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Language of today

G :Real reductive group, g = Lie(G )
K ⊂ G a maximal compact subgroup. e.g., K = SO(2) and
G = SL2(R)

G - representation E (TVS): group homomorphism π : G → GL(E )
such that the action map (g , v) 7→ π(g)v =: g · v : G × E → E is
continuous.

E∞ := {v ∈ E : g 7→ g · v is smooth} — Smooth vectors.

EK−finite := {v ∈ E : dim span(K · v) < ∞}. — K -finite vectors.

• What is Harish-Chandra module? Why do we care?

Representation theory: Understand groups through their “actions”

If G acts on a set X , G acts on functions on X by

π(g)f (x) = f (g−1 · x).

The main difficulty is to decide which space of functions to consider.
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Motivation for Harish-Chandra module

Consider the group

SU(1, 1) := {
(

α β

β α

)
: α, β ∈ C, |α|2 − |β|2 = 1}

SU(1, 1) acts on S1 by fractional linear transformations.
 Representation of SU(1, 1) in E = C (S1), C∞(S1), L2(S1) and
C−∞(S1) etc. (Action: g · f (x) = f (g−1 · x))

Though they look like the same representation but the spaces are
“topologically very different”. To have a reasonable classification, it
is desirable to identify them in some sense.

(Harish-Chandra) “algebraic skeleton” V = functions on S1 with
finite Fourier expansion — trigonometric polynomials = EK−finite.

EK−finite is not closed under the action of SU(1, 1). However, it is
closed under the action of both Lie(SU(1, 1)) and K .

This leads to Harish-Chandra’s concept of ”Infinitesimal
equivalence”
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Harish-Chandra’s Technology!

Admissible representations (π,E )

EK−finite =
⊕

τ∈K̂ E [τ]
and dimE [τ] < ∞.
EK−finite ⊂ E∞  g
acts on EK−finite.

EK−finite − (g,K )-
module.

(g,K )-submodules
of EK−finite

closed G -invariant
subspaces of E

(bijection)

(topological object)

(algebraic object)

(Harish-Chandra) (π,E ) irreducible and unitary =⇒ admissibility

“Infinitesimal equivalence” of E and F means algebraic
equivalence of EK−finite and FK−finite.
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Harish-chandra module

(g,K )-module: By a (g,K ) module V we understand a module for
g and K such that

1 The derived action of K coincides with the action of g restricted to
k := Lie(K ).

2 The actions are compatible, i.e., for all k ∈ K ,X ∈ g and v ∈ V .

k · X · v = Ad(k)X · k · v .

Harish-Chandra module A (g,K ) module V is called a
Harish-Chandra module provided that

1 V is admissible, i.e.,

∀τ ∈ K̂ , dim HomK (V , τ) < ∞.

2 V is finitely generated as U(g)-module. ( Countable dimension)

(Harish-Chandra) If (π,E ) is an irreducibale unitary representation
of G , then EK−finite is a H-C module.
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Globalization questions

Given a Harish-Chandra module V , a complete locally convex
topological vector space E is called a globalization of V provided
that E supports a G -representation such that EK−finite '(g,K ) V .

(Example) X - Compact homogeneous space for G , e.g., X = G/P
with P minimal parabolic. Then V := L2(X )K ∩ L2(X )∞ –K -finite
smooth vectors in the right regular representation of G on
L2(X )—Harish-Chandra module. Then L2(X ) is a Hilbert
globalization. Also, Cω(X ),C∞(X ) with their respective topologies,
analytic and smooth globalizations of V .

(Schmid)1 An interesting example is the minimal globalization
Vmin = V ω where V ω denotes the analytic vectors . The minimal
globalization is an instance of a globalization E which is an inductive
limit of Banach spaces.

1W. Schmid, Boundary value problems for group invariant differential equations, in
The Mathematical Heritage of Élie Cartan (Lyon, 1984), Astérisque Numéro Hors
Série, (1985), 311–321.
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Let V be a Harish-Chandra module and p a norm on V .
Vp = the completion of the normed space (V , p).

(Bernstein-Krötz) G -continuous norms: A norm p on V is called
G -continuous provided there exists a continuous representation
π : G × Vp → Vp of G on the Banach space Vp such that

VK−finite
p '(g,K ) V

(Thanks to Casselman’s subrepresentation theorem)

V ↪→ I := (IndGP σ)K−finite

Here P ⊂ G is a minimal parabolic and σ is a finite dimensional
representation of P.

As I admits many G -continuous norms, for example Lp-norms on
K/K ∩ P of σ-valued functions, we conclude that every
Harish-Chandra module admits G -continuous norms as well.
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Dual Harish-Chandra module:

Ṽ := (V ∗)K−finite (V ∗ = algebraic dual ofV ).

This is also a Harish-Chandra module and ˜̃V = V

Given a G -continuous norm p on V , the dual norm p̃ defined by

p̃(ṽ) := sup
p(v )≤1

|ṽ(v)| (ṽ ∈ Ṽ )

is G -continuous as well.

p, q – G -continuous norms on V . Then
1 ˜̃p = p.
2 p ≤ q ⇐⇒ q̃ ≤ p̃.
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is G -continuous as well.

p, q – G -continuous norms on V . Then
1 ˜̃p = p.
2 p ≤ q ⇐⇒ q̃ ≤ p̃.

P. Ganguly Harish-Chandra modules



Dual Harish-Chandra module:
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• Matrix coefficients:

p-G -continuous  Vp and πp(g)v–action of G on Vp.

Canonical identification Ṽ → (V ′p)
K−finite

Let now v ∈ V ⊂ Vp and ṽp ∈ (V ′p)
K−finite. Then the map

g 7→ ṽp(πp(g)v) is analytic and independent of the choice2 of the
completion Vp.

The matrix-coefficient attached to v and ṽ :

mv ,ṽ (g) := ṽ(g · v).

2W. Casselman, Canonical extensions of Harish-Chandra modules to
representations of G, Canadian Journal of Mathematics 41 (1989), 385–438.
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Growth of a representation: Often modeled by Weights—a locally
bounded positive function w : G → R>0 which is submultiplicative,
i.e.

w(gh) ≤ w(g)w(h) (g , h ∈ G ) .

For example, every G -continuous norm p is bounded by a weight,
namely the operator norm

wp(g) := sup
p(v )≤1

p(g · v) . (1)

Given a Harish-Chandra module V , and a weight w , we consider

Norm(V ,w) := {p G -continuous norm : p(g · v) ≤ Cw(g)p(v)}.

Aim: Structure the set Norm(V ,w) .

{Banach globalizations with fixed growth rate}

(G -invariant norms) w = 1, in this case Norm(V ) := Norm(V , 1)
consists of isometric norms, i.e. norms for which p(g · v) = p(v) for
all g ∈ G and v ∈ V .
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Some interesting examples

• Tempered representations(Cowling3, Kunze-Stein)

G - semi-simple Lie group with finite center. Let π ∈ Ĝ be tempered
and V the corresponding Harish-Chandra module. Fix a unitary
norm q on V .

Recall that π is tempered provided all matrix coefficients mv ,ṽ lie in
Lr (G ) for r > 2.

Fix now 0 6= ṽ ∈ Ṽ and define isometric norms

pr (v) := ‖mv ,ṽ‖Lr (G ) (v ∈ V )

for all 2 < r ≤ ∞.

The Kunze-Stein phenomenon:

pr (v) . q(v) (r > 2)

3M. Cowling, The Kunze-Stein Phenomenon, Ann. Math. 107 (2), 209–234.
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• Automorphic norms(Bernstein-Reznikov4)

G = SL2(R), and Γ =co-compact lattice in G , i.e., X = Γ\G is
compact. E - K -spherical unitary principal series representation

V H-C module and η : E∞ → C continuous Γ invariant functional.
We consider the Automorphic forms:

mv ,η(Γg) := η(g · v) (v ∈ V , g ∈ G ).

q given by

q(v)2 =
∫
X
|mv ,η(Γg)|2 d(Γg) (v ∈ V )

is a unitary norm.
Another interesting isometric norm is

paut(v) := sup
x∈X
|mv ,η(x)| (v ∈ V ).

Clearly, q ≤
√

Vol(X )paut. Also as shown by BR

paut . qs ⇐⇒ s >
1

2

4J. Bernstein and A. Reznikov, Sobolev Norms of Automorphic Functionals, IMRN,
International Mathematics Research Notices 2002, No. 40, 2155–2174.
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Structuring Norm(V ,w)

There is a natural equivalence relation on Norm(V ,w) : For
p, q ∈ Norm(V ,w), we say that p ∼ q iff p . q, and q . p. This leads
to

Norm(V ,w) := Norm(V ,w)/ ∼ .

Denote the equivalence class of a norm p by [p].

Notice that . on Norm(V ,w) induces a partial order ≤ on
Norm(V ,w).

Proposition

If Norm(V ,w) 6= ∅. Then Norm(V ,w) has a unique minimal element
[pwmin], and a unique maximal element [pwmax].
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Construction of minimal and maximal norms

• Special case: Fix a cyclic vector ṽ ∈ Ṽ .

A representative for the equivalence class of minimal norm:

pwmin(v) := sup
g∈G

|mv ,ṽ (g)|
w(g)

(v ∈ V ).

Take p ∈ Norm(V ,w) p(g · v) ≤ Cw(g)p(v)

|ṽ(g · v)| ≤ p(g · v)p̃(ṽ) ≤ Cw(g)p(v)p̃(ṽ)

i.e., pmin(v) ≤ Cp̃(ṽ)p(v) = C̃p(v) (v ∈ V )

Using w(gh−1) ≥ w (g )
w (h)

we see that

pwmin(g · v) = sup
h∈G

|ṽ(h · g · v)|
w(h)

= sup
h∈G

|ṽ(h · v)|
w(hg−1)

≤ w(g)pwmin(v)

Also, from pwmin . p we obtain that orbit maps
G → Vpwmin

, g 7→ g · v are continuous for all v ∈ V .

For the maximal norm, dualize the construction!

P. Ganguly Harish-Chandra modules



Construction of minimal and maximal norms

• Special case: Fix a cyclic vector ṽ ∈ Ṽ .
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|mv ,ṽ (g)|
w(g)

(v ∈ V ).

Take p ∈ Norm(V ,w) p(g · v) ≤ Cw(g)p(v)
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i.e., pmin(v) ≤ Cp̃(ṽ)p(v) = C̃p(v) (v ∈ V )

Using w(gh−1) ≥ w (g )
w (h)

we see that

pwmin(g · v) = sup
h∈G
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Sobolev norms and “smooth” globalization

• Standard Sobolev norm Fix a norm p on V . Now a fixed basis
X1, . . . ,Xn of g we define for every k ∈N0 a norm pst

k by

pst
k (v) :=

 ∑
α∈Nn

0
|α|≤k

p(X α1
1 . . .X αn

n v)2


1
2

.

Different choices of a basis for g lead to equivalent norms.

Monotonic i.e., pst
k ≤ pst

k+1.

If p ∈ Norm(V ,w), then pst
k is G -continuous but one has to enlarge

the weight!

Theorem 1 (Casselman-Wallach)

For any pair of G -continuous norms p, q on a Harish-Chandra module V
there exists a k ∈N such that p . qst

k .
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5

Theorem 2 (Casselman-Wallach)

For any pair of G -continuous norms p, q on a Harish-Chandra module V
there exists a k ∈N such that p . qst

k .

(pst
k )k and (qst

k )k define the same topology!

The identity map V → V extends to a G -isomorphism of Fréchet
spaces V∞

p → V∞
q . Hence there is up to isomorphism only one

SF -globalization of V . This globalization is denoted by V∞.

Proposition

Given a G -continuous norm p on a Harish-Chandra module, a vector
v ∈ Vp is smooth if and only if it is K -smooth.

5J. Bernstein, B. Krötz, Smooth Fréchet globalizations of Harish-Chandra modules.
Isr. J. Math. 199, 45–111 (2014). https://doi.org/10.1007/s11856-013-0056-1
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V –Harish-Chandra module , p a G -continuous norm on V .

Take ∆K ∈ U(k) –Laplace element. Consider for any s ∈ R,

Ds := (1 + ∆K )
s
2 .

This acts as a scalar on the K types, i.e.,

Ds |V [τ] = C
s
2

τ · idV [τ] (τ ∈ K̂ ).

We define an s-th Sobolev norm on V by

ps(v) := p(Dsv) (v ∈ V ).

Example

Take G = SL2(R), and K = SO(2). Then K̂ ' Z. For v = ∑n∈Z vn,

ps(v) = ∑
n∈Z

(1 + |n|)svn.
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p-G -continuous norm on V , and sth Sobolev norm ps := p(Ds ·)
• Properties:

p ≤ q ⇒ ps ≤ qs

(ps)t = ps+t (s, t ∈ R)

(Duality) (̃ps) = p̃−s (s ∈ R)

(Issue-1) ps may not be G -continuous. However,

Lemma

For any k ∈N there exists an s ≥ 0 such that pst
k . ps , and vice versa.

(Issue-2) It is not clear that (ps)s≥0 is monotonous. Well, if p is
K -Hermitian then, it is certainly is, i.e., p . ps holds for s ≥ 0.
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A new invariant

•Sobolev “distance” on Norm(V ,w)
Given [p], [q] ∈ Norm(V ,w) we set

dw
→([p], [q]) = inf{s ≥ 0 | p . qs}

and define

dw ([p], [q]) = max{d→([p], [q]), d→([q], [p])} .

Lemma

(Norm(V ,w), d) is pseudo-metric space.

• Sobolev-w-gap

s(V ,w) = d([pwmin], [p
w
max])

In other words,

s(V ,w) := inf{s ≥ 0 | pwmax . pwmin,s}.
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dw ([p], [q]) = max{d→([p], [q]), d→([q], [p])} .

Lemma

(Norm(V ,w), d) is pseudo-metric space.

• Sobolev-w-gap

s(V ,w) = d([pwmin], [p
w
max])

In other words,

s(V ,w) := inf{s ≥ 0 | pwmax . pwmin,s}.
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The pseudometric dw and the Sobolev gap s(V ,w) are independent
of the choice of the maximal compact subgroup K .

What if one uses a different family of Sobolev norms? —For
example, the standard family {pstk }  standard Sobolev gap

sst(V ,w) = min{k ∈N0 | pwmax . (pwmin)
st
k }

Note that the sst(V ,w) is a more coarse invariant of V than the
Sobolev gap s(V ,w). The sandwiching of Sobolev norms yields
universal constants c ,C > 0 such that

csst(V ,w) ≤ s(V ,w) ≤ Csst(V ,w)

Duality: s(V ,w) = s(Ṽ ,w ]). Here w ](g) = w(g−1). In particular,

s(V ,w) = s(V ,w ]) if V is self-dual, i.e. V ' Ṽ .

Monotonicity: Let w1,w2 be two weights with w1 ≤ w2. Then
s(V ,w1) ≤ s(V ,w2).
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• Infimum construction: For a family (qα)α∈A of seminorms on a
vector space E one can define the seminorm infα∈A qα of the family by

inf
α∈A

qα(v) := inf
v=∑α∈A vα

∑
α∈A

qα(vα) (v ∈ E ).

Given a norm p on V∞ we define

pG ,w = pG = inf
g∈G

w(g−1)p(g ·)

pG is the largest semi-norm on V∞ with pG ≤ w(g−1)p(g ·).
If there exists a q ∈ Norm(V ,w) such that q ≤ p, then q ≤ pG and
pG is a norm. If in addition there exists a G -continuous norm r on
V such that p ≤ r , then pG ∈ Norm(V ,w).

Let p ∈ Norm(V ,w). If s ≥ 0 is such that p ≤ ps , then

pGs := (ps)
G ∈ Norm(V ,w).
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Proposition (Stabilization property)

There exists a S > 0 so that

[pmax] = [pGs ] (s > S).

In particular, if p is monotonous, then S = s(V ,w).

• Visualize:

0 ≤ s1 ≤ s2 ≤ ... ascending chain

p ≤ ps1 ≤ ps2 ≤ ...

ascending chain in Norm(V ,w) : pG ≤ pGs1
≤ pGs2

≤ ... –becomes
stationary when taking equivalence classes!
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G -invariant norms

Consider the case where w = 1, in which case Norm(V ) := Norm(V , 1)
consists of isometric norms, i.e. norms for which p(g · v) = p(v) for all
g ∈ G and v ∈ V . As before we write pmin and pmax for representatives
of the minimal and maximal element in Norm(V ), respectively.

Theorem 3

Assume that V is unitarizable and let q be a unitary norm. Then, in the
pseudometric space (Norm(V ), d):

d([q], [pmin]) = d([q], [pmax])

and in particular
s(V ) ≤ 2d([q], [pmax]) .
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Sobolev gap for SL2(R)

Theorem 4

Let G = SL2(R) and V 6= C be a unitarizable irreducible Harish-Chandra
module and [q] be the equivalence class of the unitary norm. Then

d([q], [pmax]) =
1

2
= d([q], [pmin]) .

In particular
s(V ) = 1 .

Fix π ∈ Ĝ . Let V be the corresponding Harish-Chandra module, i.e.,
V = πK−finite. Recall that K = SO(2) and K̂ ' Z.

S = S(V ) = SpecK (V ) ⊂ Z i.e., V =
⊕

n∈S Cen

For example, if π belongs to the unitary principal series, then
S = 2Z or 2Z + 1 (depending on the parametrization).
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Theorem 5

Let π ∈ Ĝ be such that π 6= 1. Fix m ∈ SpecK (π). Then for n 6= m,

sup
g∈G
|〈π(g)eπ

m, eπ
n 〉| �π,m

1√
1 + |n|

,

except for one representation of the principal series where an additional
log-factor is needed.

Estimates of the minimal and maximal norms :

pmin(en) �
1√

1 + |n|
, pmax(en) �

√
1 + |n|

Then for any s for which pmax . pmin,s , we must have

pmax(en) . pmin,s(en) =⇒ (1 + |n|)
1
2 . (1 + |n|)s−

1
2

So, s ≥ 1 which leads to s(V ) ≥ 1.
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To show s(V ) ≤ 1, we shall show that for ε > 0,

pmax . q 1
2+ε

which leads to d([pmax], q) =
1
2 . Hence

s(V ) ≤ 2d([pmax], q) = 1.

Enough to show that Bq 1
2 +ε
⊂ Bmax i.e., Bmax contains up to scale

all sequences ∑n∈S an|n|−(
1
2+ε)en with ∑ |an|2 ≤ 1 and ε > 0.

Bmax = conv(G · em), for some fixed m ∈ S = SpecK (V ). By
convexity, ∫

G
g · em dγ(g) ∈ Bmax

for γ a complex Borel measure on G with total variation ‖γ‖ ≤ 1.

Finally, choose γ such that∫
G
〈g · em, en〉dγ(g) ∼m,π an(±) n−(

1
2+ε).
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Geometry of Norm(V ) for SL2(R)

d([q], [pmax]) =
1
2 = d([q], [pmin])

Let V be a Harish-Chandra module of a unitary principal series and
[q] ∈ Norm(V ) the equivalence class of the unitary norm. Then the
map

ι : [−1/2, 1/2]→ (Norm(V ), d), s 7→ [qGs ]

satisfies

d([qGs ], [q
G
s ′ ]) ≥ |s − s ′| (s, s ′ ∈ [−1/2, 1/2]) .

In particular, ι is injective.
We call I := ι([−1/2, 1/2]) ⊂ Norm(V ) the central interval.

(V automorphic)
d([q], [paut]) = 1/2 and d([paut]), [pmax]) ≥ 1/6 with
[pmax] = [qGs ] for s > 1/2. Hence [paut] does not lie on I .

(Contractibility of Norm(V )?) Continuity of ι?
d([q], [pr ]) =? Locations of the Lr -norms pr? (Kunze-Stein
Phenomenon).
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Uniform finiteness of the Sobolev gap for general G

(Finiteness questions) G - Real reductive group

sup
V∈F

s(V ,wV ) < ∞ ?

F - family of Harish-Chandra module.

(positive answers:)
1 F = Discrete series , wv = 1.
2 F = minimal principal series with natural with natural weights

depending on the parameters. More precisely, G = KAN,P = MAN
where M = ZK (A). For λ ∈ a∗C and σ ∈ M̂, the Harish-Chandra
module of the minimal principal series:
Vσ,λ := IndG

MAN (σ⊗ λ⊗ 1)K−finite. We have

sup
σ∈M̂, λ∈a∗C

s(Vσ,λ,wλ) ≤ C .

Open questions
sup

V∈Irr(HC)
s(V ,wV ) < ∞?
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J. Bernstein, P. Ganguly, B. Krötz, J. Kuit, E. Sayag, On norms on
Harish-Chandra modules, Coming soon!.

P. Ganguly Harish-Chandra modules



THANK YOU!

P. Ganguly Harish-Chandra modules


