n-1}, \dots$$

$$\begin{array}{rll} \text{symmetric piece} & (1,2,3,5,5,5,3,2,1) & b_0 = b_n, \ b_1 = b_{n-1}, \dots \\ & + & \\ \text{smaller piece,} & (0,1,2,1,1,0,0,0,0) & c_0 \geq c_n, \ c_1 \geq c_{n-1}, \dots \\ \text{shifted center} & \end{array}$$

$$= = = \\ \sum_{l} q^{\mathsf{rank}(l)} \qquad (1, 3, 5, 6, 6, 5, 3, 2, 1) \quad a_0 \ge a_n, \ a_1 \ge a_{n-1}, \dots$$

This gives us half of the equations for being bottom interlacing:

$$a_n \leq a_0, \quad a_{n-1} \leq a_1, \quad a_{n-2} \leq a_2 \quad a_{n-3} \leq a_3, \ldots$$

$$\begin{array}{rll} \text{symmetric piece} & (1,2,3,5,5,5,3,2,1) & b_0 = b_n, \ b_1 = b_{n-1}, \dots \\ & + & \\ \text{smaller piece,} & (0,1,2,1,1,0,0,0,0) & c_0 \geq c_n, \ c_1 \geq c_{n-1}, \dots \\ \text{shifted center} & \end{array}$$

$$= = = \\ \sum_{l} q^{\mathsf{rank}(l)} \qquad (1, 3, 5, 6, 6, 5, 3, 2, 1) \quad a_0 \ge a_n, \ a_1 \ge a_{n-1}, \dots$$

This gives us half of the equations for being bottom interlacing:

$$a_n \leq a_0, \quad a_{n-1} \leq a_1, \quad a_{n-2} \leq a_2 \quad a_{n-3} \leq a_3, \ldots$$

$$a_n \leq a_0 \leq a_{n-1} \leq a_1 \leq a_{n-2} \leq a_2 \leq a_{n-3} \leq a_3 \leq \dots$$
 (BI)

=

$$\begin{array}{rll} \text{symmetric piece} & (1,2,3,5,5,5,3,2,1) & b_0 = b_n, \ b_1 = b_{n-1}, \dots \\ & + & \\ \text{smaller piece,} & (0,1,2,1,1,0,0,0,0) & c_0 \geq c_n, \ c_1 \geq c_{n-1}, \dots \\ \text{shifted center} & \end{array}$$

$$= = = \\ \sum_{l} q^{\mathsf{rank}(l)} \qquad (1, 3, 5, 6, 6, 5, 3, 2, 1) \quad a_0 \ge a_n, \ a_1 \ge a_{n-1}, \dots$$

This gives us half of the equations for being bottom interlacing:

$$a_n \leq a_0, \quad a_{n-1} \leq a_1, \quad a_{n-2} \leq a_2 \quad a_{n-3} \leq a_3, \ldots$$

$$a_n \leq a_0 \leq a_{n-1} \leq a_1 \leq a_{n-2} \leq a_2 \leq a_{n-3} \leq a_3 \leq \dots$$
 (BI)

We need a way to shift the pairings to $(a_0, a_{n-1}), (a_1, a_{n+1}), \dots$ to get the rest of the inequalities.

MOHAN RAVICHANDRAN

=

On the rank polynomial side

symmetric piece (1, 2, 3, 5, 6, 6, 5, 3, 2, 1) $b_0 = b_{n+1}, b_1 = b_n, \dots$ larger

 $\begin{array}{ll} \text{smaller piece,} & (1,1,0,0,0,0,0,0,0) & c_0 \geq c_n, \ c_1 \geq c_{n-1}, \dots \\ \text{shifted center} \end{array}$

 $(0, a_0, a_1, \ldots, a_n)$ (0, 1, 3, 5, 6, 6, 5, 3, 2, 1) $0 \le a_n, a_0 \le a_{n-1} \ldots$

=

On the rank polynomial side

symmetric piece (1, 2, 3, 5, 6, 6, 5, 3, 2, 1) $b_0 = b_{n+1}, b_1 = b_n, \dots$ larger (1, 1, 0, 0, 0, 0, 0, 0, 0) $c_0 \ge c_n, c_1 \ge c_{n-1}, \dots$ smaller piece, shifted center = $(0, a_0, a_1, \ldots, a_n)$ (0, 1, 3, 5, 6, 6, 5, 3, 2, 1) $0 < a_n, a_0 < a_{n-1} \ldots$ This gives us the other half of the bottom-interlacing equations: $a_n \le a_0, \quad a_{n-1} \le a_1, \quad a_{n-2} \le a_2, \quad a_{n-3} \le a_3, \dots$

$$a_0 \leq a_{n-1}, \quad a_1 \leq a_{n-2}, \quad a_2 \leq a_{n-3}, \ldots$$

+

=

$$a_n \leq a_0 \leq a_{n-1} \leq a_1 \leq a_{n-2} \leq a_2 \leq a_{n-3} \leq a_3 \leq \dots \tag{BI}$$

Theorem (Kantarcı Oğuz, Ravichandran, 2021)

Rank polynomials of fence posets are unimodal.

In particular, for $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s)$ we have: (a) If s = 1 then $r(\alpha) = (1, 1, ..., 1)$ is symmetric. (b) If s is even, then $r(\alpha)$ is bottom interlacing. (c) If $s \ge 3$ is odd we have: (i) If $\alpha_1 > \alpha_s$ then $r(\alpha)$ is bottom interlacing. (ii) If $\alpha_1 < \alpha_s$ then $r(\alpha)$ is top interlacing. (iii) If $\alpha_1 = \alpha_s$ then $r(\alpha)$ is symmetric, bottom interlacing, or top interlacing depending on whether $r(\alpha_2, \alpha_3, \ldots, \alpha_{s-1})$ is symmetric, top interlacing, or bottom interlacing, respectively.

A remark on our proof

₩

Symmetry for Circular Fences with at most n + 1 parts.

∜

Unimodality for Fences with at most n + 1 parts.

Are they also unimodal?

Are they also unimodal?

Answer: Not always.

For the circular poset (1, a, 1, a) we get a small dip in the middle:

 $(1, 2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2, 1).$

Are they also unimodal?

Answer: Not always.

For the circular poset (1, a, 1, a) we get a small dip in the middle:

$$(1,2,\ldots,a,a+1,a,a+1,a,a-1,\ldots,2,1).$$

Nicer answer: Almost always.

Are they also unimodal?

Answer: Not always.

For the circular poset (1, a, 1, a) we get a small dip in the middle:

$$(1, 2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2, 1).$$

Nicer answer: Almost always.

Theorem (Kantarcı Oğuz, Ravichandran, 2022)

For any $\alpha \neq (1, k, 1, k)$ or (k, 1, k, 1) for some k, the rank sequence $\overline{R}(\alpha; q)$ is unimodal.

Another Perspective

We can also see fences as intervals in the Young's lattice.

Young's Lattice is the lattice of Ferrers diagrams of Partitions ordered by inclusion.

(Image from Wikipedia, created by David Eppstein)

MOHAN RAVICHANDRAN

Rank Polynomials of Fence Posets are Unimodal
For any partition, we can look at the generating function of the partitions that lay under it.

$${{ G}}(\lambda;q):=\sum_{\mu\subset\lambda}q^{|\mu|}$$

$$G\left(\square;q\right) = q^3 + 2q^2 + q + 1$$

$$G\left(\square;q\right) = q^4 + 2q^3 + 2q^2 + q + 1$$

1

1

n

For any partition, we can look at the generating function of the partitions that lay under it.

$${{ extsf{G}}(\lambda; q)} := \sum_{\mu \subset \lambda} q^{|\mu|}$$

$$G\left(\square;q\right) = q^3 + 2q^2 + q + 1$$

$$G\left(\square;q\right) = q^4 + 2q^3 + 2q^2 + q + 1$$

We can also look at the interval between two partitions.

For any partition, we can look at the generating function of the partitions that lay under it.

$${{ extsf{G}}(\lambda; q)} := \sum_{\mu \subset \lambda} q^{|\mu|}$$

$$G\left(\square;q\right) = q^3 + 2q^2 + q + 1$$

$$G\left(\square;q\right) = q^4 + 2q^3 + 2q^2 + q + 1$$

We can also look at the interval between two partitions.

$${\it G}(\lambda/
u; {\it q}) := \sum_{
u \subset \mu \subset \lambda} {\it q}^{|\mu| - |
u|}$$

$$G\left(\left|\frac{1}{1}\right|,q\right) = q^2 + 2q + 1$$

Unimodality of these polynomials were considered by Stanton in 1990^5 .

⁵Stanton, "Unimodality and Young's lattice".

MOHAN RAVICHANDRAN

Unimodality of these polynomials were considered by Stanton in 1990⁵. Note that taking the transpose does not change the polynomial we get, so we can think up to transpose.

⁵Stanton, "Unimodality and Young's lattice".

MOHAN RAVICHANDRAN

Unimodality of these polynomials were considered by Stanton in 1990⁵. Note that taking the transpose does not change the polynomial we get, so we can think up to transpose.

Conjecture (Stanton, 1990)

The polynomials corresponding to self-dual partitions are unimodal.

⁵Stanton, "Unimodality and Young's lattice".

The counter examples mainly occur in the case where we have 4 parts, where we only get a dip in the middle.

The counter examples mainly occur in the case where we have 4 parts, where we only get a dip in the middle.

Partition	i	Values	Partition	i	Values
8844	15	31 30 31	11 11 6 6	21	67 66 67
10 9 4 4	17	46 45 46	14 13 4 4	21	76 75 76
10 10 4 4	17	46 45 46	16 12 4 4	23	91 90 91
12 10 4 4	19	61 60 61	14 14 4 4	21	76 75 76
12 11 4 4	19	61 60 61	12 12 8 4	23	81 80 81
12 12 4 4	19	61 60 61	12 10 8 6	23	82 81 82
14 11 4 4	21	76 75 76	888642	23	141 140 141
11 11 6 5	21	67 66 67	886644	23	144 143 144
14 12 4 4	21	76 75 76			

TABLE I

(Table from "Unimodality and Young's Lattice", Stanton)

Note that the ideals of the fence coincide with the partitions that lie between α and ν , so $G(\lambda/\nu)$ agrees with the rank polynomial.

Note that the ideals of the fence coincide with the partitions that lie between α and ν , so $G(\lambda/\nu)$ agrees with the rank polynomial.

Rank polynomials actually correspond to a special class of differences called *ribbon diagrams*, where we have no 2×2 box.

Note that the ideals of the fence coincide with the partitions that lie between α and ν , so $G(\lambda/\nu)$ agrees with the rank polynomial.

Rank polynomials actually correspond to a special class of differences called *ribbon diagrams*, where we have no 2×2 box.

Polynomials corresponding to ribbon diagrams are unimodal.

Some follow up work

- Let $a = (a_1, ..., a_s)$ be a composition of n. The Chainlink polytope⁶ is the s dimensional polytope defined as

 $CL(a) = \{x \in \mathbb{R}^s \mid x_i \in [0, a_i + 1], x_i - x_{(i+1) \mod(s)} \le a_i, i \in [s]\}.$

Let $CL(a)^t$ be the slice of the polytope with respect to the hyperplane $x_1 + \ldots + x_s = t$.

Theorem (Kantarci-Oguz, Ozer, R, 2022)

For any composition a and any real t, we have that

$$|\operatorname{CL}(a)^t| = |\operatorname{CL}^{m-t}(a)|,$$

where m = n + s as above. Further, when t is an integer, the Ehrhart (Quasi) polynomials are equal as well.

$$\operatorname{Ehr}_{\operatorname{CL}(a)^t} = \operatorname{Ehr}_{\operatorname{CL}^{m-t}(a)}.$$

⁶CL.

MOHAN RAVICHANDRAN

More follow up work

In recent work, Leclerc and Morier-Genoud considered a q deformation of $PSL(2,\mathbb{Z}).$ The matrices

$$R_q = \begin{bmatrix} q & 1 \\ 0 & 1 \end{bmatrix}, \quad S_q = \begin{bmatrix} 0 & -q^{-1} \\ 1 & 0 \end{bmatrix},$$

generate a group $PSL_q(2,\mathbb{Z})$ isomorphic to $PSL(2,\mathbb{Z})$.

Theorem (Kantarci-Oguz)

For every word of the form $C = R_q^{c_1} S_q R_q^{c_2} S_q \dots R_q^{c_k} S_q$, where the $c_i > 2$, the polynomials Tr(C) are unimodal.

The proof uses two ingredients

- Relating these to rank polynomials of circular fence posets.
- A new notion of oriented posets, a class of posets for which the rank polynomials can be computed iteratively using linear algebra.⁷.
 ⁷Kantarci Oğuz, Oriented Posets and Rank Polynomials.

MOHAN RAVICHANDRAN

Thank you for listening!

- Kantarcı Oğuz, E. & Ravichandran, M. Rank Polynomials of Fence Posets are Unimodal. (2021)
- Morier-Genoud, S. & Ovsienko, V. q-deformed rationals and q-continued fractions. *Forum Math. Sigma.* **8** pp. Paper No. e13, 55 (2020).
- McConville, T., Sagan, B. & Smyth, C. On a rank-unimodality conjecture of Morier-Genoud and Ovsienko. *Discrete Math.*. **344** pp. 13 (2021).
- Elizalde, S. & Sagan, B. Partial rank symmetry of distributive lattices for fences. (2022)
- Kantarci-Oguz, Ezgi Oriented Posets and Rank Polynomials https://arxiv.org/pdf/2206.05517.pdf
- Kantarci-Oguz, E & Ozer, C. & Ravichandran M. The Hector-Louis Polytopes (2022, Soon on Arxiv)
- Stanton, D. Unimodality and Young's lattice. J. Comb. Theory, Ser. A. 54, 41-53 (1990)

MOHAN RAVICHANDRAN