Norms on Harish-Chandra modules

Pritam Ganguly

Institute of Mathematics University of Paderborn Paderborn-Germany

APRG seminars, Department of Mathematics Indian Institute of Science 30th October, 2024.

Based on a joint work with Bernstein, Krötz, Kuit, Sayag.

• G :Real reductive group, $\mathfrak{g}=Lie(G)$ $K\subset G$ a maximal compact subgroup. e.g., K=SO(2) and $G=SL_2(\mathbb{R})$

- G :Real reductive group, $\mathfrak{g}=Lie(G)$ $K\subset G$ a maximal compact subgroup. e.g., K=SO(2) and $G=SL_2(\mathbb{R})$
- *G* representation $E(\mathsf{TVS})$: group homomorphism $\pi: G \to GL(E)$ such that the action map $(g, v) \mapsto \pi(g)v =: g \cdot v : G \times E \to E$ is continuous.

- G :Real reductive group, $\mathfrak{g}=Lie(G)$ $K\subset G$ a maximal compact subgroup. e.g., K=SO(2) and $G=SL_2(\mathbb{R})$
- *G* representation $E(\mathsf{TVS})$: group homomorphism $\pi: G \to GL(E)$ such that the action map $(g, v) \mapsto \pi(g)v =: g \cdot v : G \times E \to E$ is continuous.
- $E^{\infty} := \{ v \in E : g \mapsto g \cdot v \text{ is smooth} \}$ Smooth vectors.
- $E^{K-\text{finite}} := \{ v \in E : \dim span(K \cdot v) < \infty \}$. K-finite vectors.

- G :Real reductive group, $\mathfrak{g}=Lie(G)$ $K\subset G$ a maximal compact subgroup. e.g., K=SO(2) and $G=SL_2(\mathbb{R})$
- *G* representation $E(\mathsf{TVS})$: group homomorphism $\pi: G \to GL(E)$ such that the action map $(g, v) \mapsto \pi(g)v =: g \cdot v : G \times E \to E$ is continuous.
- $E^{\infty} := \{ v \in E : g \mapsto g \cdot v \text{ is smooth} \}$ Smooth vectors.
- $E^{K-\text{finite}} := \{ v \in E : \dim span(K \cdot v) < \infty \}$. K-finite vectors.
- What is Harish-Chandra module? Why do we care?

- G :Real reductive group, $\mathfrak{g}=Lie(G)$ $K\subset G$ a maximal compact subgroup. e.g., K=SO(2) and $G=SL_2(\mathbb{R})$
- *G* representation $E(\mathsf{TVS})$: group homomorphism $\pi: G \to GL(E)$ such that the action map $(g, v) \mapsto \pi(g)v =: g \cdot v : G \times E \to E$ is continuous.
- $E^{\infty} := \{ v \in E : g \mapsto g \cdot v \text{ is smooth} \}$ Smooth vectors.
- $E^{K-\text{finite}} := \{ v \in E : \dim span(K \cdot v) < \infty \}$. K-finite vectors.
- What is Harish-Chandra module? Why do we care?
 - Representation theory: Understand groups through their "actions"

- G :Real reductive group, $\mathfrak{g} = Lie(G)$ $K \subset G$ a maximal compact subgroup. e.g., K = SO(2) and $G = SL_2(\mathbb{R})$
- *G* representation $E(\mathsf{TVS})$: group homomorphism $\pi: G \to GL(E)$ such that the action map $(g, v) \mapsto \pi(g)v =: g \cdot v : G \times E \to E$ is continuous.
- $E^{\infty} := \{ v \in E : g \mapsto g \cdot v \text{ is smooth} \}$ Smooth vectors.
- $E^{K-\text{finite}} := \{ v \in E : \dim span(K \cdot v) < \infty \}$. K-finite vectors.
- What is Harish-Chandra module? Why do we care?
 - Representation theory: Understand groups through their "actions"
 - If G acts on a set X, G acts on functions on X by

$$\pi(g)f(x) = f(g^{-1} \cdot x).$$

The main difficulty is to decide which space of functions to consider.

Consider the group

$$SU(1,1) := \{ \left(\frac{\alpha}{\beta} \qquad \frac{\beta}{\alpha} \right) : \alpha, \beta \in \mathbb{C}, |\alpha|^2 - |\beta|^2 = 1 \}$$

• SU(1,1) acts on S^1 by fractional linear transformations. \rightarrow Representation of SU(1,1) in $E=C(S^1)$, $C^{\infty}(S^1)$, $L^2(S^1)$ and $C^{-\infty}(S^1)$ etc. (Action: $g\cdot f(x)=f(g^{-1}\cdot x)$)

Consider the group

$$SU(1,1) := \{ \begin{pmatrix} \alpha & \beta \\ \overline{\beta} & \overline{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C}, |\alpha|^2 - |\beta|^2 = 1 \}$$

- SU(1,1) acts on S^1 by fractional linear transformations. \leadsto Representation of SU(1,1) in $E=C(S^1)$, $C^\infty(S^1)$, $L^2(S^1)$ and $C^{-\infty}(S^1)$ etc. (Action: $g\cdot f(x)=f(g^{-1}\cdot x)$)
- Though they look like the same representation but the spaces are "topologically very different". To have a reasonable classification, it is desirable to identify them in some sense.

Consider the group

$$SU(1,1) := \left\{ \begin{pmatrix} \frac{\alpha}{\beta} & \frac{\beta}{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C}, |\alpha|^2 - |\beta|^2 = 1 \right\}$$

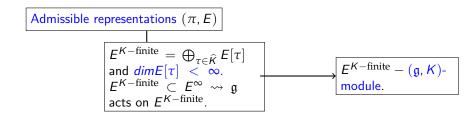
- SU(1,1) acts on S^1 by fractional linear transformations. \rightarrow Representation of SU(1,1) in $E=C(S^1)$, $C^{\infty}(S^1)$, $L^2(S^1)$ and $C^{-\infty}(S^1)$ etc. (Action: $g \cdot f(x) = f(g^{-1} \cdot x)$)
- Though they look like the same representation but the spaces are "topologically very different". To have a reasonable classification, it is desirable to identify them in some sense.
- (Harish-Chandra) "algebraic skeleton" $V = \text{functions on } S^1 \text{ with finite Fourier expansion } \text{trigonometric polynomials } = E^{K-\text{finite}}$.

Consider the group

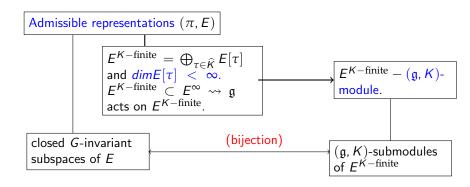
$$SU(1,1) := \left\{ \begin{pmatrix} \frac{\alpha}{\beta} & \frac{\beta}{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C}, |\alpha|^2 - |\beta|^2 = 1 \right\}$$

- SU(1,1) acts on S^1 by fractional linear transformations. \leadsto Representation of SU(1,1) in $E=C(S^1)$, $C^\infty(S^1)$, $L^2(S^1)$ and $C^{-\infty}(S^1)$ etc. (Action: $g\cdot f(x)=f(g^{-1}\cdot x)$)
- Though they look like the same representation but the spaces are "topologically very different". To have a reasonable classification, it is desirable to identify them in some sense.
- (Harish-Chandra) "algebraic skeleton" V = functions on S^1 with finite Fourier expansion trigonometric polynomials = $E^{K-\text{finite}}$.
- $E^{K-\text{finite}}$ is not closed under the action of SU(1,1). However, it is closed under the action of both Lie(SU(1,1)) and K.
- This leads to Harish-Chandra's concept of "Infinitesimal equivalence"

- (Harish-Chandra) (π, E) irreducible and unitary \implies admissibility
- "Infinitesimal equivalence" of E and F means algebraic equivalence of $E^{K-\text{finite}}$ and $F^{K-\text{finite}}$.

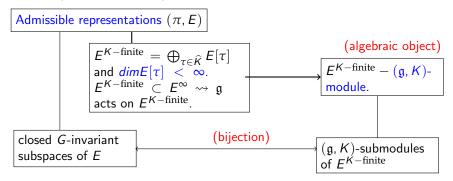


- (Harish-Chandra) (π, E) irreducible and unitary \implies admissibility
- "Infinitesimal equivalence" of E and F means algebraic equivalence of $E^{K-\text{finite}}$ and $F^{K-\text{finite}}$.



- (Harish-Chandra) (π, E) irreducible and unitary \implies admissibility
- "Infinitesimal equivalence" of E and F means algebraic equivalence of $E^{K-\text{finite}}$ and $F^{K-\text{finite}}$.

(topological object)



- ullet (Harish-Chandra) (π, E) irreducible and unitary \Longrightarrow admissibility
- "Infinitesimal equivalence" of E and F means algebraic equivalence of $E^{K-\text{finite}}$ and $F^{K-\text{finite}}$.

Harish-chandra module

- (\mathfrak{g}, K) -module: By a (\mathfrak{g}, K) module V we understand a module for \mathfrak{g} and K such that
 - **①** The derived action of K coincides with the action of \mathfrak{g} restricted to $\mathfrak{k} := Lie(K)$.
 - ② The actions are compatible, i.e., for all $k \in K$, $X \in \mathfrak{g}$ and $v \in V$.

$$k \cdot X \cdot v = Ad(k)X \cdot k \cdot v.$$

Harish-chandra module

- (\mathfrak{g}, K) -module: By a (\mathfrak{g}, K) module V we understand a module for \mathfrak{g} and K such that
 - **①** The derived action of K coincides with the action of \mathfrak{g} restricted to $\mathfrak{k} := Lie(K)$.
 - ② The actions are compatible, i.e., for all $k \in K$, $X \in \mathfrak{g}$ and $v \in V$.

$$k \cdot X \cdot v = Ad(k)X \cdot k \cdot v.$$

- Harish-Chandra module A (g, K) module V is called a Harish-Chandra module provided that
 - V is admissible, i.e.,

$$\forall \tau \in \widehat{K}$$
, dim $Hom_K(V, \tau) < \infty$.

2 V is finitely generated as $U(\mathfrak{g})$ -module.

Harish-chandra module

- (\mathfrak{g}, K) -module: By a (\mathfrak{g}, K) module V we understand a module for \mathfrak{g} and K such that
 - **①** The derived action of K coincides with the action of \mathfrak{g} restricted to $\mathfrak{k} := Lie(K)$.
 - ② The actions are compatible, i.e., for all $k \in K$, $X \in \mathfrak{g}$ and $v \in V$.

$$k \cdot X \cdot v = Ad(k)X \cdot k \cdot v.$$

- Harish-Chandra module A (g, K) module V is called a Harish-Chandra module provided that
 - V is admissible, i.e.,

$$\forall \tau \in \widehat{K}$$
, dim $Hom_K(V, \tau) < \infty$.

- ullet V is finitely generated as $U(\mathfrak{g})$ -module. (\leadsto Countable dimension)
- (Harish-Chandra) If (π, E) is an irreducibale unitary representation of G, then $E^{K-\text{finite}}$ is a H-C module.

Globalization questions

• Given a Harish-Chandra module V, a complete locally convex topological vector space E is called a *globalization* of V provided that E supports a G-representation such that $E^{K-\text{finite}} \simeq_{(\mathfrak{q},K)} V$.

¹W. Schmid, Boundary value problems for group invariant differential equations, in The Mathematical Heritage of Élie Cartan (Lyon, 1984), Astérisque Numéro Hors Série, (1985), 311–321.

Globalization questions

- Given a Harish-Chandra module V, a complete locally convex topological vector space E is called a *globalization* of V provided that E supports a G-representation such that $E^{K-\text{finite}} \simeq_{(\mathfrak{g},K)} V$.
- **(Example)** X- Compact homogeneous space for G, e.g., X = G/P with P minimal parabolic. Then $V := L^2(X)^K \cap L^2(X)^\infty$ –K-finite smooth vectors in the right regular representation of G on $L^2(X)$ —Harish-Chandra module. Then $L^2(X)$ is a Hilbert globalization. Also, $C^\omega(X)$, $C^\infty(X)$ with their respective topologies, analytic and smooth globalizations of V.

 $^{^1}$ W. Schmid, Boundary value problems for group invariant differential equations, in The Mathematical Heritage of Élie Cartan (Lyon, 1984), Astérisque Numéro Hors Série, (1985), 311–321.

Globalization questions

- Given a Harish-Chandra module V, a complete locally convex topological vector space E is called a *globalization* of V provided that E supports a G-representation such that $E^{K-\text{finite}} \simeq_{(\mathfrak{g},K)} V$.
- **(Example)** X- Compact homogeneous space for G, e.g., X = G/P with P minimal parabolic. Then $V := L^2(X)^K \cap L^2(X)^\infty$ –K-finite smooth vectors in the right regular representation of G on $L^2(X)$ —Harish-Chandra module. Then $L^2(X)$ is a Hilbert globalization. Also, $C^\omega(X)$, $C^\infty(X)$ with their respective topologies, analytic and smooth globalizations of V.
- (Schmid)¹ An interesting example is the minimal globalization $V_{\min} = V^{\omega}$ where V^{ω} denotes the analytic vectors . The minimal globalization is an instance of a globalization E which is an inductive limit of Banach spaces.

¹W. Schmid, Boundary value problems for group invariant differential equations, in The Mathematical Heritage of Élie Cartan (Lyon, 1984), Astérisque Numéro Hors Série, (1985), 311–321.

• Let V be a Harish-Chandra module and p a norm on V. $V_p =$ the completion of the normed space (V, p).

- Let V be a Harish-Chandra module and p a norm on V. $V_p =$ the completion of the normed space (V, p).
- (Bernstein-Krötz) *G*-continuous norms: A norm p on V is called *G*-continuous provided there exists a continuous representation $\pi: G \times V_p \to V_p$ of G on the Banach space V_p such that

$$V_p^{K-\text{finite}} \simeq_{(\mathfrak{g},K)} V$$

- Let V be a Harish-Chandra module and p a norm on V. V_p = the completion of the normed space (V, p).
- (Bernstein-Krötz) *G*-continuous norms: A norm p on V is called *G*-continuous provided there exists a continuous representation $\pi: G \times V_p \to V_p$ of G on the Banach space V_p such that

$$V_p^{K-\text{finite}} \simeq_{(\mathfrak{g},K)} V$$

(Thanks to Casselman's subrepresentation theorem)

$$V \hookrightarrow I := (\operatorname{Ind}_P^G \sigma)^{K-\operatorname{finite}}$$

Here $P \subset G$ is a minimal parabolic and σ is a finite dimensional representation of P.

• As I admits many G-continuous norms, for example L^p -norms on $K/K \cap P$ of σ -valued functions, we conclude that every Harish-Chandra module admits G-continuous norms as well.

• Dual Harish-Chandra module:

$$\widetilde{V}:=(V^*)^{K- ext{finite}} \ \ (V^*= ext{algebraic dual of} V).$$

This is also a Harish-Chandra module and $\widetilde{\widetilde{V}}=V$

Dual Harish-Chandra module:

$$\widetilde{V} := (V^*)^{K-\text{finite}} \ \ (V^* = ext{algebraic dual of} V).$$

This is also a Harish-Chandra module and $\widetilde{\widetilde{V}}=V$

ullet Given a G-continuous norm p on V, the dual norm \widetilde{p} defined by

$$\widetilde{p}(\widetilde{v}) := \sup_{p(v) \le 1} |\widetilde{v}(v)| \qquad (\widetilde{v} \in \widetilde{V})$$

is G-continuous as well.

Dual Harish-Chandra module:

$$\widetilde{V} := (V^*)^{K-\text{finite}} \ \ (V^* = ext{algebraic dual of} V).$$

This is also a Harish-Chandra module and $\widetilde{\widetilde{V}}=V$

ullet Given a G-continuous norm p on V, the dual norm \widetilde{p} defined by

$$\widetilde{p}(\widetilde{v}) := \sup_{p(v) \le 1} |\widetilde{v}(v)| \qquad (\widetilde{v} \in \widetilde{V})$$

is G-continuous as well.

- p, q G-continuous norms on V. Then

Matrix coefficients:

• p-G-continuous $\rightsquigarrow V_p$ and $\pi_p(g)v$ -action of G on V_p .

²W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G, Canadian Journal of Mathematics 41 (1989) 385-438.

• Matrix coefficients:

- p-G-continuous $\rightsquigarrow V_p$ and $\pi_p(g)v$ -action of G on V_p .
- ullet Canonical identification $\widetilde{V} o (V_p')^{K- ext{finite}}$
- Let now $v \in V \subset V_p$ and $\widetilde{v}_p \in (V_p')^{K-\text{finite}}$. Then the map $g \mapsto \widetilde{v}_p(\pi_p(g)v)$ is analytic

²W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G, Canadian Journal of Mathematics 41 (1989) 385–438.

• Matrix coefficients:

- ullet p-G-continuous $\leadsto V_p$ and $\pi_p(g)v$ -action of G on V_p .
- ullet Canonical identification $\widetilde{V} o (V_p')^{K- ext{finite}}$
- Let now $v \in V \subset V_p$ and $\widetilde{v}_p \in (V_p')^{K-\text{finite}}$. Then the map $g \mapsto \widetilde{v}_p(\pi_p(g)v)$ is analytic and independent of the choice² of the completion V_p .
- The matrix-coefficient attached to v and \tilde{v} :

$$m_{v,\widetilde{v}}(g) := \widetilde{v}(g \cdot v).$$

²W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G, Canadian Journal of Mathematics 41 (1989), 385–438. □ □

$$w(gh) \le w(g)w(h)$$
 $(g, h \in G)$.

$$w(gh) \leq w(g)w(h)$$
 $(g, h \in G)$.

For example, every G-continuous norm p is bounded by a weight, namely the operator norm

$$w_p(g) := \sup_{p(v) \le 1} p(g \cdot v). \tag{1}$$

$$w(gh) \leq w(g)w(h)$$
 $(g, h \in G)$.

For example, every G-continuous norm p is bounded by a weight, namely the operator norm

$$w_p(g) := \sup_{p(v) \le 1} p(g \cdot v). \tag{1}$$

 \bullet Given a Harish-Chandra module V, and a weight w, we consider

$$Norm(V, w) := \{ p \mid G\text{-continuous norm} : p(g \cdot v) \leq Cw(g)p(v) \}.$$

$$w(gh) \leq w(g)w(h)$$
 $(g, h \in G)$.

For example, every G-continuous norm p is bounded by a weight, namely the operator norm

$$w_p(g) := \sup_{p(v) \le 1} p(g \cdot v). \tag{1}$$

 \bullet Given a Harish-Chandra module V, and a weight w, we consider

$$Norm(V, w) := \{ p \mid G\text{-continuous norm} : p(g \cdot v) \leq Cw(g)p(v) \}.$$

• Aim: **Structure** the set Norm(V, w).

{Banach globalizations with fixed growth rate}

• (*G*-invariant norms) w=1, in this case $\operatorname{Norm}(V):=\operatorname{Norm}(V,1)$ consists of isometric norms, i.e. norms for which $p(g\cdot v)=p(v)$ for all $g\in G$ and $v\in V$.

Some interesting examples

- Tempered representations(Cowling³, Kunze-Stein)
 - G- semi-simple Lie group with finite center. Let $\pi \in \widehat{G}$ be tempered and V the corresponding Harish-Chandra module. Fix a unitary norm g on V.

³M. Cowling, The Kunze-Stein Phenomenon, Ann. Math. 107 (2), 209–234.

Some interesting examples

- Tempered representations(Cowling³, Kunze-Stein)
 - G- semi-simple Lie group with finite center. Let $\pi \in \widehat{G}$ be tempered and V the corresponding Harish-Chandra module. Fix a unitary norm q on V.
 - Recall that π is tempered provided all matrix coefficients $m_{v,\widetilde{v}}$ lie in $L^r(G)$ for r>2.

³M. Cowling, The Kunze-Stein Phenomenon, Ann. Math. 107 (2), 209–234. ▶

Some interesting examples

- Tempered representations(Cowling³, Kunze-Stein)
 - G- semi-simple Lie group with finite center. Let $\pi \in \widehat{G}$ be tempered and V the corresponding Harish-Chandra module. Fix a unitary norm q on V.
 - Recall that π is tempered provided all matrix coefficients $m_{v,\widetilde{v}}$ lie in $L^r(G)$ for r > 2.
 - Fix now $0 \neq \widetilde{v} \in \widetilde{V}$ and define isometric norms

$$p^{r}(v) := \|m_{v,\widetilde{v}}\|_{L^{r}(G)} \qquad (v \in V)$$

for all $2 < r < \infty$.

³M. Cowling, The Kunze-Stein Phenomenon, Ann. Math. 107 (2), 209–234. ▶

Some interesting examples

- Tempered representations(Cowling³, Kunze-Stein)
 - G- semi-simple Lie group with finite center. Let $\pi \in \widehat{G}$ be tempered and V the corresponding Harish-Chandra module. Fix a unitary norm q on V.
 - Recall that π is tempered provided all matrix coefficients $m_{v,\widetilde{v}}$ lie in $L^r(G)$ for r > 2.
 - ullet Fix now $0
 eq \widetilde{v} \in \widetilde{V}$ and define isometric norms

$$p^{r}(v) := \|m_{v,\widetilde{v}}\|_{L^{r}(G)} \qquad (v \in V)$$

for all $2 < r < \infty$.

• The Kunze-Stein phenomenon:

$$p^r(v) \lesssim q(v)$$
 $(r > 2)$

³M. Cowling, The Kunze-Stein Phenomenon, Ann. Math. 107(2), 209–234.

- Automorphic norms(Bernstein-Reznikov⁴)
 - $G = SL_2(\mathbb{R})$, and Γ =co-compact lattice in G, i.e., $X = \Gamma \backslash G$ is compact. E- K-spherical unitary principal series representation

⁴J. Bernstein and A. Reznikov, *Sobolev Norms of Automorphic Functionals*, IMRN, International Mathematics Research Notices 2002, No. 40, 2155–2174 € ► 4 € ► €

- Automorphic norms(Bernstein-Reznikov⁴)
 - $G = SL_2(\mathbb{R})$, and Γ =co-compact lattice in G, i.e., $X = \Gamma \backslash G$ is compact. E- K-spherical unitary principal series representation
 - V H-C module and $\eta: E^{\infty} \to \mathbb{C}$ continuous Γ invariant functional. We consider the Automorphic forms:

$$m_{v,\eta}(\Gamma g) := \eta(g \cdot v) \qquad (v \in V, g \in G).$$

⁴J. Bernstein and A. Reznikov, *Sobolev Norms of Automorphic Functionals*, IMRN, International Mathematics Research Notices 2002, No. 40, 2155–2174 € € ✓ € ► €

- Automorphic norms(Bernstein-Reznikov⁴)
 - $G = SL_2(\mathbb{R})$, and Γ =co-compact lattice in G, i.e., $X = \Gamma \backslash G$ is compact. E- K-spherical unitary principal series representation
 - V H-C module and $\eta: E^{\infty} \to \mathbb{C}$ continuous Γ invariant functional. We consider the Automorphic forms:

$$m_{v,\eta}(\Gamma g) := \eta(g \cdot v) \qquad (v \in V, g \in G).$$

q given by

$$q(v)^2 = \int_X |m_{v,\eta}(\Gamma g)|^2 d(\Gamma g) \qquad (v \in V)$$

is a unitary norm.

- Automorphic norms(Bernstein-Reznikov⁴)
 - $G = SL_2(\mathbb{R})$, and $\Gamma = \text{co-compact lattice in } G$, i.e., $X = \Gamma \backslash G$ is compact. E- K-spherical unitary principal series representation
 - V H-C module and $\eta: E^{\infty} \to \mathbb{C}$ continuous Γ invariant functional. We consider the Automorphic forms:

$$m_{v,\eta}(\Gamma g) := \eta(g \cdot v) \qquad (v \in V, g \in G).$$

q given by

$$q(v)^2 = \int_X |m_{v,\eta}(\Gamma g)|^2 d(\Gamma g) \qquad (v \in V)$$

is a unitary norm.

• Another interesting isometric norm is

$$p_{\mathsf{aut}}(v) := \sup_{x \in X} |m_{v,\eta}(x)| \qquad (v \in V).$$

⁴J. Bernstein and A. Reznikov, Sobolev Norms of Automorphic Functionals, IMRN, International Mathematics Research Notices 2002, No. 40, 2155–2174.

- Automorphic norms(Bernstein-Reznikov⁴)
 - $G = SL_2(\mathbb{R})$, and $\Gamma = \text{co-compact lattice in } G$, i.e., $X = \Gamma \setminus G$ is compact. E- K-spherical unitary principal series representation
 - V H-C module and $\eta: E^{\infty} \to \mathbb{C}$ continuous Γ invariant functional. We consider the Automorphic forms:

$$m_{v,\eta}(\Gamma g) := \eta(g \cdot v) \qquad (v \in V, g \in G).$$

q given by

$$q(v)^2 = \int_X |m_{v,\eta}(\Gamma g)|^2 d(\Gamma g) \qquad (v \in V)$$

is a unitary norm.

Another interesting isometric norm is

$$p_{\mathsf{aut}}(v) := \sup_{x \in X} |m_{v,\eta}(x)| \qquad (v \in V).$$

• Clearly, $q \leq \sqrt{\operatorname{Vol}(X)} p_{\text{aut}}$. Also as shown by BR

$$p_{\mathsf{aut}} \lesssim q_s \iff s > \frac{1}{2}$$

⁴J. Bernstein and A. Reznikov, Sobolev Norms of Automorphic Functionals, IMRN, International Mathematics Research Notices 2002, No. 40, 2155-2174 E A SE A SE

Structuring Norm(V, w)

There is a natural equivalence relation on $\operatorname{Norm}(V,w)$: For $p,q\in\operatorname{Norm}(V,w)$, we say that $p\sim q$ iff $p\lesssim q$, and $q\lesssim p$. This leads to

```
\mathfrak{Norm}(V, w) := \mathsf{Norm}(V, w) / \sim.
```

Structuring Norm(V, w)

There is a natural equivalence relation on $\operatorname{Norm}(V, w)$: For $p, q \in \operatorname{Norm}(V, w)$, we say that $p \sim q$ iff $p \lesssim q$, and $q \lesssim p$. This leads to

$$\mathfrak{Norm}(V, w) := \mathsf{Norm}(V, w) / \sim$$
.

- Denote the equivalence class of a norm p by [p].
- Notice that \lesssim on Norm(V, w) induces a partial order \leq on $\mathfrak{Norm}(V, w)$.

Structuring Norm(V, w)

There is a natural equivalence relation on $\operatorname{Norm}(V,w)$: For $p,q\in\operatorname{Norm}(V,w)$, we say that $p\sim q$ iff $p\lesssim q$, and $q\lesssim p$. This leads to

$$\mathfrak{Norm}(V, w) := \mathsf{Norm}(V, w) / \sim$$
.

- Denote the equivalence class of a norm p by [p].
- Notice that \lesssim on Norm(V, w) induces a partial order \leq on $\mathfrak{Norm}(V, w)$.

Proposition

If $Norm(V, w) \neq \emptyset$. Then $\mathfrak{Norm}(V, w)$ has a unique minimal element $[p_{\min}^w]$, and a unique maximal element $[p_{\max}^w]$.

- Special case: Fix a cyclic vector $\widetilde{v} \in \widetilde{V}$.
 - A representative for the equivalence class of minimal norm:

$$p_{\min}^w(v) := \sup_{g \in G} \frac{|m_{v,\widetilde{v}}(g)|}{w(g)} \qquad (v \in V).$$

- Special case: Fix a cyclic vector $\widetilde{v} \in \widetilde{V}$.
 - A representative for the equivalence class of minimal norm:

$$p_{\min}^{w}(v) := \sup_{g \in G} \frac{|m_{v,\widetilde{v}}(g)|}{w(g)} \qquad (v \in V).$$

- Take $p \in \text{Norm}(V, w) \leadsto p(g \cdot v) \le Cw(g)p(v)$
- $\bullet \ |\widetilde{v}(g \cdot v)| \leq p(g \cdot v)\widetilde{p}(\widetilde{v}) \leq Cw(g)p(v)\widetilde{p}(\widetilde{v})$

- Special case: Fix a cyclic vector $\widetilde{v} \in \widetilde{V}$.
 - A representative for the equivalence class of minimal norm:

$$p_{\min}^{w}(v) := \sup_{g \in G} \frac{|m_{v,\widetilde{v}}(g)|}{w(g)} \qquad (v \in V).$$

- Take $p \in \text{Norm}(V, w) \leadsto p(g \cdot v) \leq Cw(g)p(v)$
- $|\widetilde{v}(g \cdot v)| \leq p(g \cdot v)\widetilde{p}(\widetilde{v}) \leq Cw(g)p(v)\widetilde{p}(\widetilde{v})$
- i.e., $p_{\min}(v) \le C\widetilde{p}(\widetilde{v})p(v) = \widetilde{C}p(v)$ $(v \in V)$

- Special case: Fix a cyclic vector $\widetilde{v} \in \widetilde{V}$.
 - A representative for the equivalence class of minimal norm:

$$p_{\min}^{w}(v) := \sup_{g \in G} \frac{|m_{v,\widetilde{v}}(g)|}{w(g)} \qquad (v \in V).$$

- Take $p \in \mathsf{Norm}(V, w) \leadsto p(g \cdot v) \le Cw(g)p(v)$
- $|\widetilde{v}(g \cdot v)| \le p(g \cdot v)\widetilde{p}(\widetilde{v}) \le Cw(g)p(v)\widetilde{p}(\widetilde{v})$
- i.e., $p_{\min}(v) \leq C\widetilde{p}(\widetilde{v})p(v) = \widetilde{C}p(v)$ $(v \in V)$
- ullet Using $w(gh^{-1}) \geq rac{w(g)}{w(h)}$ we see that

$$p_{\min}^{w}(g \cdot v) = \sup_{h \in G} \frac{|\widetilde{v}(h \cdot g \cdot v)|}{w(h)} = \sup_{h \in G} \frac{|\widetilde{v}(h \cdot v)|}{w(hg^{-1})} \le w(g)p_{\min}^{w}(v)$$

- Special case: Fix a cyclic vector $\widetilde{v} \in \widetilde{V}$.
 - A representative for the equivalence class of minimal norm:

$$p_{\min}^{w}(v) := \sup_{g \in G} \frac{|m_{v,\widetilde{v}}(g)|}{w(g)} \qquad (v \in V).$$

- Take $p \in \text{Norm}(V, w) \leadsto p(g \cdot v) \le Cw(g)p(v)$
- $|\widetilde{v}(g \cdot v)| \le p(g \cdot v)\widetilde{p}(\widetilde{v}) \le Cw(g)p(v)\widetilde{p}(\widetilde{v})$
- i.e., $p_{\min}(v) \leq C\widetilde{p}(\widetilde{v})p(v) = \widetilde{C}p(v)$ $(v \in V)$
- ullet Using $w(gh^{-1}) \geq rac{w(g)}{w(h)}$ we see that

$$p_{\min}^{w}(g \cdot v) = \sup_{h \in G} \frac{|\widetilde{v}(h \cdot g \cdot v)|}{w(h)} = \sup_{h \in G} \frac{|\widetilde{v}(h \cdot v)|}{w(hg^{-1})} \le w(g)p_{\min}^{w}(v)$$

• Also, from $p_{\min}^w \lesssim p$ we obtain that orbit maps $G \to V_{p_{\min}^w}, \ g \mapsto g \cdot v$ are continuous for all $v \in V$.

- Special case: Fix a cyclic vector $\widetilde{v} \in \widetilde{V}$.
 - A representative for the equivalence class of minimal norm:

$$p_{\min}^{w}(v) := \sup_{g \in G} \frac{|m_{v,\widetilde{v}}(g)|}{w(g)} \qquad (v \in V).$$

- Take $p \in \text{Norm}(V, w) \leadsto p(g \cdot v) \le Cw(g)p(v)$
- $|\widetilde{v}(g \cdot v)| \leq p(g \cdot v)\widetilde{p}(\widetilde{v}) \leq Cw(g)p(v)\widetilde{p}(\widetilde{v})$
- i.e., $p_{\min}(v) \le C\widetilde{p}(\widetilde{v})p(v) = \widetilde{C}p(v)$ $(v \in V)$
- ullet Using $w(gh^{-1}) \geq rac{w(g)}{w(h)}$ we see that

$$p_{\min}^{w}(g \cdot v) = \sup_{h \in G} \frac{|\widetilde{v}(h \cdot g \cdot v)|}{w(h)} = \sup_{h \in G} \frac{|\widetilde{v}(h \cdot v)|}{w(hg^{-1})} \le w(g)p_{\min}^{w}(v)$$

- Also, from $p_{\min}^w \lesssim p$ we obtain that orbit maps $G \to V_{p_{\min}^w}$, $g \mapsto g \cdot v$ are continuous for all $v \in V$.
- For the maximal norm, dualize the construction!

Sobolev norms and "smooth" globalization

• Standard Sobolev norm Fix a norm p on V. Now a fixed basis X_1,\ldots,X_n of $\mathfrak g$ we define for every $k\in\mathbb N_0$ a norm p_k^{st} by

$$p_k^{\mathrm{st}}(v) := \left(\sum_{\substack{lpha \in \mathbb{N}_0^n \ |lpha| \leq k}} p(X_1^{lpha_1} \dots X_n^{lpha_n} v)^2
ight)^{rac{1}{2}}.$$

- Different choices of a basis for $\mathfrak g$ lead to equivalent norms.
- Monotonic i.e., $p_k^{\text{st}} \leq p_{k+1}^{\text{st}}$.

Sobolev norms and "smooth" globalization

• Standard Sobolev norm Fix a norm p on V. Now a fixed basis X_1,\ldots,X_n of $\mathfrak g$ we define for every $k\in\mathbb N_0$ a norm p_k^{st} by

$$p_k^{\rm st}(v) := \left(\sum_{\substack{\alpha \in \mathbb{N}_0^n \\ |\alpha| \le k}} p(X_1^{\alpha_1} \dots X_n^{\alpha_n} v)^2\right)^{\frac{1}{2}}.$$

- ullet Different choices of a basis for $\mathfrak g$ lead to equivalent norms.
- Monotonic i.e., $p_k^{\text{st}} \leq p_{k+1}^{\text{st}}$.
- If $p \in \text{Norm}(V, w)$, then p_k^{st} is G-continuous but one has to enlarge the weight!

Sobolev norms and "smooth" globalization

• Standard Sobolev norm Fix a norm p on V. Now a fixed basis X_1,\ldots,X_n of $\mathfrak g$ we define for every $k\in\mathbb N_0$ a norm p_k^{st} by

$$p_k^{\rm st}(v) := \left(\sum_{\substack{\alpha \in \mathbb{N}_0^n \\ |\alpha| \le k}} p(X_1^{\alpha_1} \dots X_n^{\alpha_n} v)^2\right)^{\frac{1}{2}}.$$

- Different choices of a basis for g lead to equivalent norms.
- Monotonic i.e., $p_k^{\text{st}} \leq p_{k+1}^{\text{st}}$.
- If $p \in \text{Norm}(V, w)$, then p_k^{st} is G-continuous but one has to enlarge the weight!

Theorem 1 (Casselman-Wallach)

For any pair of G-continuous norms p, q on a Harish-Chandra module V there exists a $k \in \mathbb{N}$ such that $p \lesssim q_k^{\text{st}}$.

Theorem 2 (Casselman-Wallach)

For any pair of G-continuous norms p, q on a Harish-Chandra module V there exists a $k \in \mathbb{N}$ such that $p \lesssim q_k^{\text{st}}$.

• $(p_k^{\text{st}})_k$ and $(q_k^{\text{st}})_k$ define the same topology!

⁵J. Bernstein, B. Krötz, Smooth Fréchet globalizations of Harish-Chandra modules. Isr. J. Math. 199, 45-111 (2014). https://doi.org/10.1007/s11856-013-0056-1

Theorem 2 (Casselman-Wallach)

For any pair of G-continuous norms p, q on a Harish-Chandra module V there exists a $k \in \mathbb{N}$ such that $p \lesssim q_k^{\text{st}}$.

- $(p_k^{\text{st}})_k$ and $(q_k^{\text{st}})_k$ define the same topology!
- The identity map $V \to V$ extends to a G-isomorphism of Fréchet spaces $V_p^{\infty} \to V_q^{\infty}$. Hence there is up to isomorphism only one SF-globalization of V. This globalization is denoted by V^{∞} .

⁵J. Bernstein, B. Krötz, Smooth Fréchet globalizations of Harish-Chandra modules. Isr. J. Math. 199, 45–111 (2014). https://doi.org/10.1007/s11856-013-0056-1

Theorem 2 (Casselman-Wallach)

For any pair of G-continuous norms p, q on a Harish-Chandra module V there exists a $k \in \mathbb{N}$ such that $p \lesssim q_k^{\mathrm{st}}$.

- $(p_k^{\rm st})_k$ and $(q_k^{\rm st})_k$ define the same topology!
- The identity map $V \to V$ extends to a G-isomorphism of Fréchet spaces $V_p^\infty \to V_q^\infty$. Hence there is up to isomorphism only one SF-globalization of V. This globalization is denoted by V^∞ .

Proposition

Given a G-continuous norm p on a Harish-Chandra module, a vector $v \in V_p$ is smooth if and only if it is K-smooth.

⁵J. Bernstein, B. Krötz, Smooth Fréchet globalizations of Harish-Chandra modules. Isr. J. Math. 199, 45–111 (2014). https://doi.org/10.1007/s11856-013-0056-1

 $V ext{-Harish-Chandra module}$, p a G-continuous norm on V.

ullet Take $\Delta_{\mathcal{K}} \in U(\mathfrak{k})$ -Laplace element. Consider for any $s \in \mathbb{R}$,

$$D_s:=(1+\Delta_K)^{\frac{s}{2}}.$$

• This acts as a scalar on the K types, i.e.,

$$D_s|_{V[\tau]} = C_{\tau}^{\frac{s}{2}} \cdot \mathrm{id}_{V[\tau]} \qquad (\tau \in \widehat{K}).$$

V-Harish-Chandra module , p a G-continuous norm on V.

ullet Take $\Delta_{\mathcal{K}} \in U(\mathfrak{k})$ -Laplace element. Consider for any $s \in \mathbb{R}$,

$$D_s:=(1+\Delta_K)^{\frac{s}{2}}.$$

• This acts as a scalar on the K types, i.e.,

$$D_s|_{V[\tau]} = C_{\tau}^{\frac{s}{2}} \cdot \mathrm{id}_{V[\tau]} \qquad (\tau \in \widehat{K}).$$

We define an s-th Sobolev norm on V by

$$p_s(v) := p(D_s v) \qquad (v \in V).$$

V-Harish-Chandra module , p a G-continuous norm on V.

ullet Take $\Delta_{\mathcal{K}} \in \mathcal{U}(\mathfrak{k})$ -Laplace element. Consider for any $s \in \mathbb{R}$,

$$D_s:=(1+\Delta_K)^{\frac{s}{2}}.$$

• This acts as a scalar on the K types, i.e.,

$$D_s|_{V[\tau]} = C_{\tau}^{\frac{s}{2}} \cdot \mathrm{id}_{V[\tau]} \qquad (\tau \in \widehat{K}).$$

• We define an s-th Sobolev norm on V by

$$p_s(v) := p(D_s v) \qquad (v \in V).$$

Example

Take $G = SL_2(\mathbb{R})$, and K = SO(2). Then $\widehat{K} \simeq \mathbb{Z}$. For $v = \sum_{n \in \mathbb{Z}} v_n$,

$$p_s(v) = \sum_{n \in \mathbb{Z}} (1 + |n|)^s v_n.$$

 $p ext{-}G ext{-} ext{continuous norm on }V ext{, and }s^{th} ext{ Sobolev norm }p_s:=p(D_s\cdot)$

- Properties:
 - $p \le q \Rightarrow p_s \le q_s$

• (Duality)
$$\widetilde{(p_s)} = \widetilde{p}_{-s} \qquad (s \in \mathbb{R})$$

p-G-continuous norm on V, and s^{th} Sobolev norm $p_s := p(D_s \cdot)$

- Properties:
 - $p \le q \Rightarrow p_s \le q_s$
 - $\bullet (p_s)_t = p_{s+t} \qquad (s, t \in \mathbb{R})$
 - (Duality) $\widetilde{(p_s)} = \widetilde{p}_{-s}$ $(s \in \mathbb{R})$
 - (Issue-1) p_s may not be G-continuous. However,

Lemma

For any $k \in \mathbb{N}$ there exists an $s \ge 0$ such that $p_k^{\mathrm{st}} \lesssim p_s$, and vice versa.

• (Issue-2) It is not clear that $(p_s)_{s\geq 0}$ is monotonous. Well, if p is K-Hermitian then, it is certainly is, i.e., $p\lesssim p_s$ holds for $s\geq 0$.

A new invariant

•Sobolev "distance" on Norm(V, w)

Given [p], $[q] \in \mathfrak{Norm}(V, w)$ we set

$$d_{\rightarrow}^{w}([p],[q]) = \inf\{s \geq 0 \mid p \lesssim q_s\}$$

and define

$$d^{w}([p],[q]) = \max\{d_{\rightarrow}([p],[q]),d_{\rightarrow}([q],[p])\}.$$

A new invariant

•Sobolev "distance" on Norm(V, w)

Given [p], $[q] \in \mathfrak{Norm}(V, w)$ we set

$$d_{\rightarrow}^{w}([p],[q]) = \inf\{s \geq 0 \mid p \lesssim q_s\}$$

and define

$$d^{w}([p],[q]) = \max\{d_{\rightarrow}([p],[q]),d_{\rightarrow}([q],[p])\}.$$

Lemma

 $(\mathfrak{Norm}(V, w), d)$ is pseudo-metric space.

A new invariant

•Sobolev "distance" on Norm(V, w)

Given [p], $[q] \in \mathfrak{Norm}(V, w)$ we set

$$d_{\rightarrow}^{w}([p],[q]) = \inf\{s \geq 0 \mid p \lesssim q_s\}$$

and define

$$d^{w}([p],[q]) = \max\{d_{\rightarrow}([p],[q]), d_{\rightarrow}([q],[p])\}.$$

Lemma

 $(\mathfrak{Norm}(V, w), d)$ is pseudo-metric space.

Sobolev-w-gap

$$s(V, w) = d([p_{\min}^w], [p_{\max}^w])$$

In other words,

$$s(V, w) := \inf\{s \geq 0 \mid p_{\max}^w \lesssim p_{\min,s}^w\}.$$

• The pseudometric d^w and the Sobolev gap s(V, w) are independent of the choice of the maximal compact subgroup K.

- The pseudometric d^w and the Sobolev gap s(V, w) are independent of the choice of the maximal compact subgroup K.
- What if one uses a different family of Sobolev norms? —For example, the standard family $\{p_k^{st}\}$ \leadsto standard Sobolev gap

$$s^{\mathrm{st}}(V, w) = \min\{k \in \mathbb{N}_0 \mid p_{\mathrm{max}}^w \lesssim (p_{\mathrm{min}}^w)_k^{\mathrm{st}}\}$$

Note that the $s^{\rm st}(V,w)$ is a more coarse invariant of V than the Sobolev gap s(V,w). The sandwiching of Sobolev norms yields universal constants c,C>0 such that

$$cs^{\mathrm{st}}(V, w) \leq s(V, w) \leq Cs^{\mathrm{st}}(V, w)$$

- The pseudometric d^w and the Sobolev gap s(V, w) are independent of the choice of the maximal compact subgroup K.
- What if one uses a different family of Sobolev norms? —For example, the standard family $\{p_k^{st}\}$ \leadsto standard Sobolev gap

$$s^{\mathrm{st}}(\mathit{V}, \mathit{w}) = \min\{k \in \mathbb{N}_0 \mid p_{\mathrm{max}}^{\mathit{w}} \lesssim (p_{\mathrm{min}}^{\mathit{w}})_k^{\mathrm{st}}\}$$

Note that the $s^{\rm st}(V,w)$ is a more coarse invariant of V than the Sobolev gap s(V,w). The sandwiching of Sobolev norms yields universal constants c,C>0 such that

$$cs^{\mathrm{st}}(V, w) \leq s(V, w) \leq Cs^{\mathrm{st}}(V, w)$$

- Duality: $s(V, w) = s(\widetilde{V}, w^{\sharp})$. Here $w^{\sharp}(g) = w(g^{-1})$. In particular, $s(V, w) = s(V, w^{\sharp})$ if V is self-dual, i.e. $V \simeq \widetilde{V}$.
- *Monotonicity:* Let w_1 , w_2 be two weights with $w_1 \le w_2$. Then $s(V, w_1) \le s(V, w_2)$.

• **Infimum construction:** For a family $(q_{\alpha})_{\alpha \in \mathcal{A}}$ of seminorms on a vector space E one can define the seminorm $\inf_{\alpha \in \mathcal{A}} q_{\alpha}$ of the family by

$$\inf_{\alpha \in \mathcal{A}} q_{\alpha}(v) := \inf_{v = \sum_{\alpha \in \mathcal{A}} v_{\alpha}} \sum_{\alpha \in \mathcal{A}} q_{\alpha}(v_{\alpha}) \qquad (v \in E).$$

• **Infimum construction:** For a family $(q_{\alpha})_{\alpha \in \mathcal{A}}$ of seminorms on a vector space E one can define the seminorm $\inf_{\alpha \in \mathcal{A}} q_{\alpha}$ of the family by

$$\inf_{\alpha \in \mathcal{A}} q_{\alpha}(v) := \inf_{v = \sum_{\alpha \in \mathcal{A}} v_{\alpha}} \sum_{\alpha \in \mathcal{A}} q_{\alpha}(v_{\alpha}) \qquad (v \in E).$$

Given a norm p on V^{∞} we define

$$p^{G,w} = p^G = \inf_{g \in G} w(g^{-1})p(g \cdot)$$

• Infimum construction: For a family $(q_{\alpha})_{\alpha \in \mathcal{A}}$ of seminorms on a vector space E one can define the seminorm $\inf_{\alpha \in \mathcal{A}} q_{\alpha}$ of the family by

$$\inf_{\alpha \in \mathcal{A}} q_{\alpha}(v) := \inf_{v = \sum_{\alpha \in \mathcal{A}} v_{\alpha}} \sum_{\alpha \in \mathcal{A}} q_{\alpha}(v_{\alpha}) \qquad (v \in E).$$

Given a norm p on V^{∞} we define

$$p^{G,w} = p^G = \inf_{g \in G} w(g^{-1})p(g \cdot)$$

- p^G is the largest semi-norm on V^{∞} with $p^G \leq w(g^{-1})p(g \cdot)$.
- If there exists a $q \in \text{Norm}(V, w)$ such that $q \leq p$, then $q \leq p^G$ and p^G is a norm. If in addition there exists a G-continuous norm r on V such that $p \leq r$, then $p^G \in \text{Norm}(V, w)$.
- Let $p \in \text{Norm}(V, w)$. If $s \ge 0$ is such that $p \le p_s$, then

$$p_s^G := (p_s)^G \in \mathsf{Norm}(V, w).$$

Proposition (Stabilization property)

There exists a S > 0 so that

$$[p_{\max}] = [p_s^G] \qquad (s > S).$$

In particular, if p is monotonous, then S = s(V, w).

Visualize:

- $0 \le s_1 \le s_2 \le \dots$ ascending chain
- $p \le p_{s_1} \le p_{s_2} \le ...$
- ascending chain in Norm $(V, w): p^G \leq p_{s_1}^G \leq p_{s_2}^G \leq \dots$ -becomes stationary when taking equivalence classes!

G-invariant norms

Consider the case where w=1, in which case $\operatorname{Norm}(V):=\operatorname{Norm}(V,1)$ consists of isometric norms, i.e. norms for which $p(g\cdot v)=p(v)$ for all $g\in G$ and $v\in V$. As before we write p_{\min} and p_{\max} for representatives of the minimal and maximal element in $\mathfrak{Norm}(V)$, respectively.

Theorem 3

Assume that V is unitarizable and let q be a unitary norm. Then, in the pseudometric space $(\mathfrak{Norm}(V), d)$:

$$d([q], [p_{\min}]) = d([q], [p_{\max}])$$

and in particular

$$s(V) \leq 2d([q], [p_{\max}])$$
.

Sobolev gap for $SL_2(\mathbb{R})$

Theorem 4

Let $G=SL_2(\mathbb{R})$ and $V\neq \mathbb{C}$ be a unitarizable irreducible Harish-Chandra module and [q] be the equivalence class of the unitary norm. Then

$$d([q], [p_{\max}]) = \frac{1}{2} = d([q], [p_{\min}]).$$

In particular

$$s(V)=1$$
.

Sobolev gap for $\mathit{SL}_2(\mathbb{R})$

Theorem 4

Let $G=SL_2(\mathbb{R})$ and $V\neq \mathbb{C}$ be a unitarizable irreducible Harish-Chandra module and [q] be the equivalence class of the unitary norm. Then

$$d([q], [p_{\max}]) = \frac{1}{2} = d([q], [p_{\min}]).$$

In particular

$$s(V)=1$$
.

- Fix $\pi \in \widehat{G}$. Let V be the corresponding Harish-Chandra module, i.e., $V = \pi^{K-\text{finite}}$. Recall that K = SO(2) and $\widehat{K} \simeq \mathbb{Z}$.
- $S = S(V) = Spec_K(V) \subset \mathbb{Z}$ i.e., $V = \bigoplus_{n \in S} \mathbb{C}e_n$

Sobolev gap for $SL_2(\mathbb{R})$

Theorem 4

Let $G=SL_2(\mathbb{R})$ and $V\neq \mathbb{C}$ be a unitarizable irreducible Harish-Chandra module and [q] be the equivalence class of the unitary norm. Then

$$d([q], [p_{\max}]) = \frac{1}{2} = d([q], [p_{\min}]).$$

In particular

$$s(V)=1$$
.

- Fix $\pi \in \widehat{G}$. Let V be the corresponding Harish-Chandra module, i.e., $V = \pi^{K-\text{finite}}$. Recall that K = SO(2) and $\widehat{K} \simeq \mathbb{Z}$.
- $S = S(V) = Spec_K(V) \subset \mathbb{Z}$ i.e., $V = \bigoplus_{n \in S} \mathbb{C}e_n$
- For example, if π belongs to the unitary principal series, then $S = 2\mathbb{Z}$ or $2\mathbb{Z} + 1$ (depending on the parametrization).

Theorem 5

Let $\pi \in \widehat{G}$ be such that $\pi \neq 1$. Fix $m \in Spec_K(\pi)$. Then for $n \neq m$,

$$\sup_{g\in G}|\langle \pi(g)e_m^{\pi},e_n^{\pi}\rangle| \asymp_{\pi,m} \frac{1}{\sqrt{1+|n|}},$$

except for one representation of the principal series where an additional log-factor is needed.

Theorem 5

Let $\pi \in \widehat{G}$ be such that $\pi \neq 1$. Fix $m \in Spec_K(\pi)$. Then for $n \neq m$,

$$\sup_{g\in G} |\langle \pi(g)e_m^{\pi}, e_n^{\pi}\rangle| \asymp_{\pi,m} \frac{1}{\sqrt{1+|n|}},$$

except for one representation of the principal series where an additional log-factor is needed.

Estimates of the minimal and maximal norms :

$$p_{\min}(e_n) \asymp \frac{1}{\sqrt{1+|n|}}, \quad p_{\max}(e_n) \asymp \sqrt{1+|n|}$$

• Then for any s for which $p_{\max} \lesssim p_{\min,s}$, we must have

$$p_{\max}(e_n) \lesssim p_{\min,s}(e_n) \implies (1+|n|)^{\frac{1}{2}} \lesssim (1+|n|)^{s-\frac{1}{2}}$$

• So, $s \ge 1$ which leads to $s(V) \ge 1$.

$$p_{\max} \lesssim q_{\frac{1}{2}+\epsilon}$$

which leads to
$$d([p_{\max}], q) = \frac{1}{2}$$
. Hence

$$s(V) \leq 2d([p_{\max}], q) = 1.$$

$$p_{\max} \lesssim q_{\frac{1}{2}+\epsilon}$$

which leads to $d([p_{\max}], q) = \frac{1}{2}$. Hence

$$s(V) \le 2d([p_{\max}], q) = 1.$$

• Enough to show that $B_{q_{\frac{1}{2}+\epsilon}}\subset B_{\max}$ i.e., B_{\max} contains up to scale all sequences $\sum_{n\in S}a_n|n|^{-(\frac{1}{2}+\epsilon)}e_n$ with $\sum |a_n|^2\leq 1$ and $\epsilon>0$.

$$p_{\max} \lesssim q_{\frac{1}{2}+\epsilon}$$

which leads to $d([p_{\max}], q) = \frac{1}{2}$. Hence

$$s(V) \leq 2d([p_{\max}], q) = 1.$$

- Enough to show that $B_{q_{\frac{1}{2}+\epsilon}} \subset B_{\max}$ i.e., B_{\max} contains up to scale all sequences $\sum_{n \in S} a_n |n|^{-(\frac{1}{2}+\epsilon)} e_n$ with $\sum |a_n|^2 \le 1$ and $\epsilon > 0$.
- $B_{\max} = \overline{conv}(G \cdot e_m)$, for some fixed $m \in S = Spec_K(V)$. By convexity,

$$\int_{G} g \cdot e_{m} \ d\gamma(g) \in B_{\max}$$

for γ a complex Borel measure on ${\it G}$ with total variation $\|\gamma\| \leq 1.$

$$p_{\max} \lesssim q_{\frac{1}{2}+\epsilon}$$

which leads to $d([p_{\max}], q) = \frac{1}{2}$. Hence

$$s(V) \leq 2d([p_{\max}], q) = 1.$$

- Enough to show that $B_{q_{\frac{1}{2}+\epsilon}} \subset B_{\max}$ i.e., B_{\max} contains up to scale all sequences $\sum_{n \in S} a_n |n|^{-(\frac{1}{2}+\epsilon)} e_n$ with $\sum |a_n|^2 \le 1$ and $\epsilon > 0$.
- $B_{\max} = \overline{conv}(G \cdot e_m)$, for some fixed $m \in S = Spec_K(V)$. By convexity,

$$\int_{G} g \cdot e_{m} \ d\gamma(g) \in B_{\max}$$

for γ a complex Borel measure on G with total variation $\|\gamma\| \leq 1$.

ullet Finally, choose γ such that

$$\int_G \langle g \cdot e_m, e_n \rangle d\gamma(g) \sim_{m,\pi} a_n(\pm) \ n^{-(\frac{1}{2} + \epsilon)}.$$

•
$$d([q], [p_{\text{max}}]) = \frac{1}{2} = d([q], [p_{\text{min}}])$$

- $d([q], [p_{\text{max}}]) = \frac{1}{2} = d([q], [p_{\text{min}}])$
- Let V be a Harish-Chandra module of a unitary principal series and $[q] \in \mathfrak{Norm}(V)$ the equivalence class of the unitary norm. Then the map

$$\iota: [-1/2, 1/2] \to (\mathfrak{Norm}(V), d), \quad s \mapsto [q_s^G]$$

satisfies

$$d([q_s^G], [q_{s'}^G]) \ge |s - s'|$$
 $(s, s' \in [-1/2, 1/2]).$

In particular, ι is injective.

We call $I := \iota([-1/2,1/2]) \subset \mathfrak{Norm}(V)$ the central interval.

- $d([q], [p_{\text{max}}]) = \frac{1}{2} = d([q], [p_{\text{min}}])$
- Let V be a Harish-Chandra module of a unitary principal series and $[q] \in \mathfrak{Norm}(V)$ the equivalence class of the unitary norm. Then the map

$$\iota: [-1/2, 1/2] \to (\mathfrak{Norm}(V), d), \quad s \mapsto [q_s^G]$$

satisfies

$$d([q_s^G], [q_{s'}^G]) \ge |s - s'|$$
 $(s, s' \in [-1/2, 1/2]).$

In particular, ι is injective.

We call $I := \iota([-1/2, 1/2]) \subset \mathfrak{Norm}(V)$ the central interval.

• (V automorphic) $d([q], [p_{aut}]) = 1/2$ and $d([p_{aut}]), [p_{max}]) \ge 1/6$ with $[p_{max}] = [q_s^G]$ for s > 1/2. Hence $[p_{aut}]$ does not lie on I.

- $d([q], [p_{\text{max}}]) = \frac{1}{2} = d([q], [p_{\text{min}}])$
- Let V be a Harish-Chandra module of a unitary principal series and $[q] \in \mathfrak{Norm}(V)$ the equivalence class of the unitary norm. Then the map

$$\iota: [-1/2, 1/2] \to (\mathfrak{Norm}(V), d), \quad s \mapsto [q_s^G]$$

satisfies

$$d([q_s^G], [q_{s'}^G]) \ge |s - s'|$$
 $(s, s' \in [-1/2, 1/2]).$

In particular, ι is injective.

We call $I := \iota([-1/2, 1/2]) \subset \mathfrak{Norm}(V)$ the central interval.

- (V automorphic) $d([q], [p_{aut}]) = 1/2$ and $d([p_{aut}]), [p_{max}]) \ge 1/6$ with $[p_{max}] = [q_s^G]$ for s > 1/2. Hence $[p_{aut}]$ does not lie on I.
- (Contractibility of $\mathfrak{Norm}(V)$?) Continuity of ι ?

- $d([q], [p_{\text{max}}]) = \frac{1}{2} = d([q], [p_{\text{min}}])$
- Let V be a Harish-Chandra module of a unitary principal series and $[q] \in \mathfrak{Norm}(V)$ the equivalence class of the unitary norm. Then the map

$$\iota: [-1/2, 1/2] \to (\mathfrak{Norm}(V), d), \quad s \mapsto [q_s^G]$$

satisfies

$$d([q_s^G], [q_{s'}^G]) \ge |s - s'|$$
 $(s, s' \in [-1/2, 1/2]).$

In particular, ι is injective.

We call $I := \iota([-1/2, 1/2]) \subset \mathfrak{Norm}(V)$ the central interval.

- (V automorphic) $d([q], [p_{aut}]) = 1/2$ and $d([p_{aut}]), [p_{max}]) \ge 1/6$ with $[p_{max}] = [q_s^G]$ for s > 1/2. Hence $[p_{aut}]$ does not lie on I.
- (Contractibility of $\mathfrak{Norm}(V)$?) Continuity of ι ?
- $d([q], [p^r]) =$? Locations of the L^r -norms p^r ? (Kunze-Stein Phenomenon).

• (Finiteness questions) G- Real reductive group

$$\sup_{V\in\mathcal{F}}s(V,w_V)<\infty?$$

 \mathcal{F} - family of Harish-Chandra module.

• (Finiteness questions) G- Real reductive group

$$\sup_{V\in\mathcal{F}}s(V,w_V)<\infty?$$

 \mathcal{F} - family of Harish-Chandra module.

- (positive answers:)
 - $\mathcal{F} = \text{Discrete series}$, $w_v = 1$.
 - **②** $\mathcal{F} = \text{minimal principal}$ series with natural with natural weights depending on the parameters.

• (Finiteness questions) G- Real reductive group

$$\sup_{V\in\mathcal{F}}s(V,w_V)<\infty?$$

 \mathcal{F} - family of Harish-Chandra module.

- (positive answers:)
 - $\mathcal{F} = \text{Discrete series}$, $w_v = 1$.
 - ② $\mathcal{F}=$ minimal principal series with natural with natural weights depending on the parameters. More precisely, G=KAN, P=MAN where $M=Z_K(A)$. For $\lambda\in\mathfrak{a}_\mathbb{C}^*$ and $\sigma\in\widehat{M}$, the Harish-Chandra module of the minimal principal series:

$$V_{\sigma,\lambda}:=\mathit{Ind}_{\mathit{MAN}}^{\mathit{G}}(\sigma\otimes\lambda\otimes1)^{K-\mathrm{finite}}.$$
 We have

$$\sup_{\sigma \in \widehat{M}, \ \lambda \in \mathfrak{a}_{\mathbb{C}}^*} s(V_{\sigma,\lambda}, w_{\lambda}) \leq C.$$

• (Finiteness questions) G- Real reductive group

$$\sup_{V\in\mathcal{F}} s(V, w_V) < \infty?$$

 \mathcal{F} - family of Harish-Chandra module.

- (positive answers:)
 - $\mathcal{F} = \text{Discrete series}$, $w_v = 1$.
 - ② $\mathcal{F}=$ minimal principal series with natural with natural weights depending on the parameters. More precisely, G=KAN, P=MAN where $M=Z_K(A)$. For $\lambda\in\mathfrak{a}_\mathbb{C}^*$ and $\sigma\in\widehat{M}$, the Harish-Chandra module of the minimal principal series:

$$V_{\sigma,\lambda}:=\mathit{Ind}_{MAN}^{G}(\sigma\otimes\lambda\otimes1)^{K-\mathrm{finite}}.$$
 We have

$$\sup_{\sigma \in \widehat{M}, \ \lambda \in \mathfrak{a}_{\mathbb{C}}^*} s(V_{\sigma,\lambda}, w_{\lambda}) \leq C.$$

Open questions

$$\sup_{V\in\operatorname{Irr}(\mathcal{HC})} s(V, w_V) < \infty?$$

References

J. Bernstein, P. Ganguly, B. Krötz, J. Kuit, E. Sayag, On norms on Harish-Chandra modules, *Coming soon!*.

THANK YOU!