Cyclic Descent Extensions and Higher Lie Characters

Ron Adin (Bar-llan), Pál Hegedüs (Renyi Inst.), Yuval Roichman (Bar-llan)

FPSAC 22, IISC Bangalore, July 2022

Descents and cyclic descents of permutations

Descents and cyclic descents of permutations

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group \mathfrak{S}_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq\{1,2, \ldots, n-1\} .
$$

Descents and cyclic descents of permutations

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group \mathfrak{S}_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq\{1,2, \ldots, n-1\} .
$$

The cyclic descent set is defined, with the convention $\pi_{n+1}:=\pi_{1}$, by

$$
\operatorname{cDes}(\pi):=\left\{1 \leq i \leq n: \pi_{i}>\pi_{i+1}\right\} \subseteq\{1,2, \ldots, n-1, n\}
$$

with the convention $\pi_{n+1}:=\pi_{1}$.

Descents and cyclic descents of permutations

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group \mathfrak{S}_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq\{1,2, \ldots, n-1\} .
$$

The cyclic descent set is defined, with the convention $\pi_{n+1}:=\pi_{1}$, by

$$
\operatorname{cDes}(\pi):=\left\{1 \leq i \leq n: \pi_{i}>\pi_{i+1}\right\} \subseteq\{1,2, \ldots, n-1, n\}
$$

with the convention $\pi_{n+1}:=\pi_{1}$.
Introduced by Klyachko ['74] and Cellini ['95, '98].

Descents and cyclic descents of permutations

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group \mathfrak{S}_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq\{1,2, \ldots, n-1\}
$$

The cyclic descent set is defined, with the convention $\pi_{n+1}:=\pi_{1}$, by

$$
\operatorname{cDes}(\pi):=\left\{1 \leq i \leq n: \pi_{i}>\pi_{i+1}\right\} \subseteq\{1,2, \ldots, n-1, n\}
$$

with the convention $\pi_{n+1}:=\pi_{1}$.
Introduced by Klyachko ['74] and Cellini ['95, '98].
Further studied by Fulman ['00], Petersen ['05, '07], Dilks-Petersen-Stembridge ['09], Rhoades ['10],
Visontai-Williams ['13], Zhang ['14], Pechenik ['14], Aguiar-Petersen ['15], Elizalde-R ['17], Ahlbach-Swanson ['18],
Bloom-Elizalde-R ['20], Adin-Reiner-R ['20], Huang ['20], Bloom-Elizalde-R ['20], Zakeri ['21],
Adin-Gessel-Reiner-R ['21], Khachatryan ['22] and others

Descents and cyclic descents of SYT

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\} .
$$

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\} .
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline 1 & 2 & 4 \\
\hline 3 & 6 & \\
\hline 5 & &
\end{array} \in \operatorname{SYT}((3,2,1))
$$

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\} .
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline 1 & 2 & 4 \\
\hline 3 & 6 & \\
\hline 5 & &
\end{array} \in \operatorname{SYT}((3,2,1))
$$

$$
\operatorname{Des}(T)=\{2,4\}
$$

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\} .
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline 1 & 2 & 4 \\
\hline 3 & 6 & \\
\hline 5 & &
\end{array} \in \operatorname{SYT}((3,2,1))
$$

$$
\operatorname{Des}(T)=\{2,4\}
$$

Problem 1:

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\} .
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline 1 & 2 & 4 \\
\hline 3 & 6 & \\
\hline 5 & &
\end{array} \in \operatorname{SYT}((3,2,1))
$$

$$
\operatorname{Des}(T)=\{2,4\}
$$

Problem 1:
Define a cyclic descent set for SYT of any shape λ.

Cyclic descents of permutations

Example

$$
15423 \longrightarrow 31542 \longrightarrow 23154 \longrightarrow 42315 \longrightarrow 54231
$$

Cyclic descents of permutations

Example

$$
15423 \longrightarrow 31542 \longrightarrow 23154 \longrightarrow 42315 \longrightarrow 54231
$$

Des $=\{2,3\}$
$\{1,3,4\}$
$\{2,4\}$
$\{1,3\}$
$\{1,2,4\}$

Cyclic descents of permutations

Example

$$
15423 \longrightarrow 31542 \longrightarrow 23154 \longrightarrow 42315 \longrightarrow 54231
$$

$$
\begin{array}{lllll}
\text { Des }=\{2,3\} & \{1,3,4\} & \{2,4\} & \{1,3\} & \{1,2,4\} \\
\text { cDes }=\{2,3,5\} & \{3,4,1\} & \{4,5,2\} & \{5,1,3\} & \{1,2,4\}
\end{array}
$$

Cyclic descents of permutations

Example

$$
15423 \longrightarrow 31542 \longrightarrow 23154 \longrightarrow 42315 \longrightarrow 54231
$$

Des $=\{2,3\}$
$\{1,3,4\}$
$\{2,4\}$
$\{1,3\}$
$\{1,2,4\}$
$\mathrm{cDes}=\{2,3,5\}$
$\{3,4,1\}$
$\{4,5,2\}$
$\{5,1,3\}$
$\{1,2,4\}$
Observation The cyclic descent map cDes: $S_{n} \rightarrow 2^{[n]}$ satisfies: for all $\pi \in S_{n}$:

$$
\operatorname{cDes}(\pi) \cap[n-1]=\operatorname{Des}(\pi)
$$

Cyclic descents of permutations

Example

$$
15423 \longrightarrow 31542 \longrightarrow 23154 \longrightarrow 42315 \longrightarrow 54231
$$

Des $=\{2,3\}$
$\{1,3,4\}$
$\{2,4\}$
$\{1,3\}$
$\{1,2,4\}$
cDes $=\{2,3,5\}$
$\{3,4,1\}$
$\{4,5,2\}$
$\{5,1,3\}$
$\{1,2,4\}$
Observation The cyclic descent map cDes: $S_{n} \rightarrow 2^{[n]}$ satisfies: for all $\pi \in S_{n}$:

$$
\begin{aligned}
\mathrm{cDes}(\pi) \cap[n-1] & =\operatorname{Des}(\pi) \\
\mathrm{cDes}(p(\pi)) & =\operatorname{cDes}(\pi)+1(\bmod n)
\end{aligned}
$$

where the rotation $p\left(\left[\pi_{1}, \ldots, \pi_{n}\right]\right):=\left[\pi_{n}, \pi_{1}, \ldots, \pi_{n-1}\right]$.

SYT of rectangular shapes

SYT of rectangular shapes

SYT of rectangular shapes

Theorem (Rhoades '10)
For $r \mid n$, let $\lambda=\left(r^{n / r}\right)=(r, \ldots, r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes: $\operatorname{SYT}(\lambda) \rightarrow 2^{[n]}$ s.t. for all $T \in \operatorname{SYT}(\lambda)$:

$$
\operatorname{cDes}(T) \cap[n-1]=\operatorname{Des}(T)
$$

SYT of rectangular shapes

Theorem (Rhoades '10)
For $r \mid n$, let $\lambda=\left(r^{n / r}\right)=(r, \ldots, r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes: $\operatorname{SYT}(\lambda) \rightarrow 2^{[n]}$ s.t. for all $T \in \operatorname{SYT}(\lambda)$:

$$
\begin{aligned}
\operatorname{cDes}(T) \cap[n-1] & =\operatorname{Des}(T) \\
\operatorname{cDes}(p(T)) & =\operatorname{cDes}(T))+1(\bmod n)
\end{aligned}
$$

where p is Schützenberger's jeu-de-taquin promotion operator.

SYT of rectangular shapes

Example $\lambda=(3,3) \vdash 6$.

SYT of rectangular shapes

Example $\lambda=(3,3) \vdash 6$.
Jeu-de-taquin promotion:

SYT of rectangular shapes

Example $\lambda=(3,3) \vdash 6$.
Jeu-de-taquin promotion:

1	3	4				
2	5	6	\rightarrow	1	3	4
:---	:---	:---				
2	5		\rightarrow	1	3	4
:---	:---	:---				
2		5	\rightarrow	1		4
:---	:---	:---				
2	3	5	\rightarrow		1	4
:---	:---	:---				
2	3	5	\rightarrow	1	2	5
:---	:---	:---				
3	4	6				

SYT of rectangular shapes

Example $\lambda=(3,3) \vdash 6$.
Jeu-de-taquin promotion:

$$
\begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & 6 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & & 5 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & & 4 \\
\hline 2 & 3 & 5 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline & 1 & 4 \\
\hline 2 & 3 & 5 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & 6 \\
\hline
\end{array}
$$

The orbits of p on SYT (λ) :

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & 6 \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & 6 \\
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 4 & 6 \\
\hline 1 & 1 & 2 & 4 \\
\hline 3 & 5 & 6 \\
\hline
\end{array}
$$

SYT of rectangular shapes

Example $\lambda=(3,3) \vdash 6$.
Jeu-de-taquin promotion:

$$
\begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & 6 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & & 5 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & & 4 \\
\hline 2 & 3 & 5 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline & 1 & 4 \\
\hline 2 & 3 & 5 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & 6 \\
\hline
\end{array}
$$

The orbits of p on SYT (λ) :

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & 6 \\
\hline
\end{array} \\
& \{1,4\} \\
& \{2,5\} \\
& \{3,6\} \\
& \{1,3,5\} \quad\{2,4,6\}
\end{aligned}
$$

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman)
Given a set \mathcal{T} and map Des: $\mathcal{T} \rightarrow 2^{[n-1]}$,

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman)
Given a set \mathcal{T} and map Des: $\mathcal{T} \rightarrow 2^{[n-1]}$, a cyclic extension of Des

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman)
Given a set \mathcal{T} and map Des: $\mathcal{T} \rightarrow 2^{[n-1]}$, a cyclic extension of Des is a pair of a map

$$
\mathrm{cDes}: \mathcal{T} \longrightarrow 2^{[n]}
$$

and a bijection

$$
p: \mathcal{T} \longrightarrow \mathcal{T}
$$

satisfying the following axioms:

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman)
Given a set \mathcal{T} and map Des: $\mathcal{T} \rightarrow 2^{[n-1]}$, a cyclic extension of Des is a pair of a map

$$
\mathrm{cDes}: \mathcal{T} \longrightarrow 2^{[n]}
$$

and a bijection

$$
p: \mathcal{T} \longrightarrow \mathcal{T}
$$

satisfying the following axioms:
for all T in \mathcal{T},

$$
\begin{aligned}
\text { (extension) } & \mathrm{cDes}(T) \cap[n-1]=\operatorname{Des}(T) \\
\text { (equivariance) } & \mathrm{cDes}(p(T))=1+\mathrm{cDes}(T) \quad(\bmod n)
\end{aligned}
$$

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman)
Given a set \mathcal{T} and map Des: $\mathcal{T} \rightarrow 2^{[n-1]}$, a cyclic extension of Des is a pair of a map

$$
\mathrm{cDes}: \mathcal{T} \longrightarrow 2^{[n]}
$$

and a bijection

$$
p: \mathcal{T} \longrightarrow \mathcal{T}
$$

satisfying the following axioms:
for all T in \mathcal{T},

$$
\begin{aligned}
\text { (extension) } & \mathrm{cDes}(T) \cap[n-1]=\operatorname{Des}(T), \\
\text { (equivariance) } & \mathrm{cDes}(p(T))=1+\mathrm{cDes}(T) \quad(\bmod n), \\
\text { (non-Escher) } & \varnothing \subsetneq \mathrm{cDes}(T) \subsetneq[n] .
\end{aligned}
$$

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman)
Given a set \mathcal{T} and map Des: $\mathcal{T} \rightarrow 2^{[n-1]}$, a cyclic extension of Des is a pair of a map

$$
\mathrm{cDes}: \mathcal{T} \longrightarrow 2^{[n]}
$$

and a bijection

$$
p: \mathcal{T} \longrightarrow \mathcal{T}
$$

satisfying the following axioms:
for all T in \mathcal{T},

$$
\begin{aligned}
\text { (extension) } & \mathrm{cDes}(T) \cap[n-1]=\operatorname{Des}(T), \\
\text { (equivariance) } & \mathrm{cDes}(p(T))=1+\mathrm{cDes}(T) \quad(\bmod n), \\
\text { (non-Escher) } & \varnothing \subsetneq \mathrm{cDes}(T) \subsetneq[n] .
\end{aligned}
$$

Examples

- $\mathcal{T}=S_{n}$, cDes $=$ Cellini's cyclic descent set, and $p=$ cyclic rotation.
- $\mathcal{T}=\operatorname{SYT}\left(r^{n / r}\right)$, cDes $=$ Rhoades' cyclic descent set, and $p=$ promotion.

A non-Escher property

"Ascending and Descending", M. C. Escher

A non-Escher property

"Ascending and Descending", M. C. Escher The paradox of $\mathrm{cDes}(\pi)=\varnothing$ and $\mathrm{cDes}(\pi)=[n]$.

Hook partitions have at most one part of size >1.

Hook partitions have at most one part of size >1. Example

Hook partitions have at most one part of size >1.
Example

Theorem (Adin-Reiner-R '18)
The set $\operatorname{SYT}(\lambda)$ has a cyclic descent extension $\Longleftrightarrow \lambda$ is non-hook.

Hook partitions have at most one part of size >1.
Example

Theorem (Adin-Reiner-R '18)
The set $\operatorname{SYT}(\lambda)$ has a cyclic descent extension $\Longleftrightarrow \lambda$ is non-hook.

- Proof is algebraic (involves Postnikov's toric Schur functions and Gromov-Witten invariants).

Hook partitions have at most one part of size >1.
Example

Theorem (Adin-Reiner-R '18)
The set $\operatorname{SYT}(\lambda)$ has a cyclic descent extension $\Longleftrightarrow \lambda$ is non-hook.

- Proof is algebraic (involves Postnikov's toric Schur functions and Gromov-Witten invariants).
- A constructive combinatorial proof was given by Brice Huang.

Significance of CDE

Significance of CDE

- Combinatorial: Enumeration, twisted promotion.

Significance of CDE

- Combinatorial: Enumeration, twisted promotion.
- Algebraic: Cyclic descent algebras, cyclic QSF, Postnikov's toric Schur functions, higher Lie characters.

Significance of CDE

- Combinatorial: Enumeration, twisted promotion.
- Algebraic: Cyclic descent algebras, cyclic QSF, Postnikov's toric Schur functions, higher Lie characters.
- Geometric: Steinberg torus, Gromov-Witten invariants.

Cyclic descent extension on conjugacy classes

Let $\mathcal{C}_{\mu} \subseteq S_{n}$ be a conjugacy class of cycle type μ.
Problem:
Which conjugacy classes $\mathcal{C}_{\mu} \subset S_{n}$ carry a CDE ?

Cyclic descent extension on conjugacy classes

Let $\mathcal{C}_{\mu} \subseteq S_{n}$ be a conjugacy class of cycle type μ.
Problem:

Which conjugacy classes $\mathcal{C}_{\mu} \subset S_{n}$ carry a CDE ?

Example

Consider the conjugacy class of 4-cycles in S_{4}

$$
\mathcal{C}_{(4)}=\{2341,4123,4312,3421,2413,3142\}
$$

Cyclic descent extension on conjugacy classes

Let $\mathcal{C}_{\mu} \subseteq S_{n}$ be a conjugacy class of cycle type μ.
Problem:

Which conjugacy classes $\mathcal{C}_{\mu} \subset S_{n}$ carry a CDE ?

Example

Consider the conjugacy class of 4-cycles in S_{4}

$$
\mathcal{C}_{(4)}=\{2341,4123,4312,3421,2413,3142\}
$$

Cellini's cDes sets are $\{3\},\{1\},\{1,2\},\{2,3\},\{2,4\},\{1,3\}$

Cyclic descent extension on conjugacy classes

Let $\mathcal{C}_{\mu} \subseteq S_{n}$ be a conjugacy class of cycle type μ.
Problem:

Which conjugacy classes $\mathcal{C}_{\mu} \subset S_{n}$ carry a CDE ?

Example

Consider the conjugacy class of 4 -cycles in S_{4}

$$
\mathcal{C}_{(4)}=\{2341,4123,4312,3421,2413,3142\} .
$$

Cellini's cDes sets are $\{3\},\{1\},\{1,2\},\{2,3\},\{2,4\},\{1,3\}$ Not a CDE

Cyclic descent extension on conjugacy classes

Let $\mathcal{C}_{\mu} \subseteq S_{n}$ be a conjugacy class of cycle type μ.
Problem:

Which conjugacy classes $\mathcal{C}_{\mu} \subset S_{n}$ carry a CDE ?

Example

Consider the conjugacy class of 4 -cycles in S_{4}

$$
\mathcal{C}_{(4)}=\{2341,4123,4312,3421,2413,3142\} .
$$

Cellini's cDes sets are $\{3\},\{1\},\{1,2\},\{2,3\},\{2,4\},\{1,3\}$ Not a CDE (not closed under cyclic rotation).

Cyclic descent extension on conjugacy classes

Let $\mathcal{C}_{\mu} \subseteq S_{n}$ be a conjugacy class of cycle type μ.
Problem:

Which conjugacy classes $\mathcal{C}_{\mu} \subset S_{n}$ carry a CDE ?

Example

Consider the conjugacy class of 4-cycles in S_{4}

$$
\mathcal{C}_{(4)}=\{2341,4123,4312,3421,2413,3142\}
$$

Cellini's cDes sets are $\{3\},\{1\},\{1,2\},\{2,3\},\{2,4\},\{1,3\}$ Not a CDE (not closed under cyclic rotation). Letting $\operatorname{cDes}(2341)=\{3,4\}, \operatorname{cDes}(4123)=\{4,1\}, \operatorname{cDes}(4312)=\{1,2\}$, $\operatorname{cDes}(3421)=\{2,3\}, \operatorname{cDes}(2413)=\{2,4\}, \operatorname{cDes}(3142)=\{1,3\}$, determines a CDE.

Main Result
 Cyclic descent extension on conjugacy classes

Main Result
 Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegedüs-R '20)
Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ.
The following are equivalent:
(i) The descent map Des on \mathcal{C}_{μ} has a cyclic extension (CDE).

Main Result
 Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegedüs-R '20)
Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ.
The following are equivalent:
(i) The descent map Des on \mathcal{C}_{μ} has a cyclic extension (CDE).
(ii) μ is not of the form $\left(r^{s}\right)$ for some square-free r.

Main Result
 Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegedüs-R '20)
Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ.
The following are equivalent:
(i) The descent map Des on \mathcal{C}_{μ} has a cyclic extension (CDE).
(ii) μ is not of the form $\left(r^{s}\right)$ for some square-free r.

The proof is algebraic (involves higher Lie characters).

Main Result
 Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegedüs-R '20)
Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ.
The following are equivalent:
(i) The descent map Des on \mathcal{C}_{μ} has a cyclic extension (CDE).
(ii) μ is not of the form $\left(r^{s}\right)$ for some square-free r.

The proof is algebraic (involves higher Lie characters).
Problem 3:

Main Result

Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegedüs-R '20)
Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ.
The following are equivalent:
(i) The descent map Des on \mathcal{C}_{μ} has a cyclic extension (CDE).
(ii) μ is not of the form $\left(r^{s}\right)$ for some square-free r.

The proof is algebraic (involves higher Lie characters).
Problem 3:
Find a constructive combinatorial proof.

Higher Lie characters

Let

$$
\mathbf{L}_{\mu}:=\sum_{\pi \in \mathcal{C}_{\mu}} \mathcal{F}_{n, \operatorname{Des}(\pi)},
$$

where

$$
\mathcal{F}_{n, \operatorname{Des}(\pi)}:=\sum_{\substack{1 \leq i_{1} \leq \cdots \leq i_{n} \\ \pi(j)>\pi(j+1) \Longrightarrow i_{j}<i_{j+1}}} x_{i_{1}} \cdots x_{i_{n}}
$$

Gessel's fundamental quasi-symmetric function.

Higher Lie characters

Let

$$
\mathbf{L}_{\mu}:=\sum_{\pi \in \mathcal{C}_{\mu}} \mathcal{F}_{n, \operatorname{Des}(\pi)}
$$

where

$$
\mathcal{F}_{n, \operatorname{Des}(\pi)}:=\sum_{\substack{1 \leq i_{i} \leq \cdots \leq i_{n} \\ \pi(j)>\pi(j+1) \Longrightarrow i_{j}<i_{j+1}}} x_{i_{1}} \cdots x_{i_{n}}
$$

Gessel's fundamental quasi-symmetric function.
Let Z_{μ} be the centralizer of $\pi \in \mathcal{C}_{\mu}$.
There exists a 1-dim character ω^{μ} of Z_{μ} such that

$$
\operatorname{ch}\left(\omega^{\mu} \uparrow_{Z_{\mu}}^{S_{n}}\right)=\mathbf{L}_{\mu}
$$

Higher Lie characters

Let

$$
\mathbf{L}_{\mu}:=\sum_{\pi \in \mathcal{C}_{\mu}} \mathcal{F}_{n, \operatorname{Des}(\pi)},
$$

where

$$
\mathcal{F}_{n, \operatorname{Des}(\pi)}:=\sum_{\substack{1 \leq i_{i} \leq \cdots \leq i_{n} \\ \pi(j)>\pi(j+1) \Longrightarrow i_{j}<i_{j+1}}} x_{i_{1}} \cdots x_{i_{n}}
$$

Gessel's fundamental quasi-symmetric function.
Let Z_{μ} be the centralizer of $\pi \in \mathcal{C}_{\mu}$.
There exists a 1-dim character ω^{μ} of Z_{μ} such that

$$
\operatorname{ch}\left(\omega^{\mu} \uparrow_{Z_{\mu}}^{S_{n}}\right)=\mathbf{L}_{\mu}
$$

The higher Lie character indexed by $\mu \vdash n$ is

$$
\psi^{\mu}:=\omega^{\mu} \uparrow Z_{Z_{\mu}}^{S_{n}}
$$

Classical Results

Classical Results
Theorem For every $\lambda \vdash n$

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}\left\langle\mathbf{L}_{\left(2^{k}, 1^{n-2 k}\right)}, s_{\lambda}\right\rangle=
$$

Classical Results
Theorem For every $\lambda \vdash n$

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}\left\langle\mathbf{L}_{\left(2^{k}, 1^{n-2 k}\right)}, s_{\lambda}\right\rangle=1
$$

Classical Results

Theorem For every $\lambda \vdash n$

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}\left\langle\mathbf{L}_{\left(2^{k}, 1^{n-2 k}\right)}, s_{\lambda}\right\rangle=1
$$

Theorem For every $\lambda \vdash n$

$$
\sum_{\mu \vdash n}\left\langle\mathbf{L}_{\mu}, s_{\lambda}\right\rangle=
$$

Classical Results

Theorem For every $\lambda \vdash n$

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}\left\langle\mathbf{L}_{\left(2^{k}, 1^{n-2 k}\right)}, s_{\lambda}\right\rangle=1
$$

Theorem For every $\lambda \vdash n$

$$
\sum_{\mu \vdash n}\left\langle\mathbf{L}_{\mu}, s_{\lambda}\right\rangle=\# \operatorname{SYT}(\lambda) .
$$

Classical Results

Theorem For every $\lambda \vdash n$

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}\left\langle\mathbf{L}_{\left(2^{k}, 1^{n-2 k}\right)}, s_{\lambda}\right\rangle=1
$$

Theorem For every $\lambda \vdash n$

$$
\sum_{\mu \vdash n}\left\langle\mathbf{L}_{\mu}, s_{\lambda}\right\rangle=\# \operatorname{SYT}(\lambda) .
$$

Thrall's Problem ('42):
Give a closed formula / combinatorial interpretation to the inner product
$\left\langle\mathbf{L}_{\mu}, s_{\lambda}\right\rangle$.

Classical Results

Theorem For every $\lambda \vdash n$

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}\left\langle\mathbf{L}_{\left(2^{k}, 1^{n-2 k}\right)}, s_{\lambda}\right\rangle=1 .
$$

Theorem For every $\lambda \vdash n$

$$
\sum_{\mu \vdash n}\left\langle\mathbf{L}_{\mu}, s_{\lambda}\right\rangle=\# \operatorname{SYT}(\lambda) .
$$

Thrall's Problem ('42):
Give a closed formula / combinatorial interpretation to the inner product
$\left\langle\mathbf{L}_{\mu}, s_{\lambda}\right\rangle$.

KraskiewiczWeyman, DésarménienWachs, GesselReutenauer, Sundaram, Schocker, HershReiner, AhlbachSwanson..

Hook multiplicities and CDE

Hook multiplicities and CDE

A subset $\mathcal{A} \subseteq S_{n}$ is Schur-positive if the associated quasi-symmetric function

$$
\mathcal{Q}(\mathcal{A}):=\sum_{a \in \mathcal{A}} \mathcal{F}_{n, \operatorname{Des}(a)},
$$

is symmetric and Schur-positive.

Hook multiplicities and CDE

A subset $\mathcal{A} \subseteq S_{n}$ is Schur-positive if the associated quasi-symmetric function

$$
\mathcal{Q}(\mathcal{A}):=\sum_{a \in \mathcal{A}} \mathcal{F}_{n, \operatorname{Des}(a)}
$$

is symmetric and Schur-positive.

Lemma (AHR)

A Schur-positive set $\mathcal{A} \subseteq S_{n}$ has a cyclic descent extension
\Longleftrightarrow the following two conditions hold:

> (divisibility) $\begin{aligned} & \text { the polynomial } \sum_{k=0}^{n-1}\left\langle\mathcal{Q}(\mathcal{A}), s_{\left(n-k, 1^{k}\right)}\right\rangle x^{k} \\ & \text { is divisible by } 1+x ;\end{aligned}$ (non-negativity) the quotient has nonnegative coefficients.

Divisibility

Lemma

For every S_{n}-character ϕ, the hook-multiplicity generating function

$$
M_{\phi}(x):=\sum_{k=0}^{n-1}\left\langle\phi, \chi^{n-k, 1^{k}}\right\rangle x^{k}
$$

is divisible by $1+x$ if and only if the value of ϕ on an n-cycle is zero: $\phi_{(n)}=0$.

Divisibility

Lemma
For every S_{n}-character ϕ, the hook-multiplicity generating function

$$
M_{\phi}(x):=\sum_{k=0}^{n-1}\left\langle\phi, \chi^{n-k, 1^{k}}\right\rangle x^{k}
$$

is divisible by $1+x$ if and only if the value of ϕ on an n-cycle is zero: $\phi_{(n)}=0$.

Lemma
For $\lambda \vdash n$

$$
\psi_{(n)}^{\lambda}= \begin{cases}\mu(r), & \text { if } \lambda=\left(r^{s}\right) \\ 0, & \text { otherwise }\end{cases}
$$

where $\mu(r)$ is the Möbius function.

Non-negativity - the case of distinct cycle lengths

Lemma (AHR)

Let $\lambda=\left(r^{s}\right) \sqcup \nu$ be a partition of n, where ν is a partition of $n-r s$ with no part equal to r. Then

$$
M_{\lambda}(x):=\sum_{k=0}^{n-1}\left\langle\mathbf{L}_{\lambda}, s_{\left(n-k, 1^{k}\right)}\right\rangle x^{k}=(1+x) M_{\left(r^{s}\right)}(x) M_{\nu}(x)
$$

Non-negativity - the case of distinct cycle lengths

Lemma (AHR)

Let $\lambda=\left(r^{s}\right) \sqcup \nu$ be a partition of n, where ν is a partition of $n-r s$ with no part equal to r. Then

$$
M_{\lambda}(x):=\sum_{k=0}^{n-1}\left\langle\mathbf{L}_{\lambda}, s_{\left(n-k, 1^{k}\right)}\right\rangle x^{k}=(1+x) M_{\left(r^{s}\right)}(x) M_{\nu}(x) .
$$

Corollary
For conjugacy classes \mathcal{C}_{λ} with distinct cycle lengths, the hook multiplicities g.f. $M_{\lambda}(x)$ is divisible by $1+x$, and the quotient has non-negative coefficients.

Non-negativity - the n-cycle case

Denote

$$
m_{k, \lambda}:=\left\langle\mathbf{L}_{\lambda}, s_{\left(n-k, 1^{k}\right)}\right\rangle
$$

Non-negativity - the n-cycle case

Denote

$$
m_{k, \lambda}:=\left\langle\mathbf{L}_{\lambda}, s_{\left(n-k, 1^{k}\right)}\right\rangle .
$$

Lemma [Sundaram '94]

$$
m_{k-1,(n)}+m_{k,(n)}=\left\langle\mathbf{L}_{(n)}, e_{k} h_{n-k}\right\rangle=\frac{1}{n} \sum_{d \mid(n, k)} \mu(d)(-1)^{k+k / d}\binom{n / d}{k / d} .
$$

Non-negativity - the n-cycle case

Denote

$$
m_{k, \lambda}:=\left\langle\mathbf{L}_{\lambda}, s_{\left(n-k, 1^{k}\right)}\right\rangle .
$$

Lemma [Sundaram '94]

$$
m_{k-1,(n)}+m_{k,(n)}=\left\langle\mathbf{L}_{(n)}, e_{k} h_{n-k}\right\rangle=\frac{1}{n} \sum_{d \mid(n, k)} \mu(d)(-1)^{k+k / d}\binom{n / d}{k / d} .
$$

Theorem (AHR)
For every positive integer n the sequence

$$
m_{0,(n)}, m_{1,(n)}, \ldots, m_{n-1,(n)}
$$

is unimodal.

Non-negativity - the case of cycle type (r, \ldots, r)

We have to prove that for every $s \geq 1$ and square-free r

$$
\frac{M_{\left(r^{s}\right)}(x)}{1+x}:=\frac{\sum_{k}\left\langle\mathbf{L}_{\left(r^{s}\right)}, s_{\left(n-k, 1^{k}\right)}\right\rangle x^{k}}{1+x}
$$

has non-negative coefficients.

Non-negativity - the case of cycle type (r, \ldots, r)

We have to prove that for every $s \geq 1$ and square-free r

$$
\frac{M_{\left(r^{s}\right)}(x)}{1+x}:=\frac{\sum_{k}\left\langle\mathbf{L}_{\left(r^{s}\right)}, s_{\left(n-k, 1^{k}\right)}\right\rangle x^{k}}{1+x}
$$

has non-negative coefficients.
For a given $r \geq 1$ let

$$
E_{r}(x, y):=\sum_{s, k \geq 0}\left\langle\mathbf{L}_{\left(r^{s}\right)}, e_{k} h_{r^{s}-k}\right\rangle x^{k} y^{s} .
$$

Non-negativity - the case of cycle type (r, \ldots, r)

We have to prove that for every $s \geq 1$ and square-free r

$$
\frac{M_{\left(r^{s}\right)}(x)}{1+x}:=\frac{\sum_{k}\left\langle\mathbf{L}_{\left(r^{s}\right)}, s_{\left(n-k, 1^{k}\right)}\right\rangle x^{k}}{1+x}
$$

has non-negative coefficients.
For a given $r \geq 1$ let

$$
E_{r}(x, y):=\sum_{s, k \geq 0}\left\langle\mathbf{L}_{\left(r^{s}\right)}, e_{k} h_{r^{s}-k}\right\rangle x^{k} y^{s}
$$

Observation

$$
\frac{E_{r}(x, y)-1}{(1+x)^{2}}=\sum_{s \geq 1} y^{s} \frac{M_{\left(r^{s}\right)}(x)}{1+x}
$$

Lemma [Sundaram '94]

$$
f_{r, k}:=\left\langle\mathbf{L}_{(r)}, e_{k} h_{r-k}\right\rangle=\frac{1}{r} \sum_{d \mid(r, k)} \mu(d)(-1)^{k+k / d}\binom{r / d}{k / d} .
$$

Lemma [Sundaram '94]

$$
f_{r, k}:=\left\langle\mathbf{L}_{(r)}, e_{k} h_{r-k}\right\rangle=\frac{1}{r} \sum_{d \mid(r, k)} \mu(d)(-1)^{k+k / d}\binom{r / d}{k / d} .
$$

Lemma (AHR)

For every $s \geq 1$ and $k \geq 0$

$$
\left\langle\mathbf{L}_{\left(r^{s}\right)}, e_{k} h_{r^{s}-k}\right\rangle=\sum_{\gamma \in P_{r, s}(k)} \prod_{j \geq 0}(-1)^{(j+1) t_{j}(\gamma)}\binom{(-1)^{j+1} f_{r, j}}{t_{j}(\gamma)}
$$

where $P_{r, s}(k):=\left\{\lambda \vdash k: \lambda_{1} \leq r, \lambda_{1}^{\prime} \leq s\right\}$ and $t_{j}(\gamma)$ - the multiplicity of the part j in γ.

Lemma [Sundaram '94]

$$
f_{r, k}:=\left\langle\mathbf{L}_{(r)}, e_{k} h_{r-k}\right\rangle=\frac{1}{r} \sum_{d \mid(r, k)} \mu(d)(-1)^{k+k / d}\binom{r / d}{k / d} .
$$

Lemma (AHR)

For every $s \geq 1$ and $k \geq 0$

$$
\left\langle\mathbf{L}_{\left(r^{s}\right)}, e_{k} h_{r^{s}-k}\right\rangle=\sum_{\gamma \in P_{r, s}(k)} \prod_{j \geq 0}(-1)^{(j+1) t_{j}(\gamma)}\binom{(-1)^{j+1} f_{r, j}}{t_{j}(\gamma)}
$$

where $P_{r, s}(k):=\left\{\lambda \vdash k: \lambda_{1} \leq r, \lambda_{1}^{\prime} \leq s\right\}$ and $t_{j}(\gamma)$ - the multiplicity of the part j in γ.
In particular, for $s=1$ we obtain Sundaram's formula.

Lemma [Sundaram '94]

$$
f_{r, k}:=\left\langle\mathbf{L}_{(r)}, e_{k} h_{r-k}\right\rangle=\frac{1}{r} \sum_{d \mid(r, k)} \mu(d)(-1)^{k+k / d}\binom{r / d}{k / d} .
$$

Lemma (AHR)

For every $s \geq 1$ and $k \geq 0$

$$
\left\langle\mathbf{L}_{\left(r^{s}\right)}, e_{k} h_{r^{s}-k}\right\rangle=\sum_{\gamma \in P_{r, s}(k)} \prod_{j \geq 0}(-1)^{(j+1) t_{j}(\gamma)}\binom{(-1)^{j+1} f_{r, j}}{t_{j}(\gamma)}
$$

where $P_{r, s}(k):=\left\{\lambda \vdash k: \lambda_{1} \leq r, \lambda_{1}^{\prime} \leq s\right\}$ and $t_{j}(\gamma)$ - the multiplicity of the part j in γ.
In particular, for $s=1$ we obtain Sundaram's formula.
Corollary For every $r \geq 1$

$$
\sum_{k, s}\left\langle\mathbf{L}_{\left(r^{s}\right)}, e_{k} h_{r^{s}-k}\right\rangle x^{k} y^{s}=\prod_{j}\left(1-(-1)^{j} x^{j} y\right)^{(-1)^{j+1}\left\langle\mathbf{L}_{(r)}, e_{j} h_{r-j}\right\rangle}
$$

Open Problems

Problem 1:
Find an explicit combinatorial description of the cyclic descent extension (CDE) for conjugacy classes of cycle type, which is not equal to $\left(r^{s}\right)$ for some square free r.

Open Problems

Problem 1:
Find an explicit combinatorial description of the cyclic descent extension (CDE) for conjugacy classes of cycle type, which is not equal to $\left(r^{s}\right)$ for some square free r.

Conjecture 2:
For every partition $\lambda \vdash n$, the g.f.

$$
\begin{gathered}
\sum_{k=0}^{n-1}\left\langle\mathbf{L}_{\lambda}, s_{\left(n-k, 1^{k}\right)}\right\rangle x^{k} \\
\text { is unimodal. }
\end{gathered}
$$

