Promotion of Kreweras words

Sam Hopkins and Martin Rubey

Washington, Vienna

FPSAC 2022

photo credits: unknown, Oberwolfach photo collection (Konrad Jacobs, George M. Bergman), Greg Kuperberg

for 2n people to cast votes for Alice and Bob, such that

- Alice and Bob both receive *n* votes, and
- Alice never trails Bob?

for 2n people to cast votes for Alice and Bob, such that

- Alice and Bob both receive n votes, and
- Alice never trails Bob?

AB AABB, ABAB AAABBB, AABABB, AABBAB, ABAABB, ABABAB

for 2n people to cast votes for Alice and Bob, such that

- Alice and Bob both receive n votes, and
- Alice never trails Bob?

AABB, ABAB

AB

. . .

AAABBB, AABABB, AABBAB, ABAABB, ABABAB

for 2n people to cast votes for Alice and Bob, such that

- Alice and Bob both receive n votes, and
- Alice never trails Bob?

AB

. . .

AABB, ABAB

AAABBB, AABABB, AABBAB, ABAABB, ABABAB

$$\frac{1}{n+1}\binom{2n}{n}$$

Promotion of Dyck words

The *promotion* pr(w) of a Dyck word $w = w_1 \dots w_{2n}$ is:

- remove the first letter w₁
- replace the first letter w_i such that w₂...w_i has more B's than A's with an A
- append B.

Promotion of Dyck words

The *character* of a cyclic action $(pr) \times X \rightarrow X$ of order N is the polynomial of degree less than N defined by

 $\chi_{\rm pr}(\zeta^k) = \#$ fixed points of pr^k

for a primitive *N*-th root of unity ζ .

Promotion of Dyck words

The *character* of a cyclic action $\langle pr \rangle \times X \rightarrow X$ of order N is the polynomial of degree less than N defined by

 $\chi_{\rm pr}(\zeta^k) = \#$ fixed points of pr^k

for a primitive N-th root of unity ζ .

Theorem (White 2007)

Promotion on Dyck words has order 2n:

$$\operatorname{pr}^{2n}(w) = w.$$

Its character is

$$\frac{1}{[n+1]_q} \begin{bmatrix} 2n\\n \end{bmatrix}_q \pmod{q^{2n}-1},$$

where
$$[n]_q = \frac{1-q^n}{1-q}$$
, $[n]_q! = [n]_q \cdots [1]_q$ and $[n]_q = \frac{[n]_q!}{[m]_q! [n-m]_q}$.

Promotion of Dyck words is rotation of noncrossing matchings

for 3n people to cast votes for Alice, Bob and Charlie, such that

- Alice, Bob and Charlie all receive *n* votes, and
- Alice never trails either Bob or Charlie?

for 3n people to cast votes for Alice, Bob and Charlie, such that

- Alice, Bob and Charlie all receive n votes, and
- Alice never trails either Bob or Charlie?

AABBCC,AABCBC,AABCCB,ABABCC,ABACBC,ABACCB,ABCABC,ABCACB,...

ABC, ACB

. . .

for 3n people to cast votes for Alice, Bob and Charlie, such that

- Alice, Bob and Charlie all receive *n* votes, and
- Alice never trails either Bob or Charlie?

ABC, ACB

. . .

AABBCC,AABCBC,AABCCB,ABABCC,ABACBC,ABACCB,ABCABC,ABCACB,...

Theorem (Kreweras 1965)

$$\frac{4^n}{(n+1)(2n+1)}\binom{3n}{n}$$

Promotion of Kreweras words

The promotion pr(w) of a Kreweras word $w = w_1 \dots w_{3n}$ is:

- remove the first letter w₁
- replace the first letter w_i such that w₂...w_i has more B's than A's or more C's than A's with an A
- append w_i.

$$\begin{array}{ccccccc} A & A & B & \textcircled{B} & C & A & C & C & B \\ & & & & \downarrow & & \\ A & B & \textcircled{A} & C & A & C & C & B & B \end{array}$$

Promotion of Kreweras words

Theorem (NEW)

Promotion on Kreweras words has order 6n: $pr^{3n}(w)$ is obtained from w by switching all B's and C's.

Conjecture (NEW)

Its character is

$$\frac{[2]_q^{2n}[3n]_{q^2}!}{[n+1]_{q^2}![2n+1]_q!} \pmod{q^{6n}-1}.$$

Remark:

$$\frac{4^n}{(n+1)(2n+1)}\binom{3n}{n} = \frac{2^{2n}(3n)!}{(n+1)!(2n+1)!}$$

Background: posets of size N with $pr^{2N} = 1$

Promotion generalizes to linear extensions of arbitrary posets ${}^{{\color{white}}}$

Theorem (Haiman, Haiman and Kim 1992)

Promotion on a shape or a shifted shape has order N or 2N if and only if the shape is one of the following:

rectangle

staircase

shifted double staircase

shifted trapezoid

blue and crimson noncrossing matchings:

blue and crimson noncrossing matchings:

Kreweras bump diagram:

rules of the road:

trip permutation: 1 2 3 4 5 6 7 8 9 w A A B B C A C C B σ_w

rules of the road:

rules of the road:

rules of the road:

rules of the road:

Lemma

 σ_w and ε_w determine w.

Corollary

 $pr^{3n}(w)$ is obtained from w be swapping B's and C's.

Background: Kuperberg's \mathfrak{sl}_3 -webs (1996)

An \mathfrak{sl}_3 -web is a planar graph \mathcal{W} , embedded in a disk, with 3n white boundary vertices arranged counterclockwise, such that

- ➤ W is *trivalent*, i.e., boundary vertices have degree 1, all others have degree 3,
- ▶ *W* is *bipartite*, i.e., properly coloured black and white, and
- \mathcal{W} is *irreducible*, i.e., no internal faces with fewer than 6 sides. \mathfrak{sl}_3 -webs are in bijection with $3 \times n$ standard tableaux.

Background: Kuperberg's sl₃-webs (1996)

An \mathfrak{sl}_3 -web is a planar graph \mathcal{W} , embedded in a disk, with 3n white boundary vertices arranged counterclockwise, such that

- ➤ W is *trivalent*, i.e., boundary vertices have degree 1, all others have degree 3,
- ▶ *W* is *bipartite*, i.e., properly coloured black and white, and

• \mathcal{W} is *irreducible*, i.e., no internal faces with fewer than 6 sides. \mathfrak{sl}_3 -webs are in bijection with $3 \times n$ standard tableaux.

Theorem (NEW)

There is a bijection between Kreweras words and Kreweras webs, $\mathfrak{sl}_3\text{-webs}$

- without internal faces having a multiple of 4 sides, and
- where each connected component is assigned one of two colours (blue or crimson),

which intertwines promotion and rotation.

Part 2: Kreweras words to Kreweras webs

breaking apart crossings:

Part 2: Kreweras words to Kreweras webs

breaking apart crossings:

Part 2: Kreweras words to Kreweras webs

breaking apart crossings:

internal faces have 4k - 2 sides, with $k \ge 2$:

(converse non-trivial)

Part 2: Trips in Kreweras webs

3

trip permutation:

rules of the road:

$\begin{array}{c} 8 \\ 7 \\ 6 \\ 6 \end{array} \xrightarrow{1 2 3 4 5 6 7 8 9}{7 \times 4 3 8 5 2 7 1 9 6} \end{array}$

Theorem

The trip permutation of the Kreweras bump diagram is the trip permutation of the Kreweras web.

Theorem (Postnikov 2006)

The trip permutation determines the Kreweras web.

Corollary

Promotion of a Kreweras word is rotation of the Kreweras web.