Promotion of Kreweras words

Sam Hopkins and Martin Rubey
Washington, Vienna

FPSAC 2022
photo credits: unknown, Oberwolfach photo collection (Konrad Jacobs, George M. Bergman), Greg Kuperberg

How many ways are there ...

for $2 n$ people to cast votes for Alice and Bob, such that

- Alice and Bob both receive n votes, and
- Alice never trails Bob?

How many ways are there ...

for $2 n$ people to cast votes for Alice and Bob, such that

- Alice and Bob both receive n votes, and
- Alice never trails Bob?

AB
AABB, ABAB
AAABBB, AABABB, AABBAB, ABAABB, ABABAB
...

How many ways are there ...

for $2 n$ people to cast votes for Alice and Bob, such that

- Alice and Bob both receive n votes, and
- Alice never trails Bob?

AB
$\mathrm{AABB}, \mathrm{ABAB}$

AAABBB, AABABB, AABBAB, ABAABB, ABABAB
...

How many ways are there ...

for $2 n$ people to cast votes for Alice and Bob, such that

- Alice and Bob both receive n votes, and
- Alice never trails Bob?

AB
$\mathrm{AABB}, \mathrm{ABAB}$

AAABBB, AABABB, AABBAB, ABAABB, ABABAB

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

Promotion of Dyck words

The promotion $\operatorname{pr}(w)$ of a Dyck word $w=w_{1} \ldots w_{2 n}$ is:

- remove the first letter w_{1}
- replace the first letter w_{i} such that $w_{2} \ldots w_{i}$ has more B's than A's with an A
- append B.
$\begin{array}{lllllllll}\text { A } & \text { A } & \text { B } & \text { A } & \text { B } & \text { (B) } & \text { A } & \text { B } & \\ & & & & I & & & & \\ & \text { A } & \text { B } & \text { A } & \text { B } & \text { (A) } & \text { A } & \text { B } & \text { B }\end{array}$

Promotion of Dyck words

The character of a cyclic action $\langle\mathrm{pr}\rangle \times X \rightarrow X$ of order N is the polynomial of degree less than N defined by

$$
\chi_{\mathrm{pr}}\left(\zeta^{k}\right)=\# \text { fixed points of } \mathrm{pr}^{k}
$$

for a primitive N-th root of unity ζ.

Promotion of Dyck words

The character of a cyclic action $\langle\mathrm{pr}\rangle \times X \rightarrow X$ of order N is the polynomial of degree less than N defined by

$$
\chi_{\mathrm{pr}}\left(\zeta^{k}\right)=\# \text { fixed points of } \mathrm{pr}^{k}
$$

for a primitive N-th root of unity ζ.
Theorem (White 2007)
Promotion on Dyck words has order 2n:

$$
\operatorname{pr}^{2 n}(w)=w
$$

Its character is

$$
\frac{1}{[n+1]_{q}}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q} \quad\left(\bmod q^{2 n}-1\right)
$$

where $[n]_{q}=\frac{1-q^{n}}{1-q},[n]_{q}!=[n]_{q} \cdots[1]_{q}$ and $\left[\begin{array}{c}n \\ m\end{array}\right]_{q}=\frac{[n]_{q}!}{[m]_{q}![n-m]_{q}}$.

Promotion of Dyck words

 is rotation of noncrossing matchings

How many ways are there...

for $3 n$ people to cast votes for Alice, Bob and Charlie, such that

- Alice, Bob and Charlie all receive n votes, and
- Alice never trails either Bob or Charlie?

How many ways are there ...

for $3 n$ people to cast votes for Alice, Bob and Charlie, such that

- Alice, Bob and Charlie all receive n votes, and
- Alice never trails either Bob or Charlie?
$\mathrm{ABC}, \mathrm{ACB}$

$\mathrm{AABBCC}, \mathrm{AABCBC}, \mathrm{AABCCB}, \mathrm{ABABCC}, \mathrm{ABACBC}, \mathrm{ABACCB}, \mathrm{ABCABC}, \mathrm{ABCACB}, \ldots$

How many ways are there ...

for $3 n$ people to cast votes for Alice, Bob and Charlie, such that

- Alice, Bob and Charlie all receive n votes, and
- Alice never trails either Bob or Charlie?
$\mathrm{ABC}, \mathrm{ACB}$

$A A B B C C, A A B C B C, A A B C C B, A B A B C C, A B A C B C, A B A C C B, A B C A B C, A B C A C B, \ldots$

Theorem (Kreweras 1965)

$$
\frac{4^{n}}{(n+1)(2 n+1)}\binom{3 n}{n}
$$

Promotion of Kreweras words

The promotion $\operatorname{pr}(w)$ of a Kreweras word $w=w_{1} \ldots w_{3 n}$ is:

- remove the first letter w_{1}
- replace the first letter w_{i} such that $w_{2} \ldots w_{i}$ has more B's than A's or more C's than A's with an A
- append w_{i}.

$$
\begin{array}{cccccccccc}
\mathrm{A} & \mathrm{~A} & \mathrm{~B} & \text { (B) } & \mathrm{C} & \mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \\
& & & & \downarrow & & & & & \\
& \mathrm{~A} & \mathrm{~B} & \text { A } & \mathrm{C} & \mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{~B}
\end{array}
$$

Promotion of Kreweras words

Theorem (NEW)

Promotion on Kreweras words has order 6n: $\mathrm{pr}^{3 n}(w)$ is obtained from w by switching all B 's and C's.

Conjecture (NEW)
Its character is

$$
\frac{[2]_{q}^{2 n}[3 n]_{q^{2}}!}{[n+1]_{q^{2}}![2 n+1]_{q}!} \quad\left(\bmod q^{6 n}-1\right)
$$

Remark:

$$
\frac{4^{n}}{(n+1)(2 n+1)}\binom{3 n}{n}=\frac{2^{2 n}(3 n)!}{(n+1)!(2 n+1)!}
$$

Promotion of Kreweras words

 is rotation of webs

Background: posets of size N with $\mathrm{pr}^{2 N}=1$

Promotion generalizes to linear extensions of arbitrary posets
Theorem (Haiman, Haiman and Kim 1992)
Promotion on a shape or a shifted shape has order N or $2 N$ if and only if the shape is one of the following:

rectangle

staircase

shifted double staircase

shifted trapezoid

Part 1: The order of promotion

blue and crimson noncrossing matchings:

Part 1: The order of promotion

blue and crimson noncrossing matchings:

Kreweras bump diagram:

Part 1: The order of promotion

rules of the road:

trip permutation:

Part 1: The order of promotion

rules of the road:

trip permutation:

Part 1: The order of promotion

rules of the road:

trip permutation:

Part 1: The order of promotion

rules of the road:

trip permutation:

Part 1: The order of promotion

rules of the road:

trip permutation:

Lemma
σ_{w} and ε_{w} determine w.

Part 1: The order of promotion

Lemma $\quad \sigma_{\operatorname{pr}(w)}=\operatorname{rot}\left(\sigma_{w}\right)$

$$
\varepsilon_{\operatorname{pr}(w)}=\left[\varepsilon_{w}(2), \varepsilon_{w}(3), \ldots, \varepsilon_{w}(3 n),-\varepsilon_{w}(1)\right]
$$

Corollary
$\mathrm{pr}^{3 n}(w)$ is obtained from w be swapping B 's and C 's.

Background: Kuperberg's $\mathfrak{s l} l_{3}$-webs (1996)

An $\mathfrak{s l}_{3}$-web is a planar graph \mathcal{W}, embedded in a disk, with $3 n$ white boundary vertices arranged counterclockwise, such that

- \mathcal{W} is trivalent, i.e., boundary vertices have degree 1 , all others have degree 3,
- \mathcal{W} is bipartite, i.e., properly coloured black and white, and
- \mathcal{W} is irreducible, i.e., no internal faces with fewer than 6 sides. $\mathfrak{s l}_{3}$-webs are in bijection with $3 \times n$ standard tableaux.

Background: Kuperberg's $\mathfrak{s l}_{3}$-webs (1996)

An $\mathfrak{s l}_{3}$-web is a planar graph \mathcal{W}, embedded in a disk, with $3 n$ white boundary vertices arranged counterclockwise, such that

- \mathcal{W} is trivalent, i.e., boundary vertices have degree 1 , all others have degree 3,
- \mathcal{W} is bipartite, i.e., properly coloured black and white, and
- \mathcal{W} is irreducible, i.e., no internal faces with fewer than 6 sides. $\mathfrak{s l}_{3}$-webs are in bijection with $3 \times n$ standard tableaux.

Theorem (NEW)

There is a bijection between Kreweras words and Kreweras webs, $\mathfrak{s l}_{3}$-webs

- without internal faces having a multiple of 4 sides, and
- where each connected component is assigned one of two colours (blue or crimson),
which intertwines promotion and rotation.

Part 2: Kreweras words to Kreweras webs

breaking apart crossings:

Part 2: Kreweras words to Kreweras webs

 breaking apart crossings:

Part 2: Kreweras words to Kreweras webs

breaking apart crossings:

internal faces have $4 k-2$ sides, with $k \geq 2$:

(converse non-trivial)

Part 2: Trips in Kreweras webs

rules of the road:

trip permutation:

Theorem

$$
\mapsto \begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 3 & 8 & 5 & 2 & 7 & 1 & 9 & 6
\end{array}
$$

The trip permutation of the Kreweras bump diagram is the trip permutation of the Kreweras web.
Theorem (Postnikov 2006)
The trip permutation determines the Kreweras web.

Corollary

Promotion of a Kreweras word is rotation of the Kreweras web.

