Cyclic Descent Extensions and Higher Lie Characters

Ron Adin (Bar-Ilan), Pál Hegedüs (Renyi Inst.), Yuval Roichman (Bar-Ilan)

FPSAC 22, IISC Bangalore, July 2022

Higher Lie characters

Proof method

Problems

Descents and cyclic descents of permutations

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq \{1, 2, \dots, n-1\}.$$

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq \{1, 2, \dots, n-1\}.$$

The cyclic descent set is defined, with the convention $\pi_{n+1} := \pi_1$, by

$$cDes(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq \{1, 2, \dots, n-1, n\},\$$

with the convention $\pi_{n+1} := \pi_1$.

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq \{1, 2, \dots, n-1\}.$$

The cyclic descent set is defined, with the convention $\pi_{n+1} := \pi_1$, by

$$cDes(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq \{1, 2, \dots, n-1, n\},\$$

with the convention $\pi_{n+1} := \pi_1$.

Introduced by Klyachko ['74] and Cellini ['95, '98].

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq \{1, 2, \dots, n-1\}.$$

The cyclic descent set is defined, with the convention $\pi_{n+1} := \pi_1$, by

$$cDes(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq \{1, 2, \dots, n-1, n\},\$$

with the convention $\pi_{n+1} := \pi_1$.

Introduced by Klyachko ['74] and Cellini ['95, '98].

Further studied by Fulman ['00], Petersen ['05, '07], Dilks-Petersen-Stembridge ['09], Rhoades ['10],
Visontai-Williams ['13], Zhang ['14], Pechenik ['14], Aguiar-Petersen ['15], Elizalde-R ['17], Ahlbach-Swanson ['18],
Bloom-Elizalde-R ['20], Adin-Reiner-R ['20], Huang ['20], Bloom-Elizalde-R ['20], Zakeri ['21],
Adin-Gessel-Reiner-R ['21], Khachatryan ['22] and others ...

Problems

Descents and cyclic descents of SYT

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \frac{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \end{array}}{ 5 } \in \mathsf{SYT}((3, 2, 1))$$

Problems

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

 $\mathsf{Des}(\mathcal{T}) := \{i: i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \end{array}}_{5} \in SYT((3, 2, 1))$$

$$Des(T) = \{2, 4\}.$$

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{vmatrix} 1 & 2 & 4 \\ 3 & 6 \\ 5 \end{vmatrix}}_{5} \in \mathsf{SYT}((3, 2, 1))$$

$$Des(T) = \{2, 4\}.$$

Problem 1:

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \end{array}}_{5} \in \mathsf{SYT}((3, 2, 1))$$

$$Des(T) = \{2, 4\}.$$

Problem 1:

Define a cyclic descent set for SYT of any shape λ .

Cyclic descents	CDE	Main result	Higher Lie characters	Proof method	Prol
	Сус	clic descen	ts of permutat	ions	
Example					

$15423 \ \longrightarrow \ 31542 \ \longrightarrow \ 23154 \ \longrightarrow \ 42315 \ \longrightarrow \ 54231$

Cyclic descents	CDE	Main result	Higher Lie characters	Proof metho	d Problem
	Cycli	c descents	of permut	ations	
Exam	ple				
	$15423 \longrightarrow$	3 1 542 →	23154 →	42315 →	54231
Des =	= {2,3}	$\{1,3,4\}$	{2,4}	{1,3}	$\{1, 2, 4\}$

Cyclic descents	CDE	Main result	Higher Lie characters	Proof metho	d Probler
	Cycli	c descents	of permut	tations	
Exam	ple				
	15423 <i>→</i>	31542 →	23154 →	42315 →	54231
Des =	= {2,3}	$\{1,3,4\}$	{2,4}	$\{1,3\}$	$\{1,2,4\}$
cDes	= {2, 3, <mark>5</mark> }	$\{3,4,1\}$	{4, <mark>5</mark> ,2}	$\{5, 1, 3\}$	$\{1,2,4\}$

Cycli	c descents	CDE	Main result	Higher Lie characters	Proof metho	d Probler
		Cycli	ic descents	of permut	tations	
	Exampl	e				
	1	15423 →	31542 →	23154 →	42315 →	54231
	Des =	{2,3}	$\{1,3,4\}$	{2,4}	{1,3}	$\{1,2,4\}$
	cDes =	$\{2, 3, {\color{red}{5}}\}$	$\{3, 4, 1\}$	$\{4, {\color{red}{5}}, 2\}$	$\{{f 5},1,3\}$	$\{1,2,4\}$
	Observation for all τ	ation The cy $\tau \in S_n$:	clic descent r	map cDes : <i>S</i> ,	$_n ightarrow 2^{[n]}$ satisf	fies:
		$cDes(\pi)$	$\cap [n-1] =$	$Des(\pi),$		

Cycli	ic descents	CDE	Main result	Higher Lie characters	Proof metho	d Probler
		Cycli	c descents	of permut	ations	
	Example					
	15	423 →	3 1 542 →	23154 →	42315 →	54231
	$Des = \{2$	2,3}	$\{1,3,4\}$	{2,4}	$\{1,3\}$	$\{1,2,4\}$
	$cDes = \{$ Observat	2, 3, 5 ion The cy $\in S_n$:	{3,4,1}	{4, 5, 2} nap cDes : <i>S</i> r	$\{ {f 5},1,3 \}$ ${f o} o 2^{[n]}$ satisf	$\{1, 2, 4\}$ fies:
		$cDes(\pi)$	$\cap [n-1] = $ Des $(p(\pi)) =$	$Des(\pi), \\ cDes(\pi) +$	1 (mod <i>n</i>)	

where the rotation $p([\pi_1, \ldots, \pi_n]) := [\pi_n, \pi_1, \ldots, \pi_{n-1}].$

|--|--|

Main result

Higher Lie characters

Proof method

Problems

SYT of rectangular shapes

~		
()/C		te
CYC		
~		

Main result

Higher Lie character:

Proo

Proof method

Problems

SYT of rectangular shapes

Theorem (Rhoades '10) For r|n, let $\lambda = (r^{n/r}) = (r, ..., r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes : $SYT(\lambda) \rightarrow 2^{[n]}$ s.t. for all $T \in SYT(\lambda)$:

$$cDes(T) \cap [n-1] = Des(T),$$

Theorem (Rhoades '10) For r|n, let $\lambda = (r^{n/r}) = (r, ..., r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes : $SYT(\lambda) \rightarrow 2^{[n]}$ s.t. for all $T \in SYT(\lambda)$:

$$cDes(T) \cap [n-1] = Des(T),$$

 $cDes(p(T)) = cDes(T)) + 1 \pmod{n}$

where p is Schützenberger's jeu-de-taquin promotion operator.

Problems

SYT of rectangular shapes

Example $\lambda = (3, 3) \vdash 6$.

Problems

SYT of rectangular shapes

Example $\lambda = (3,3) \vdash 6$.

Jeu-de-taquin promotion:

s Proof

thod

Problems

SYT of rectangular shapes

Example $\lambda = (3,3) \vdash 6$.

Jeu-de-taquin promotion:

Problems

SYT of rectangular shapes

Example $\lambda = (3,3) \vdash 6$.

Jeu-de-taquin promotion:

The orbits of p on SYT(λ):

1	3	4	1	2	5	1	2	3]	1	3	5	1	2	4
2	5	6	3	4	6	4	5	6		2	4	6	3	5	6

Problem

SYT of rectangular shapes

Example $\lambda = (3,3) \vdash 6$.

Jeu-de-taquin promotion:

The orbits of p on SYT(λ):

1 3 2 5	4 6	1 3	2 4	5 6	1 4	2 5	3 6		1 2	3 4	5 6	1 3	2 5	4 6
$\{1, 4$.}	{2	2,5	}	{3	3, <mark>6</mark>	}		$\{1$, 3,	5}	{2,	, 4,	<mark>6</mark> }

Problems

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman)

Given a set \mathcal{T} and map $\mathsf{Des}:\mathcal{T} o 2^{[n-1]}$,

Definition (A-Reiner-Roichman)

Given a set \mathcal{T} and map $\mathsf{Des}:\mathcal{T}\to 2^{[n-1]}$, a cyclic extension of Des

Definition (A-Reiner-Roichman)

Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair of a map

cDes :
$$\mathcal{T} \longrightarrow 2^{[n]}$$

and a bijection

$$p:\mathcal{T}\longrightarrow\mathcal{T}$$

satisfying the following axioms:

Definition (A-Reiner-Roichman)

Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair of a map

$${\sf cDes}:\mathcal{T}\longrightarrow 2^{[n]}$$

and a bijection

$$p:\mathcal{T}\longrightarrow\mathcal{T}$$

satisfying the following axioms: for all T in T,

(extension) $cDes(T) \cap [n-1] = Des(T)$, (equivariance) $cDes(p(T)) = 1 + cDes(T) \pmod{n}$,

Definition (A-Reiner-Roichman)

Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair of a map

$${\sf cDes}:\mathcal{T}\longrightarrow 2^{[n]}$$

and a bijection

$$p:\mathcal{T}\longrightarrow\mathcal{T}$$

satisfying the following axioms: for all T in T,

 $\begin{array}{ll} (\text{extension}) & \text{cDes}(\mathcal{T}) \cap [n-1] = \text{Des}(\mathcal{T}), \\ (\text{equivariance}) & \text{cDes}(p(\mathcal{T})) = 1 + \text{cDes}(\mathcal{T}) \pmod{n}, \\ (\text{non-Escher}) & \varnothing \subsetneq \text{cDes}(\mathcal{T}) \subsetneq [n]. \end{array}$

Definition (A-Reiner-Roichman)

Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair of a map

$${\sf cDes}:\mathcal{T}\longrightarrow 2^{[n]}$$

and a bijection

$$p:\mathcal{T}\longrightarrow\mathcal{T}$$

satisfying the following axioms: for all T in T,

(extension)
$$cDes(T) \cap [n-1] = Des(T)$$
,
equivariance) $cDes(p(T)) = 1 + cDes(T) \pmod{n}$,
(non-Escher) $\varnothing \subsetneq cDes(T) \subsetneq [n]$.

Examples

- $T = S_n$, cDes = Cellini's cyclic descent set, and p = cyclic rotation.
- \$\mathcal{T}\$ = SYT(r^{n/r}), cDes = Rhoades' cyclic descent set, and \$p\$ = promotion.

Cyclic descents

CDE

Vlain result

Higher Lie characters

Proof meth

Problems

A non-Escher property

"Ascending and Descending", M. C. Escher

Cyclic descents

CDE

Vlain result

Higher Lie characters

Proof meth

Problems

A non-Escher property

"Ascending and Descending", M. C. Escher The paradox of $cDes(\pi) = \emptyset$ and $cDes(\pi) = [n]$.

Hook partitions have at most one part of size > 1.

							E	

Hook partitions have at most one part of size > 1. Example

Hook partitions have at most one part of size > 1. Example

Theorem (Adin-Reiner-R '18)

The set SYT(λ) has a cyclic descent extension $\iff \lambda$ is non-hook.

Example

Theorem (Adin-Reiner-R '18)

The set SYT(λ) has a cyclic descent extension $\iff \lambda$ is non-hook.

 Proof is algebraic (involves Postnikov's toric Schur functions) and Gromov-Witten invariants).

Example

Theorem (Adin-Reiner-R '18)

The set SYT(λ) has a cyclic descent extension $\iff \lambda$ is non-hook.

- Proof is algebraic (involves Postnikov's toric Schur functions) and Gromov-Witten invariants).
- A constructive combinatorial proof was given by Brice Huang.

Cyclic descents	CDE	Main result	Higher Lie characters	Proof method
		Signific	ance of CDE	

• Combinatorial: Enumeration, twisted promotion.

- Combinatorial: Enumeration, twisted promotion.
- Algebraic: Cyclic descent algebras, cyclic QSF, Postnikov's toric Schur functions, higher Lie characters.

- Combinatorial: Enumeration, twisted promotion.
- Algebraic: Cyclic descent algebras, cyclic QSF, Postnikov's toric Schur functions, higher Lie characters.
- Geometric: Steinberg torus, Gromov-Witten invariants.

Problem:

Which conjugacy classes $\mathcal{C}_{\mu} \subset S_n$ carry a CDE ?

Problem:

Which conjugacy classes $\mathcal{C}_{\mu} \subset \mathcal{S}_n$ carry a CDE ?

Example

Consider the conjugacy class of 4-cycles in S_4

$$\mathcal{C}_{(4)} \quad = \quad \{2341, 4123, 4312, 3421, 2413, 3142\}.$$

Problem:

Which conjugacy classes $\mathcal{C}_{\mu} \subset S_n$ carry a CDE ?

Example

Consider the conjugacy class of 4-cycles in S_4

$$\mathcal{C}_{(4)} = \{2341, 4123, 4312, 3421, 2413, 3142\}.$$

Cellini's cDes sets are $\{3\},\{1\},\{1,2\},\{2,3\},\{2,4\},\{1,3\}$

Problem:

Which conjugacy classes $\mathcal{C}_{\mu} \subset S_n$ carry a CDE ?

Example

Consider the conjugacy class of 4-cycles in S_4

$$\mathcal{C}_{(4)} = \{2341, 4123, 4312, 3421, 2413, 3142\}.$$

Cellini's cDes sets are $\{3\},\{1\},\{1,2\},\{2,3\},\{2,4\},\{1,3\}$ Not a CDE

Problem:

Which conjugacy classes $\mathcal{C}_{\mu} \subset S_n$ carry a CDE ?

Example

Consider the conjugacy class of 4-cycles in S_4

$$\mathcal{C}_{(4)} = \{2341, 4123, 4312, 3421, 2413, 3142\}.$$

Cellini's cDes sets are $\{3\}, \{1\}, \{1,2\}, \{2,3\}, \{2,4\}, \{1,3\}$ Not a CDE (not closed under cyclic rotation).

Problem:

Which conjugacy classes $\mathcal{C}_{\mu} \subset S_n$ carry a CDE ?

Example

Consider the conjugacy class of 4-cycles in S_4

$$\mathcal{C}_{(4)} = \{2341, 4123, 4312, 3421, 2413, 3142\}.$$

Cellini's cDes sets are $\{3\}, \{1\}, \{1,2\}, \{2,3\}, \{2,4\}, \{1,3\}$ Not a CDE (not closed under cyclic rotation). Letting

$$\mathsf{cDes}(2341) = \{3,4\}, \ \mathsf{cDes}(4123) = \{4,1\}, \ \mathsf{cDes}(4312) = \{1,2\},$$

 $cDes(3421) = \{2,3\}, \ cDes(2413) = \{2,4\}, \ cDes(3142) = \{1,3\},$ determines a CDE.

Main Result

Cyclic descent extension on conjugacy classes

Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegedüs-R '20)

Let $C_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . The following are equivalent:

(i) The descent map Des on C_{μ} has a cyclic extension (CDE).

Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegedüs-R '20)

Let $C_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . The following are equivalent:

(i) The descent map Des on C_{μ} has a cyclic extension (CDE).

(ii) μ is not of the form (r^s) for some square-free r.

Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegedüs-R '20)

Let $C_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . The following are equivalent:

(i) The descent map Des on C_μ has a cyclic extension (CDE).
(ii) μ is not of the form (r^s) for some square-free r.

The proof is algebraic (involves higher Lie characters).

Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegedüs-R '20)

Let $C_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . The following are equivalent:

(i) The descent map Des on C_μ has a cyclic extension (CDE).
(ii) μ is not of the form (r^s) for some square-free r.

The proof is algebraic (involves higher Lie characters). Problem 3:

Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegedüs-R '20)

Let $C_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . The following are equivalent:

(i) The descent map Des on C_{μ} has a cyclic extension (CDE).

(ii) μ is not of the form (r^s) for some square-free r.

The proof is algebraic (involves higher Lie characters).

Problem 3:

Find a constructive combinatorial proof.

Higher Lie characters

Let

$$\mathsf{L}_{\mu} := \sum_{\pi \in \mathcal{C}_{\mu}} \mathcal{F}_{n, \mathsf{Des}(\pi)},$$

where

$$\mathcal{F}_{n,\mathsf{Des}(\pi)} := \sum_{\substack{1 \le i_1 \le \dots \le i_n \\ \pi(j) > \pi(j+1) \Longrightarrow i_j < i_{j+1}}} x_{i_1} \cdots x_{i_n}$$

Gessel's fundamental quasi-symmetric function.

Higher Lie characters

Let

$$\mathsf{L}_{\mu} := \sum_{\pi \in \mathcal{C}_{\mu}} \mathcal{F}_{n, \mathsf{Des}(\pi)},$$

where

$$\mathcal{F}_{n,\mathsf{Des}(\pi)} := \sum_{\substack{1 \le i_1 \le \dots \le i_n \\ \pi(j) > \pi(j+1) \Longrightarrow i_j < i_{j+1}}} x_{i_1} \cdots x_{i_n}$$

Gessel's fundamental quasi-symmetric function.

Let Z_{μ} be the centralizer of $\pi \in C_{\mu}$. There exists a 1-dim character ω^{μ} of Z_{μ} such that

$$\operatorname{ch}(\omega^{\mu}\uparrow^{S_n}_{Z_{\mu}})=\mathsf{L}_{\mu}.$$

Higher Lie characters

Let

$$\mathsf{L}_{\mu} := \sum_{\pi \in \mathcal{C}_{\mu}} \mathcal{F}_{n, \mathsf{Des}(\pi)},$$

where

$$\mathcal{F}_{n,\mathsf{Des}(\pi)} := \sum_{\substack{1 \le i_1 \le \dots \le i_n \\ \pi(j) > \pi(j+1) \Longrightarrow i_j < i_{j+1}}} x_{i_1} \cdots x_{i_n}$$

Gessel's fundamental quasi-symmetric function.

Let Z_{μ} be the centralizer of $\pi \in C_{\mu}$. There exists a 1-dim character ω^{μ} of Z_{μ} such that

$$\mathsf{ch}(\omega^{\mu}\uparrow^{\mathcal{S}_n}_{Z_{\mu}})=\mathsf{L}_{\mu}.$$

The higher Lie character indexed by $\mu \vdash n$ is

$$\psi^{\mu} := \omega^{\mu} \uparrow^{S_n}_{Z_{\mu}}$$

Cyclic descents	CDE	Main result	Higher Lie characters	Proof method	Problems
Classical	Result	ts			

Proof method

Problems

Classical Results

$$\sum_{k=0}^{\lfloor n/2
floor} \langle \mathsf{L}_{(2^k,1^{n-2k})}, s_\lambda
angle =$$

Problems

Classical Results

$$\sum_{k=0}^{\lfloor n/2
floor} \langle \mathsf{L}_{(2^k,1^{n-2k})}, s_\lambda
angle = 1.$$

ethod

Problems

Classical Results

Theorem For every $\lambda \vdash n$

$$\sum_{k=0}^{\lfloor n/2
floor} \langle \mathsf{L}_{(2^k,1^{n-2k})}, s_\lambda
angle = 1.$$

$$\sum_{\mu\vdash n} \langle \mathsf{L}_{\mu}, \mathsf{s}_{\lambda}
angle =$$

oof method

Problems

Classical Results

Theorem For every $\lambda \vdash n$

$$\sum_{k=0}^{\lfloor n/2
floor} \langle \mathsf{L}_{(2^k,1^{n-2k})}, s_\lambda
angle = 1.$$

$$\sum_{\mu\vdash n} \langle \mathsf{L}_{\mu}, \mathsf{s}_{\lambda} \rangle = \# \operatorname{SYT}(\lambda).$$

thod

roblems

Classical Results

Theorem For every $\lambda \vdash n$

$$\sum_{k=0}^{\lfloor n/2 \rfloor} \langle \mathsf{L}_{(2^k,1^{n-2k})}, \mathsf{s}_{\lambda} \rangle = 1.$$

Theorem For every $\lambda \vdash n$

$$\sum_{\mu\vdash n} \langle \mathsf{L}_{\mu}, \mathsf{s}_{\lambda}
angle = \# \operatorname{SYT}(\lambda).$$

Thrall's Problem ('42):

Give a closed formula / combinatorial interpretation to the inner product

 $\langle {\sf L}_{\mu}, {\it s}_{\lambda}
angle$.

Classical Results

Theorem For every $\lambda \vdash n$

$$\sum_{k=0}^{\lfloor n/2 \rfloor} \langle \mathsf{L}_{(2^k, 1^{n-2k})}, \mathsf{s}_{\lambda} \rangle = 1.$$

Theorem For every $\lambda \vdash n$

$$\sum_{\mu\vdash n} \langle \mathsf{L}_{\mu}, \mathsf{s}_{\lambda} \rangle = \# \operatorname{SYT}(\lambda).$$

Thrall's Problem ('42):

Give a closed formula / combinatorial interpretation to the inner product

 $\langle {\sf L}_\mu, {\it s}_\lambda
angle$.

KraskiewiczWeyman, DésarménienWachs, GesselReutenauer, Sundaram, Schocker, HershReiner, AhlbachSwanson...

clic descents

CDE

Main result

Higher Lie characters

Proof method

Problems

Hook multiplicities and CDE

Hook multiplicities and CDE

A subset $\mathcal{A} \subseteq S_n$ is Schur-positive if the associated quasi-symmetric function

$$\mathcal{Q}(\mathcal{A}) := \sum_{a \in \mathcal{A}} \mathcal{F}_{n, \mathsf{Des}(a)},$$

is symmetric and Schur-positive.

Hook multiplicities and CDE

A subset $\mathcal{A} \subseteq S_n$ is Schur-positive if the associated quasi-symmetric function

$$\mathcal{Q}(\mathcal{A}) := \sum_{a \in \mathcal{A}} \mathcal{F}_{n, \mathsf{Des}(a)},$$

is symmetric and Schur-positive.

Lemma (AHR)

A Schur-positive set $\mathcal{A} \subseteq S_n$ has a cyclic descent extension \iff the following two conditions hold:

 $\begin{array}{ll} (\text{divisibility}) & the \ polynomial \ \sum_{k=0}^{n-1} \langle \mathcal{Q}(\mathcal{A}), s_{(n-k,1^k)} \rangle x^k \\ & is \ divisible \ by \ 1+x; \\ (\text{non-negativity}) & the \ quotient \ has \ nonnegative \ coefficients. \end{array}$

Divisibility

Lemma

For every S_n -character ϕ , the hook-multiplicity generating function

$$M_{\phi}(x) := \sum_{k=0}^{n-1} \langle \phi, \chi^{n-k,1^k} \rangle x^k$$

is divisible by 1 + x if and only if the value of ϕ on an n-cycle is zero: $\phi_{(n)} = 0$.

Divisibility

Lemma

For every S_n -character ϕ , the hook-multiplicity generating function

$$M_{\phi}(x) := \sum_{k=0}^{n-1} \langle \phi, \chi^{n-k,1^k} \rangle x^k$$

is divisible by 1 + x if and only if the value of ϕ on an n-cycle is zero: $\phi_{(n)} = 0$.

Lemma

For $\lambda \vdash n$

$$\psi_{(n)}^{\lambda} = \begin{cases} \mu(r), & \text{if } \lambda = (r^{s}); \\ 0, & \text{otherwise}, \end{cases}$$

where $\mu(r)$ is the Möbius function.

Non-negativity - the case of distinct cycle lengths

Lemma (AHR)

Let $\lambda = (r^s) \sqcup \nu$ be a partition of *n*, where ν is a partition of n - rs with no part equal to *r*. Then

$$M_{\lambda}(x) := \sum_{k=0}^{n-1} \langle \mathbf{L}_{\lambda}, s_{(n-k,1^k)} \rangle x^k = (1+x) M_{(r^s)}(x) M_{\nu}(x).$$

Non-negativity - the case of distinct cycle lengths

Lemma (AHR)

Let $\lambda = (r^s) \sqcup \nu$ be a partition of *n*, where ν is a partition of n - rs with no part equal to *r*. Then

$$M_{\lambda}(x) := \sum_{k=0}^{n-1} \langle \mathbf{L}_{\lambda}, s_{(n-k,1^k)} \rangle x^k = (1+x) M_{(r^s)}(x) M_{\nu}(x).$$

Corollary

For conjugacy classes C_{λ} with distinct cycle lengths, the hook multiplicities g.f. $M_{\lambda}(x)$ is divisible by 1 + x, and the quotient has non-negative coefficients.
Non-negativity - the *n*-cycle case

Denote

$$m_{k,\lambda} := \langle \mathbf{L}_{\lambda}, s_{(n-k,1^k)} \rangle.$$

Non-negativity - the *n*-cycle case

Denote

$$m_{k,\lambda} := \langle \mathbf{L}_{\lambda}, s_{(n-k,1^k)} \rangle.$$

Lemma [Sundaram '94]

$$m_{k-1,(n)}+m_{k,(n)}=\langle \mathbf{L}_{(n)},e_kh_{n-k}\rangle=\frac{1}{n}\sum_{d\mid (n,k)}\mu(d)(-1)^{k+k/d}\binom{n/d}{k/d}.$$

Non-negativity - the n-cycle case

Denote

$$m_{k,\lambda} := \langle \mathsf{L}_{\lambda}, s_{(n-k,1^k)} \rangle.$$

Lemma [Sundaram '94]

$$m_{k-1,(n)}+m_{k,(n)}=\langle \mathbf{L}_{(n)},e_kh_{n-k}\rangle=\frac{1}{n}\sum_{d\mid (n,k)}\mu(d)(-1)^{k+k/d}\binom{n/d}{k/d}.$$

Theorem (AHR) For every positive integer n the sequence

 $m_{0,(n)}, m_{1,(n)}, \ldots, m_{n-1,(n)}$

is unimodal.

Non-negativity - the case of cycle type (r, \ldots, r)

We have to prove that for every $s \geq 1$ and square-free r

$$\frac{M_{(r^s)}(x)}{1+x} := \frac{\sum\limits_k \langle \mathsf{L}_{(r^s)}, \mathsf{s}_{(n-k,1^k)} \rangle x^k}{1+x}$$

has non-negative coefficients.

Non-negativity - the case of cycle type (r, \ldots, r)

We have to prove that for every $s\geq 1$ and square-free r

$$\frac{M_{(r^s)}(x)}{1+x} := \frac{\sum\limits_k \langle \mathsf{L}_{(r^s)}, \mathsf{s}_{(n-k,1^k)} \rangle x^k}{1+x}$$

has non-negative coefficients.

For a given $r \ge 1$ let

$$E_r(x,y) := \sum_{s,k\geq 0} \langle \mathbf{L}_{(r^s)}, e_k h_{r^s-k} \rangle x^k y^s.$$

Non-negativity - the case of cycle type (r, \ldots, r)

We have to prove that for every $s \geq 1$ and square-free r

$$\frac{M_{(r^s)}(x)}{1+x} := \frac{\sum\limits_k \langle \mathsf{L}_{(r^s)}, \mathsf{s}_{(n-k,1^k)} \rangle x^k}{1+x}$$

has non-negative coefficients.

For a given $r \ge 1$ let

$$E_r(x,y) := \sum_{s,k\geq 0} \langle \mathbf{L}_{(r^s)}, e_k h_{r^s-k} \rangle x^k y^s.$$

Observation

$$\frac{E_r(x,y)-1}{(1+x)^2} = \sum_{s\geq 1} y^s \frac{M_{(r^s)}(x)}{1+x}.$$

CDE

$$f_{r,k} := \langle \mathbf{L}_{(r)}, e_k h_{r-k} \rangle = \frac{1}{r} \sum_{d \mid (r,k)} \mu(d) (-1)^{k+k/d} \binom{r/d}{k/d}.$$

$$f_{r,k} := \langle \mathsf{L}_{(r)}, e_k h_{r-k} \rangle = \frac{1}{r} \sum_{d \mid (r,k)} \mu(d) (-1)^{k+k/d} \binom{r/d}{k/d}.$$

Lemma (AHR)

For every $s \ge 1$ and $k \ge 0$

$$\langle \mathbf{L}_{(r^s)}, e_k h_{r^s-k} \rangle = \sum_{\gamma \in P_{r,s}(k)} \prod_{j \ge 0} (-1)^{(j+1)t_j(\gamma)} \binom{(-1)^{j+1}f_{r,j}}{t_j(\gamma)}.$$

where $P_{r,s}(k) := \{\lambda \vdash k : \lambda_1 \leq r, \lambda'_1 \leq s\}$ and $t_j(\gamma)$ - the multiplicity of the part j in γ .

$$f_{r,k} := \langle \mathbf{L}_{(r)}, e_k h_{r-k} \rangle = \frac{1}{r} \sum_{d \mid (r,k)} \mu(d) (-1)^{k+k/d} \binom{r/d}{k/d}.$$

Lemma (AHR)

For every $s \ge 1$ and $k \ge 0$

$$\langle \mathbf{L}_{(r^s)}, e_k h_{r^s-k} \rangle = \sum_{\gamma \in P_{r,s}(k)} \prod_{j \ge 0} (-1)^{(j+1)t_j(\gamma)} \binom{(-1)^{j+1}f_{r,j}}{t_j(\gamma)}.$$

where $P_{r,s}(k) := \{\lambda \vdash k : \lambda_1 \leq r, \lambda'_1 \leq s\}$ and $t_j(\gamma)$ - the multiplicity of the part j in γ . In particular, for s = 1 we obtain Sundaram's formula.

$$f_{r,k} := \langle \mathbf{L}_{(r)}, e_k h_{r-k} \rangle = \frac{1}{r} \sum_{d \mid (r,k)} \mu(d) (-1)^{k+k/d} \binom{r/d}{k/d}.$$

Lemma (AHR)

For every $s \ge 1$ and $k \ge 0$

$$\langle \mathbf{L}_{(r^s)}, e_k h_{r^s-k} \rangle = \sum_{\gamma \in P_{r,s}(k)} \prod_{j \ge 0} (-1)^{(j+1)t_j(\gamma)} \binom{(-1)^{j+1}f_{r,j}}{t_j(\gamma)}.$$

where $P_{r,s}(k) := \{\lambda \vdash k : \lambda_1 \leq r, \lambda'_1 \leq s\}$ and $t_j(\gamma)$ - the multiplicity of the part j in γ . In particular, for s = 1 we obtain Sundaram's formula.

Corollary For every $r \geq 1$

$$\sum_{k,s} \langle \mathbf{L}_{(r^s)}, e_k h_{r^s-k} \rangle x^k y^s = \prod_j (1 - (-1)^j x^j y)^{(-1)^{j+1} \langle \mathbf{L}_{(r)}, e_j h_{r-j} \rangle}.$$

Cyclic	descents	CDE	Main result	Higher Lie characters	Proof method	Problems
			Open	Problems		
	Problem	1:				
	Find a extensic	n <mark>explic</mark> on (CDE e	i <mark>t combinator</mark> E) for conjuga qual to (<i>r^s</i>) f	r <mark>ial description</mark> of t cy classes of cycle or some square fre	he cyclic desce type, which is e <i>r</i> .	ent not

		Oper	n Problems		
Problem	n 1:				
Find extens	an <mark>explic</mark> ion (CDE e	<mark>it combinato</mark> () for conjuga qual to (<i>r^s</i>) f	rial description of t acy classes of cycle or some square fre	the cyclic desce type, which is e <i>r</i> .	nt not

Cyclic descents

Ma

Main result

ligher Lie characters

Proof

Proof method

Problems

Thank You!