Rational Ehrhart Theory

Sophie Rehberg joint work with Matthias Beck \& Sophia Elia

arXiv:2110.10204
34th International Conference on Formal Power Series \&
Algebraic Combinatorics

Ehrhart (Quasi-)Polynomials

P a d-polytope in $\mathbb{R}^{d}, n \in \mathbb{Z}_{>0}$.

$$
\begin{aligned}
n \mathrm{P} & :=\left\{n \mathbf{x} \in \mathbb{R}^{d}: \mathbf{x} \in \mathrm{P}\right\} \\
\operatorname{ehr}_{\mathrm{P}}(n) & :=\#\left(\mathbb{Z}^{d} \cap n \mathrm{P}\right)
\end{aligned}
$$

Example: unit square $[0,1]^{2}$

$$
\operatorname{ehr}\left([0,1]^{2} ; n\right)=(n+1)^{2}
$$

Theorem (Ehrhart 1962)
P an integral d-polytope. Then $\operatorname{ehr}(P ; n)$ agrees with a polynomial of degree d.

Ehrhart (Quasi-)Polynomials

P a d-polytope in $\mathbb{R}^{d}, n \in \mathbb{Z}_{>0}$.

$$
\begin{aligned}
n \mathrm{P} & :=\left\{n \mathbf{x} \in \mathbb{R}^{d}: \mathbf{x} \in \mathrm{P}\right\} \\
\operatorname{ehr}_{\mathrm{P}}(n) & :=\#\left(\mathbb{Z}^{d} \cap n \mathrm{P}\right)
\end{aligned}
$$

Example: unit square $[0,1]^{2}$

$$
\operatorname{ehr}\left([0,1]^{2} ; n\right)=(n+1)^{2}
$$

Theorem (Ehrhart 1962)

P a integral rational d-polytope. Then, ehr $(P ; n)$ agrees with a quasipolynomial of degree d, period $p \mid k$.
quasipolynomial: $q(x)=c_{0}(x)+c_{1}(x) x+\cdots+c_{d}(x) x^{d}$, $c_{i}(x)$ periodic functions denominator k of P is Icm of denominators of coordinates of vertices

Ehrhart Series

Theorem (Stanley 1980)

$\mathrm{P} \subset \mathbb{R}^{d}$ a rational d-polytope with denominator k. Then

$$
\operatorname{Ehr}(\mathrm{P} ; t):=1+\sum_{n \geq 1} \operatorname{ehr}(\mathrm{P} ; n) t^{n}=\frac{\mathrm{h}^{*}(\mathrm{P} ; t)}{\left(1-t^{k}\right)^{d+1}}
$$

and $h^{*}(P ; t)$ is a polynomial with nonnegative coefficients.

Example:

$$
P_{3}:=[1,3]
$$

$\operatorname{Ehr}\left(\mathrm{P}_{3} ; t\right)=\frac{1+t}{(1-t)^{2}}$

Literature

Linke (2011) $\left|\lambda \mathrm{P} \cap \mathbb{Z}^{d}\right|$ for $\lambda \in \mathbb{Q}_{>0}$ is quasipolynomial, coefficients are piece-wise polynomial and related by derivatives,...
Baldoni-Berline-Köppe-Vergne (2013) intermediate sums on polyhedra, with $\left|\lambda \mathrm{P} \cap \mathbb{Z}^{d}\right|$ as special case.
Stapledon $(2008,2017)$ introduced weighted h^{*}-polynomials, investigated a Ehrhart series counting points on boundaries for polytopes with $\mathbf{0} \in \mathrm{P}$

Set up

Definitions and Examples

For $\mathrm{P} \subset \mathbb{R}^{d}$ define the rational Ehrhart counting function as

$$
\operatorname{rehr}(\mathrm{P} ; \lambda):=\left|\lambda \mathrm{P} \cap \mathbb{Z}^{d}\right| \quad \text { for } \lambda \in \mathbb{Q}_{>0} .
$$

Examples:

Set up

Definitions and Examples

For $\mathrm{P} \subset \mathbb{R}^{d}$ define the rational Ehrhart counting function as

$$
\operatorname{rehr}(\mathrm{P} ; \lambda):=\left|\lambda \mathrm{P} \cap \mathbb{Z}^{d}\right| \quad \text { for } \lambda \in \mathbb{Q}_{>0} .
$$

Examples:

$$
P_{1}=[0,1] \subset \mathbb{R}
$$

$$
\operatorname{rehr}\left(\mathrm{P}_{1} ; \lambda\right)=\lfloor\lambda\rfloor+1
$$

Set up

Definitions and Examples

For $\mathrm{P} \subset \mathbb{R}^{d}$ define the rational Ehrhart counting function as

$$
\operatorname{rehr}(\mathrm{P} ; \lambda):=\left|\lambda \mathrm{P} \cap \mathbb{Z}^{d}\right| \quad \text { for } \lambda \in \mathbb{Q}_{>0} .
$$

Examples:

$$
P_{2}=[1,2] \subset \mathbb{R}
$$

$$
\operatorname{rehr}\left(\mathrm{P}_{2} ; \lambda\right)=\lfloor 2 \lambda\rfloor-\lceil\lambda\rceil+1
$$

Set up

Definitions and Examples

Let

$$
\mathrm{P}=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A} \mathbf{x} \leq \mathbf{b}\right\}
$$

with $\mathbf{A} \in \mathbb{Z}^{n \times d}, \mathbf{b} \in \mathbb{Z}^{n}$ and every row is in lowest terms. We define the codenominator r :

$$
r=\operatorname{lcm}(\mathbf{b})
$$

Examples:

Set up

Definitions and Examples

Let

$$
\mathrm{P}=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A} \mathbf{x} \leq \mathbf{b}\right\}
$$

with $\mathbf{A} \in \mathbb{Z}^{n \times d}, \mathbf{b} \in \mathbb{Z}^{n}$ and every row is in lowest terms.
We define the codenominator r :

$$
r=\operatorname{lcm}(\mathbf{b})
$$

Examples:

$$
\begin{aligned}
\mathrm{P}_{1} & =[0,1] \\
=\{x \in \mathbb{R}: \quad-x & \leq 0, \\
& x \leq 1\}
\end{aligned}
$$

so $r=1$.

Set up

Definitions and Examples

Let

$$
\mathrm{P}=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{A} \mathbf{x} \leq \mathbf{b}\right\}
$$

with $\mathbf{A} \in \mathbb{Z}^{n \times d}, \mathbf{b} \in \mathbb{Z}^{n}$ and every row is in lowest terms.
We define the codenominator r :

$$
r=\operatorname{lcm}(\mathbf{b})
$$

Examples:

$$
\begin{aligned}
& \mathrm{P}_{2}=[1,2] \\
&=\left\{x \in \mathbb{R}: \quad \begin{array}{c}
\quad \\
\end{array}\right. \\
& \leq 2, \\
&-x \leq-1\}
\end{aligned}
$$

so $r=2$.

Discretizing counting

Proposition

Let $\mathrm{P} \subset \mathbb{R}^{d}$ be a rational d-polytope with codenominator r. Then
(1) $\operatorname{rehr}(P ; \lambda)$ is constant for $\lambda \in\left(\frac{n}{r}, \frac{n+1}{r}\right), n \in \mathbb{Z}_{\geq 0}$.
(2) If $\mathbf{0} \in \mathrm{P}$, then $\operatorname{rehr}(\mathrm{P} ; \lambda)$ is monotone and constant for $\lambda \in\left[\frac{n}{r}, \frac{n+1}{r}\right), n \in \mathbb{Z}_{\geq 0}$.

Discretizing counting

Proposition

Let $\mathrm{P} \subset \mathbb{R}^{d}$ be a rational d-polytope with codenominator r. Then
(1) $\operatorname{rehr}(P ; \lambda)$ is constant for $\lambda \in\left(\frac{n}{r}, \frac{n+1}{r}\right), n \in \mathbb{Z}_{\geq 0}$.
(2) If $\mathbf{0} \in \mathrm{P}$, then $\operatorname{rehr}(\mathrm{P} ; \lambda)$ is monotone and constant for

$$
\lambda \in\left[\frac{n}{r}, \frac{n+1}{r}\right), n \in \mathbb{Z}_{\geq 0}
$$

We define the (refined) rational Ehrhart series as

$$
\operatorname{REhr}(\mathrm{P} ; t):=1+\sum_{n \in \mathbb{Z}_{\geq 1}} \operatorname{rehr}\left(\mathrm{P} ; \frac{n}{r}\right) t^{\frac{n}{r}}
$$

$\operatorname{RREhr}(\mathrm{P} ; t):=1+\sum_{n \in \mathbb{Z}_{\geq 1}} \operatorname{rehr}\left(\mathrm{P} ; \frac{n}{2 r}\right) t^{\frac{n}{2 r}}$

Rational Ehrhart Series and Generating Functions

Recall the (refined) rational Ehrhart series as

$$
\operatorname{REhr}(\mathrm{P} ; t):=1+\sum_{n \in \mathbb{Z}_{\geq 1}} \operatorname{rehr}\left(\mathrm{P} ; \frac{n}{r}\right) t^{\frac{n}{r}}
$$

$\operatorname{RREhr}(\mathrm{P} ; t):=1+\sum_{n \in \mathbb{Z}_{\geq 1}} \operatorname{rehr}\left(\mathrm{P} ; \frac{n}{2 r}\right) t^{\frac{n}{2 r}}$

Rational Ehrhart Series and Generating Functions

Recall the (refined) rational Ehrhart series as

$$
\operatorname{REhr}(\mathrm{P} ; t):=1+\sum_{n \in \mathbb{Z}_{\geq 1}} \operatorname{rehr}\left(\mathrm{P} ; \frac{n}{r}\right) t^{\frac{n}{r}}
$$

$\operatorname{RREhr}(\mathrm{P} ; t):=1+\sum_{n \in \mathbb{Z}_{\geq 1}} \operatorname{rehr}\left(\mathrm{P} ; \frac{n}{2 r}\right) t^{\frac{n}{2 r}}$

Theorem

Let P be a rational d-polytope with codenominator r, and let $m \in \mathbb{Z}_{>0}$ such that $\frac{m}{r} P$ is a lattice polytope. Then

$$
\operatorname{REhr}(\mathrm{P} ; t)=\frac{\mathrm{rh}_{m}^{*}(\mathrm{P} ; t)}{\left(1-t^{\frac{m}{r}}\right)^{d+1}}
$$

where $\mathrm{rh}^{*}(\mathrm{P} ; t)$ is a polynomial in $\mathbb{Z}\left[t^{\frac{1}{r}}\right]$ with nonnegative coefficients.

Rational Ehrhart Series and Generating Functions

Recall the (refined) rational Ehrhart series as

$$
\operatorname{REhr}(\mathrm{P} ; t):=1+\sum_{n \in \mathbb{Z} \geq 1} \operatorname{rehr}\left(\mathrm{P} ; \frac{n}{r}\right) t^{\frac{n}{r}}
$$

$\operatorname{RREhr}(\mathrm{P} ; t):=1+\sum_{n \in \mathbb{Z}_{\geq 1}} \operatorname{rehr}\left(\mathrm{P} ; \frac{n}{2 r}\right) t^{\frac{n}{2 r}}$

Theorem

Let P be a rational d-polytope with codenominator r, and let $m \in \mathbb{Z}_{>0}$ such that $\frac{m}{2 r} \mathrm{P}$ is a lattice polytope. Then

$$
\operatorname{RREhr}(\mathrm{P} ; t)=\frac{\operatorname{rrh}_{m}^{*}(\mathrm{P} ; t)}{\left(1-t^{\frac{m}{2 r}}\right)^{d+1}}
$$

where $\mathrm{rrh}^{*}(\mathrm{P} ; t)$ is a polynomial in $\mathbb{Z}\left[t^{\frac{1}{2 r}}\right]$ with nonnegative coefficients.

Rational Ehrhart Series and Generating Functions

Theorem

Let P be a rational d-polytope with codenominator r, and let $m \in \mathbb{Z}_{>0}$ such that $\frac{m}{r} P$ is a lattice polytope. Then

$$
\operatorname{REhr}(\mathrm{P} ; t)=\frac{\mathrm{rh}_{m}^{*}(\mathrm{P} ; t)}{\left(1-t^{\frac{m}{r}}\right)^{d+1}}
$$

where $\mathrm{rh}^{*}(\mathrm{P} ; t)$ is a polynomial in $\mathbb{Z}\left[t^{\frac{1}{r}}\right]$ with nonnegative coefficients.

Proof:

$\operatorname{REhr}(\mathrm{P} ; t)=1+\sum_{n \in \mathbb{Z}_{>0}} \operatorname{rehr}\left(\mathrm{P} ; \frac{n}{r}\right) t^{\frac{n}{r}}$

$$
=1+\sum_{n \in \mathbb{Z}>0} \operatorname{ehr}\left(\frac{1}{r} P ; n\right)\left(t^{\frac{1}{r}}\right)^{n}=\frac{\mathrm{h}^{*}\left(\frac{1}{r} \mathrm{P} ; t^{\frac{1}{r}}\right)}{\left(1-t^{\frac{m}{r}}\right)^{d+1}}
$$

Example (continued)

Recall:

$$
\begin{aligned}
& \operatorname{RREhr}(\mathrm{P}, t)=\frac{\operatorname{rrh}_{m}^{*}(\mathrm{P} ; t)}{\left(1-t^{\frac{m}{2 r}}\right)^{d+1}} . \\
& P_{2}=[1,2] \\
& r=2 \\
& \frac{1}{4} \mathrm{P}_{2}=\left[\frac{1}{4}, \frac{1}{2}\right] \\
& m=4 \\
& \text { so } \frac{m}{2 r}=1 \\
& \operatorname{RREhr}\left(\mathrm{P}_{2} ; t\right)=\frac{1+t^{\frac{1}{2}}+t^{\frac{3}{4}}+t^{\frac{5}{4}}}{(1-t)^{2}}
\end{aligned}
$$

Example (continued)

Recall:

$$
\operatorname{RREhr}(\mathrm{P}, t)=\frac{\operatorname{rrh}_{m}^{*}(\mathrm{P} ; t)}{\left(1-t^{\frac{m}{2 r}}\right)^{d+1}}
$$

$$
\begin{aligned}
& \mathrm{P}_{2}=[1,2] \\
& r=2 \\
& \frac{1}{4} \mathrm{P}_{2}=\left[\frac{1}{4}, \frac{1}{2}\right] \\
& m=4 \\
& \text { so } \frac{m}{2 r}=1
\end{aligned}
$$

$$
\operatorname{RREhr}\left(\mathrm{P}_{2} ; t\right)=\frac{1+t^{\frac{1}{2}}+t^{\frac{3}{4}}+t^{\frac{5}{4}}}{(1-t)^{2}}
$$

Corollaries

Recall Theorem

P rational, codenominator $r, m \in \mathbb{Z}_{>0}$ s. t. $\frac{m}{r} \mathrm{P}$ is lattice

$$
\operatorname{REhr}(\mathrm{P} ; t)=\frac{\operatorname{rh}_{m}^{*}(\mathrm{P} ; t)}{\left(1-t^{\frac{m}{r}}\right)^{d+1}}, \quad \operatorname{rh}_{m}^{*}(\mathrm{P} ; t) \in \mathbb{Z}_{\geq 0}\left[t^{\frac{1}{r}}\right]
$$

Corollaries
(1) Period (Linke 2011): $\operatorname{rehr}(P ; \lambda)$ is a quasipolynomial with period $\frac{j}{r}$ where $j \mid m$.
(2) Reciprocity (Linke 2011): $(-1)^{d} \operatorname{rehr}(P ;-\lambda)=\left|\lambda P^{\circ} \cap \mathbb{Z}^{d}\right|$
(3) If $\frac{m}{r} \in \mathbb{Z}$ we can retrieve the h^{*}-polynomial from rh_{m}^{*} by extracting the terms with integer powers.
$\operatorname{RREhr}\left(\mathrm{P}_{2} ; t\right)=\frac{1+t^{\frac{1}{2}}+t^{\frac{3}{4}}+t^{\frac{5}{4}}}{(1-t)^{2}} \quad \rightarrow \quad \operatorname{Ehr}\left(\mathrm{P}_{2} ; t\right)=\frac{1}{(1-t)^{2}}$

Gorenstein polytopes

$C \subset \mathbb{R}^{d+1}$ a pointed, rational, $(d+1)$ cone is called a Gorenstein cone if there is a Gorenstein point $(g, \mathbf{y}) \in$ \mathbb{Z}^{d+1} s.t.

$$
\mathrm{C}^{\circ} \cap \mathbb{Z}^{d+1}=((g, \mathbf{y})+\mathrm{C}) \cap \mathbb{Z}^{d+1}
$$

A lattice polytope $P \subset \mathbb{R}^{d}$ is called a Gorenstein polytope if hom (P) is a Gorenstein cone.

Gorenstein polytopes

$C \subset \mathbb{R}^{d+1}$ a pointed, rational, $(d+1)$ cone is called a Gorenstein cone if there is a Gorenstein point $(g, \mathbf{y}) \in$ \mathbb{Z}^{d+1} s.t.

$$
\mathrm{C}^{\circ} \cap \mathbb{Z}^{d+1}=((g, \mathbf{y})+\mathrm{C}) \cap \mathbb{Z}^{d+1}
$$

A lattice polytope $P \subset \mathbb{R}^{d}$ is called a Gorenstein polytope if hom (P) is a Gorenstein cone.

Nice properties, e.g.,

- $g P$ has unique interior lattice point, for some $g \in \mathbb{Z}_{>0}$
- palindromic h^{*}-polynomial

Rational Gorenstein

A rational polytope $\mathrm{P} \subset \mathbb{R}^{d}$ is called γ-rational Gorenstein if hom $\left(\frac{1}{\gamma} \mathrm{P}\right)$ is a Gorenstein cone.

A lattice polytope P is Gorenstein \Leftrightarrow it is 1-rational Gorenstein.

$$
\begin{aligned}
& \mathrm{P}_{2}=[1,2], r=2, \\
& \frac{1}{4} \mathrm{P}_{2}=\left[\frac{1}{4}, \frac{1}{2}\right], m=4, \\
& \text { so } \frac{m}{2 r}=1
\end{aligned}
$$

$\operatorname{RREhr}\left(\mathrm{P}_{2} ; t\right)=\frac{1+t^{\frac{1}{2}}+t^{\frac{3}{4}}+t^{\frac{5}{4}}}{(1-t)^{2}}$
P_{2} is $2 r$-rational Gorenstein.

Rational Gorenstein Polytopes

Theorem

Let P be a rational d-polytope with codenominator $r=\operatorname{lcm}(\mathbf{b})$,
$\mathbf{0} \in \mathrm{P}$, as above. Then the following are equivalent:
(1) P is r-rational Gorenstein with $(g, \mathbf{y}) \in$ hom $\left(\frac{1}{r} \mathrm{P}\right)$.
(2) there exists a (necessarily unique) integer solution (g, y) to

$$
\begin{aligned}
-\mathbf{a}_{j} \mathbf{y} & =1 \quad \text { for } j=1, \ldots, i \\
b_{j} g-r \mathbf{a}_{j} \mathbf{y} & =b_{j} \quad \text { for } j=i+1, \ldots, n
\end{aligned}
$$

(3) $\mathrm{rh}^{*}(\mathrm{P} ; t)$ is palindromic:

$$
t^{(d+1) \frac{m}{r}-\frac{k}{r}} \mathrm{rh}_{m}^{*}\left(\mathrm{P} ; \frac{1}{t}\right)=\mathrm{rh}_{m}^{*}(\mathrm{P} ; t)
$$

(4) $(-1)^{d+1} t^{\frac{g}{r}} \operatorname{REhr}(\mathrm{P} ; t)=\operatorname{REhr}\left(\mathrm{P} ; \frac{1}{t}\right)$.
(5) rehr $\left(P ; \frac{n}{r}\right)=\operatorname{rehr}\left(P ; \frac{n+g}{r}\right)$ for all $n \in \mathbb{Z}_{\geq 0}$.
(6) hom $\left(\frac{1}{r} P\right)^{\vee}$ is the cone over a lattice polytope.

Rational Gorenstein Polytopes

Theorem

Let P be a rational d-polytope with codenominator $r=\operatorname{Icm}(\mathbf{b})$, as above. Then the following are equivalent:
(1) P is $2 r$-rational Gorenstein with $(g, y) \in$ hom $\left(\frac{1}{2 r} \mathrm{P}\right)$.
(2) there exists a (necessarily unique) integer solution (g, y) to

$$
\begin{aligned}
-\mathbf{a}_{j} \mathbf{y} & =1 \quad \text { for } j=1, \ldots, i \\
\left|b_{j}\right| g-2 r \mathbf{a}_{j} \mathbf{y} & =\left|b_{j}\right| \quad \text { for } j=i+1, \ldots, n
\end{aligned}
$$

(3) $\mathrm{rrh}^{*}(\mathrm{P} ; t)$ is palindromic:

$$
t^{(d+1) \frac{m}{2 r}-\frac{k}{2 r}} \operatorname{rrh}_{m}^{*}\left(\mathrm{P} ; \frac{1}{t}\right)=\operatorname{rrh}_{m}^{*}(\mathrm{P} ; t)
$$

(4) $(-1)^{d+1} t^{\frac{g}{2 r}} \operatorname{RREhr}(\mathrm{P} ; t)=\operatorname{RREhr}\left(\mathrm{P} ; \frac{1}{t}\right)$.
(5) $\operatorname{rehr}\left(P ; \frac{n}{2 r}\right)=\operatorname{rehr}\left(P ; \frac{n+g}{2 r}\right)$ for all $n \in \mathbb{Z}_{\geq 0}$.
(6) hom $\left(\frac{1}{2 r} P\right)^{\vee}$ is the cone over a lattice polytope.

This can be generalized to ℓr-rational Gorenstein for $\ell \in \mathbb{Z}_{>0}$.

More Examples

- $\mathrm{P}_{1}:=\left[-1, \frac{2}{3}\right]$ Compute: $r=2, m=6$

$$
\begin{aligned}
\mathrm{rh}_{6}^{*}\left(\mathrm{P}_{1} ; t\right)= & 1+t^{\frac{1}{2}}+2 t+3 t^{\frac{3}{2}}+4 t^{2}+4 t^{\frac{5}{2}} \\
& +4 t^{3}+4 t^{\frac{7}{2}}+3 t^{4}+2 t^{\frac{9}{2}}+t^{5}+t^{\frac{11}{2}}
\end{aligned}
$$

If $\mathbf{0} \in \mathrm{P}^{\circ}$, then $(1,0, \ldots, 0)$ is Gorenstein point in hom $\left(\frac{1}{r} \mathrm{P}\right)$.

More Examples

- $\mathrm{P}_{1}:=\left[-1, \frac{2}{3}\right]$ Compute: $r=2, m=6$

$$
\begin{aligned}
\mathrm{rh}_{6}^{*}\left(\mathrm{P}_{1} ; t\right)= & 1+t^{\frac{1}{2}}+2 t+3 t^{\frac{3}{2}}+4 t^{2}+4 t^{\frac{5}{2}} \\
& +4 t^{3}+4 t^{\frac{7}{2}}+3 t^{4}+2 t^{\frac{9}{2}}+t^{5}+t^{\frac{11}{2}}
\end{aligned}
$$

If $\mathbf{0} \in \mathrm{P}^{\circ}$, then $(1,0, \ldots, 0)$ is Gorenstein point in hom $\left(\frac{1}{r} \mathrm{P}\right)$.

- $\triangle=\operatorname{conv}\{(0,0),(2,0),(0,2)\}$ is 2-rational Gorenstein

$$
\begin{gathered}
\operatorname{REhr}(\triangle, t)=\frac{1+3 t^{\frac{1}{2}}+3 t+t^{\frac{3}{2}}}{(1-t)^{3}} \\
\mathrm{~h}^{*}(\triangle, t)=1+3 t
\end{gathered}
$$

More Examples

- $\mathrm{P}_{1}:=\left[-1, \frac{2}{3}\right]$ Compute: $r=2, m=6$

$$
\begin{aligned}
\mathrm{rh}_{6}^{*}\left(\mathrm{P}_{1} ; t\right)= & 1+t^{\frac{1}{2}}+2 t+3 t^{\frac{3}{2}}+4 t^{2}+4 t^{\frac{5}{2}} \\
& +4 t^{3}+4 t^{\frac{7}{2}}+3 t^{4}+2 t^{\frac{9}{2}}+t^{5}+t^{\frac{11}{2}}
\end{aligned}
$$

If $\mathbf{0} \in \mathrm{P}^{\circ}$, then $(1,0, \ldots, 0)$ is Gorenstein point in hom $\left(\frac{1}{r} \mathrm{P}\right)$.

- $\triangle=\operatorname{conv}\{(0,0),(2,0),(0,2)\}$ is 2-rational Gorenstein

$$
\begin{gathered}
\operatorname{REhr}(\triangle, t)=\frac{1+3 t^{\frac{1}{2}}+3 t+t^{\frac{3}{2}}}{(1-t)^{3}} \\
\mathrm{~h}^{*}(\triangle, t)=1+3 t
\end{gathered}
$$

More Examples

- $\mathrm{P}_{1}:=\left[-1, \frac{2}{3}\right]$ Compute: $r=2, m=6$

$$
\begin{aligned}
\mathrm{rh}_{6}^{*}\left(\mathrm{P}_{1} ; t\right)= & 1+t^{\frac{1}{2}}+2 t+3 t^{\frac{3}{2}}+4 t^{2}+4 t^{\frac{5}{2}} \\
& +4 t^{3}+4 t^{\frac{7}{2}}+3 t^{4}+2 t^{\frac{9}{2}}+t^{5}+t^{\frac{11}{2}}
\end{aligned}
$$

If $\mathbf{0} \in \mathrm{P}^{\circ}$, then $(1,0, \ldots, 0)$ is Gorenstein point in hom $\left(\frac{1}{r} \mathrm{P}\right)$.

- $\triangle=\operatorname{conv}\{(0,0),(2,0),(0,2)\}$ is 2-rational Gorenstein
- $\nabla=\operatorname{conv}\{(0,0),(0,2),(5,2)\}$ is not rational Gorenstein

Thanks to Esme Bajo for suggesting this example.

$$
\mathrm{rh}_{2}^{*}(\nabla ; t)=1+4 t^{\frac{1}{2}}+7 t+6 t^{\frac{3}{2}}+2 t^{2}
$$

Outlook

- What is a reasonable definition of "reflexive" in the rational setting?
- Connections to the Fine (1983) interior of a lattice polytope (Batyrev 2017, Batyrev-Kasprzyk-Schaller 2022)?
- Any other Ehrhart-theoretic question...

Outlook

- What is a reasonable definition of "reflexive" in the rational setting?
- Connections to the Fine (1983) interior of a lattice polytope (Batyrev 2017, Batyrev-Kasprzyk-Schaller 2022)?
- Any other Ehrhart-theoretic question...

Thank you for your attention!

Period collapse

Recall: The period p of (rational) Ehrhart quasipolynomial divides the denominator k of P.

Period collapse: if period p is strictly smaller than k (or equals 1).

Period collapse

Recall: The period p of (rational) Ehrhart quasipolynomial divides the denominator k of P.

Period collapse: if period p is strictly smaller than k (or equals 1).
More examples:
(1) $\Delta_{3}=\operatorname{conv}\left\{(0,0),\left(1, \frac{2}{3}\right),(3,0)\right\}$
\rightarrow integral period collapse but no rational period collapse
(2) $\operatorname{conv}\left\{(0,0,0),\left(\frac{1}{2}, 0,0\right),\left(0, \frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)\right\}$

Fernandes, de Pina, Ramırez Alfonsin, and Robins, On the period collapse of a family of Ehrhart quasi-polynomials, 2021, Preprint (arXiv:2104.11025).
\rightarrow integral period collapse and rational period collapse
(3) $\left[-1, \frac{2}{3}\right]$
\rightarrow no integral period collapse but rational period collapse
(4) $\left[0, \frac{1}{2}\right]$
\rightarrow no integral period collapse, no rational period collapse

