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Language of today

@ G :Real reductive group, g = Lie(G)
K C G a maximal compact subgroup. e.g., K = SO(2) and
G = SLL(R)
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Language of today

@ G :Real reductive group, g = Lie(G)

K C G a maximal compact subgroup. e.g., K = SO(2) and
G = SLL(R)

o G- representation E(TVS): group homomorphism 71 : G — GL(E)
such that the action map (g, v) — m(g)v=:1g-v : GXE — E is
continuous.

o E®:={veE:gw— g-v issmooth} — Smooth vectors.

o EK—finite .__ {v € E :dimspan(K - v) < oo}. — K-finite vectors.
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Language of today

@ G :Real reductive group, g = Lie(G)
K C G a maximal compact subgroup. e.g., K = SO(2) and
G = SLL(R)

o G- representation E(TVS): group homomorphism 71 : G — GL(E)
such that the action map (g, v) — m(g)v=:1g-v : GXE — E is
continuous.

o E®:={veE:gw— g-v issmooth} — Smooth vectors.
o EK-finite .— £ ¢ F:dimspan(K -v) < co}. — K-finite vectors.
e What is Harish-Chandra module? Why do we care?
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Language of today

@ G :Real reductive group, g = Lie(G)
K C G a maximal compact subgroup. e.g., K = SO(2) and
G = SLL(R)

o G- representation E(TVS): group homomorphism 71 : G — GL(E)
such that the action map (g, v) — m(g)v=:1g-v : GXE — E is
continuous.

o E®:={veE:gw— g-v issmooth} — Smooth vectors.

o EK-finite .— £ ¢ F:dimspan(K -v) < co}. — K-finite vectors.
e What is Harish-Chandra module? Why do we care?

@ Representation theory: Understand groups through their “actions”

@ If G acts on a set X, G acts on functions on X by

The main difficulty is to decide which space of functions to consider.
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Motivation for Harish-Chandra module

@ Consider the group

af? — 1> =1}

SUL1) = {(2 f) .0, peC,

@ SU(1,1) acts on S! by fractional linear transformations.
~~ Representation of SU(1,1) in E = C(SY), C®(S!), L?(S!) and
C~®(S1) etc. (Action: g-f(x) = f(g~1-x))
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Motivation for Harish-Chandra module

@ Consider the group
%
SU(L,1) = {(ﬁ f) tw, B e Claf> — B =1}

@ SU(1,1) acts on S! by fractional linear transformations.
~~ Representation of SU(1,1) in E = C(SY), C®(S!), L?(S!) and
C~*(S1) etc. (Action: g-f(x) = (g1 x))

@ Though they look like the same representation but the spaces are
“topologically very different”. To have a reasonable classification, it
is desirable to identify them in some sense.
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Motivation for Harish-Chandra module

@ Consider the group

SU(1,1) = {(2 f) ca,BeC |a2— (B2 =1}

@ SU(1,1) acts on S! by fractional linear transformations.
~~ Representation of SU(1,1) in E = C(SY), C®(S!), L?(S!) and
C~*(S1) etc. (Action: g-f(x) = (g1 x))

@ Though they look like the same representation but the spaces are
“topologically very different”. To have a reasonable classification, it
is desirable to identify them in some sense.

o (Harish-Chandra) “algebraic skeleton” V' = functions on S! with
finite Fourier expansion — trigonometric polynomials = £/ ~finite,
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Motivation for Harish-Chandra module

@ Consider the group
%
SU(L,1) = {(ﬁ f) tw, B e Claf> — B =1}

@ SU(1,1) acts on S! by fractional linear transformations.
~~ Representation of SU(1,1) in E = C(SY), C®(S!), L?(S!) and
C~*(S1) etc. (Action: g-f(x) = (g1 x))

@ Though they look like the same representation but the spaces are
“topologically very different”. To have a reasonable classification, it
is desirable to identify them in some sense.

o (Harish-Chandra) “algebraic skeleton” V' = functions on S! with
finite Fourier expansion — trigonometric polynomials = £/ ~finite,

o EK-finite is not closed under the action of SU(1,1). However, it is
closed under the action of both Lie(SU(1,1)) and K.

@ This leads to Harish-Chandra’s concept of " Infinitesimal
equivalence”
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Harish-Chandra’'s Technology!

’Admissible representations (7t, E) ‘

[
EK—finite _ ®T€R E[T]
and dimE[t] < oo.
EK—finite C E® g
acts on FK—finite,

e (Harish-Chandra) (7, E) irreducible and unitary = admissibility

@ ‘“Infinitesimal equivalence” of E and F means algebraic
equivalence of EXfinite 3pq FK—finite
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Harish-Chandra’'s Technology!

(topological object)

’Admissible representations (7t, E) ‘

l (algebraic object)

EK—finite — @TGR E[T]
and dimE[t] < oo. EK—finite _ (3, K)-
EK—finite C E® g module.
acts on EK—finite,
closed G-invariant (bijection)
subspaces of E (g9, K)-SymedU|eS
of EKfﬁmte

e (Harish-Chandra) (7, E) irreducible and unitary = admissibility

@ ‘“Infinitesimal equivalence” of E and F means algebraic
equivalence of EXfinite 3pq FK—finite
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Harish-chandra module

e (g, K)-module: By a (g, K) module V we understand a module for
g and K such that

© The derived action of K coincides with the action of g restricted to
t:= Lie(K).
© The actions are compatible, i.e., forall k € K, X €gand v € V.

k-X-v=Ad(KX- k-v.
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Harish-chandra module

e (g, K)-module: By a (g, K) module V we understand a module for
g and K such that

© The derived action of K coincides with the action of g restricted to
t:= Lie(K).
© The actions are compatible, i.e., forall k € K, X €gand v € V.
k-X-v=Ad(k)X -k-v.

e Harish-Chandra module A (g, K) module V is called a
Harish-Chandra module provided that

@ V is admissible, i.e.,
VT € K, dim Homg(V,T) < co.

@ V is finitely generated as U(g)-module.
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Harish-chandra module

e (g, K)-module: By a (g, K) module V we understand a module for
g and K such that

© The derived action of K coincides with the action of g restricted to
t:= Lie(K).
© The actions are compatible, i.e., forall k € K, X €gand v € V.
k-X-v=Ad(k)X -k-v.

e Harish-Chandra module A (g, K) module V is called a
Harish-Chandra module provided that

@ V is admissible, i.e.,
VT € K, dim Homg(V,T) < co.

@ V is finitely generated as U(g)-module. (~» Countable dimension)

o (Harish-Chandra) If (7t, E) is an irreducibale unitary representation
of G, then EX—fmite s 5 H_C module.
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Globalization questions

@ Given a Harish-Chandra module V/, a complete locally convex
topological vector space E is called a globalization of V provided
that E supports a G-representation such that £/ —finite ~(g,K) V.

1W. Schmid, Boundary value problems for group invariant differential equations, in
The Mathematical Heritage of Elie Cartan (Lyon, 1984), Astérisque Numéro Hors
Série, (1985), 311-321.



Globalization questions

@ Given a Harish-Chandra module V/, a complete locally convex
topological vector space E is called a globalization of V' provided
that E supports a G-representation such that £/ —finite ~(g,K) V.

e (Example) X- Compact homogeneous space for G, e.g., X = G/P
with P minimal parabolic. Then V := L2(X)K N [2(X)® -K-finite
smooth vectors in the right regular representation of G on
L?(X)—Harish-Chandra module. Then L2(X) is a Hilbert
globalization. Also, C%(X), C*®(X) with their respective topologies,
analytic and smooth globalizations of V.

1W. Schmid, Boundary valuq problems for group invariant differential equations, in
The Mathematical Heritage of Elie Cartan (Lyon, 1984), Astérisque Numéro Hors
Série, (1985), 311-321.
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Globalization questions

@ Given a Harish-Chandra module V/, a complete locally convex
topological vector space E is called a globalization of V provided
that E supports a G-representation such that £/ —finite ~(g,K) V.

e (Example) X- Compact homogeneous space for G, e.g., X = G/P
with P minimal parabolic. Then V := L2(X)K N [2(X)® -K-finite
smooth vectors in the right regular representation of G on
L?(X)—Harish-Chandra module. Then L2(X) is a Hilbert
globalization. Also, C%(X), C*®(X) with their respective topologies,
analytic and smooth globalizations of V.

o (Schmid)® An interesting example is the minimal globalization
Vinin = V¢ where V% denotes the analytic vectors . The minimal
globalization is an instance of a globalization E which is an inductive
limit of Banach spaces.

IW. Schmid, Boundary value problems for group invariant differential equations, in
The Mathematical Heritage of Elie Cartan (Lyon, 1984), Astérisque Numéro Hors
Série, (1985), 311-321.



@ Let V be a Harish-Chandra module and p a norm on V.
V), = the completion of the normed space (V, p).
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@ Let V be a Harish-Chandra module and p a norm on V.
V), = the completion of the normed space (V, p).

o (Bernstein-Krétz) G-continuous norms: A norm p on V is called
G-continuous provided there exists a continuous representation
m:G x V,— V,of G on the Banach space V), such that

K —finite ~_
Vp inite ~(g.K) vV
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@ Let V be a Harish-Chandra module and p a norm on V.
V), = the completion of the normed space (V, p).

o (Bernstein-Krétz) G-continuous norms: A norm p on V is called
G-continuous provided there exists a continuous representation
m:G x V,— V,of G on the Banach space V), such that

K —finite ~_
Vp inite ~(g.K) vV

@ (Thanks to Casselman’s subrepresentation theorem)
V < I := (Ind§ o) K ~finite

Here P C G is a minimal parabolic and ¢ is a finite dimensional
representation of P.

@ As | admits many G-continuous norms, for example LP-norms on
K/K N P of g-valued functions, we conclude that every
Harish-Chandra module admits G-continuous norms as well.
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@ Dual Harish-Chandra module:

V = (v*)K-finite (y* = aigebraic dual of V).

This is also a Harish-Chandra module and 6 =V
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@ Dual Harish-Chandra module:

V = (v*)K-finite (y* = aigebraic dual of V).

This is also a Harish-Chandra module and 6 =V

@ Given a G-continuous norm p on V, the dual norm p defined by

p(v):= sup [V(v)] (veV)
p(v)<1

is G-continuous as well.
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@ Dual Harish-Chandra module:

V = (v*)K-finite (5 — 5igebraic dual of V).
This is also a Harish-Chandra module and 6 =V
@ Given a G-continuous norm p on V, the dual norm p defined by

p(v):= sup [V(v)] (veV)
p(v)<1

is G-continuous as well.
@ p, g — G-continuous norms on V. Then
Q p=np
Q@p<qg<+= qg<p
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e Matrix coefficients:
@ p-G-continuous ~» Vj, and 7, (g)v-action of G on V,,.

2\W. Casselman, Canonical extensions of Harish-Chandra modules to
representations of G, Canadian Journal of Mathematics 41 (1989);:385—438.
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e Matrix coefficients:
@ p-G-continuous ~» Vj, and 7, (g)v-action of G on V,,.
o Canonical identification V — (V/})K~finite
@ Letnowv eV CV,and v, € (V;)Kfﬁnite. Then the map
g — Vp(mp(g)v) is analytic

2\W. Casselman, Canonical extensions of Harish-Chandra modules to
representations of G, Canadian Journal of Mathematics 41 (1989);:385—438.
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e Matrix coefficients:
@ p-G-continuous ~» Vj, and 7, (g)v-action of G on V,,.
o Canonical identification V — (V/})K~finite
@ Letnowv eV CV,and v, € (V;)Kfﬁnite. Then the map

g+ Vp(7p(g)v) is analytic and independent of the choice? of the
completion V.

@ The matrix-coefficient attached to v and v :

m, (&) :==Vv(g-v).

2\W. Casselman, Canonical extensions of Harish-Chandra modules to
representations of G, Canadian Journal of Mathematics 41 (1989);:385—438.
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@ Growth of a representation: Often modeled by Weights—a locally
bounded positive function w : G — IR~ which is submultiplicative,
i.e.

w(gh) <w(g)w(h)  (g.heG).
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@ Growth of a representation: Often modeled by Weights—a locally
bounded positive function w : G — IR~ which is submultiplicative,
i.e.

w(gh) <w(g)w(h)  (g.heG).

For example, every G-continuous norm p is bounded by a weight,
namely the operator norm

wp(g) :== sup p(g-v). (1)
p(v)<1
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@ Growth of a representation: Often modeled by Weights—a locally
bounded positive function w : G — IR~ which is submultiplicative,
i.e.

w(gh) < w(g)w(h) (g.heG).
For example, every G-continuous norm p is bounded by a weight,
namely the operator norm

wp(g) := sup p(g-v). (1)
p(v)<1

@ Given a Harish-Chandra module V, and a weight w, we consider

Norm(V,w) := {p G-continuous norm : p(g-v) < Cw(g)p(v)}.
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@ Growth of a representation: Often modeled by Weights—a locally
bounded positive function w : G — IR~ which is submultiplicative,
i.e.

w(gh) <w(g)w(h)  (g.heG).

For example, every G-continuous norm p is bounded by a weight,
namely the operator norm

wp(g) := sup p(g-v). (1)
p(v)<1

@ Given a Harish-Chandra module V, and a weight w, we consider

Norm(V,w) := {p G-continuous norm : p(g-v) < Cw(g)p(v)}.

e Aim: Structure the set Norm(V, w) .
{Banach globalizations with fixed growth rate}

@ (G-invariant norms) w = 1, in this case Norm(V) := Norm(V/, 1)
consists of isometric norms, i.e. norms for which p(g - v) = p(v) for
alge GandveV.
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Some interesting examples

e Tempered representations(Cowling3, Kunze-Stein)

@ G- semi-simple Lie group with finite center. Let 7t € G be tempered
and V the corresponding Harish-Chandra module. Fix a unitary
norm g on V.

3M. Cowling, The Kunze-Stein Phenomenon, Ann. Math. 107 (2), 209-234.



Some interesting examples

e Tempered representations(Cowling3, Kunze-Stein)
@ G- semi-simple Lie group with finite center. Let 7t € G be tempered
and V the corresponding Harish-Chandra module. Fix a unitary
norm g on V.

@ Recall that 77 is tempered provided all matrix coefficients m, 7 lie in
L"(G) for r > 2.

3M. Cowling, The Kunze-Stein Phenomenon, Ann. Math. 107+2), 209-234.
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Some interesting examples

e Tempered representations(Cowling3, Kunze-Stein)

@ G- semi-simple Lie group with finite center. Let 7t € G be tempered
and V the corresponding Harish-Chandra module. Fix a unitary
norm g on V.

@ Recall that 77 is tempered provided all matrix coefficients m, 7 lie in
L"(G) for r > 2.

e Fix now 0 # v € V and define isometric norms
pr(v):=Im,sllirgy (vev)

for all 2 < r < oo.

3M. Cowling, The Kunze-Stein Phenomenon, Ann. Math. 107+2), 209-234.
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Some interesting examples

e Tempered representations(Cowling3, Kunze-Stein)

@ G- semi-simple Lie group with finite center. Let 7t € G be tempered
and V the corresponding Harish-Chandra module. Fix a unitary
norm g on V.

@ Recall that 77 is tempered provided all matrix coefficients m, 7 lie in
L"(G) for r > 2.

e Fix now 0 # v € V and define isometric norms
pr(v):=Im,sllirgy (vev)

for all 2 < r < oo.

@ The Kunze-Stein phenomenon:

pr(v)Salv)  (r>2)

3M. Cowling, The Kunze-Stein Phenomenon, Ann. Math. 107+2), 209-234.
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e Automorphic norms(Bernstein-Reznikov?)
e G = SLp(R), and T =co-compact lattice in G, i.e., X =T\G is
compact. E- K-spherical unitary principal series representation

4J. Bernstein and A. Reznikov, Sobolev Norms of Automorphic Functionals, IMRN,
International Mathematics Research Notices 2002, No. 40, 2155-2174.
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e Automorphic norms(Bernstein-Reznikov?)
e G = SLp(R), and T =co-compact lattice in G, i.e., X =T\G is
compact. E- K-spherical unitary principal series representation
@ V H-C module and 77 : E* — C continuous I invariant functional.

We consider the Automorphic forms:
my;(Tg) :=1n(g-v) (veV,geai).

4J. Bernstein and A. Reznikov, Sobolev Norms of Automorphic Functionals, IMRN,

International Mathematics Research Notices 2002, No. 40, 2155-2174.



e Automorphic norms(Bernstein-Reznikov?)
e G = SLp(R), and T =co-compact lattice in G, i.e., X =T\G is
compact. E- K-spherical unitary principal series representation
@ V H-C module and 77 : E* — C continuous I invariant functional.
We consider the Automorphic forms:

my;(Tg) :=1n(g-v) (veV,geai).

@ g given by
a2 = [ Imy TP dTg)  (veV)

is a unitary norm.

4J. Bernstein and A. Reznikov, Sobolev Norms of Automorphic Functionals, IMRN,
International Mathematics Research Notices 2002, No. 40, 2155-2174.
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e Automorphic norms(Bernstein-Reznikov?)
e G = SLp(R), and T =co-compact lattice in G, i.e., X =T\G is
compact. E- K-spherical unitary principal series representation
@ V H-C module and 77 : E* — C continuous I invariant functional.
We consider the Automorphic forms:

my;(Tg) :=1n(g-v) (veV,geai).

@ g given by
a2 = [ Imy TP dTg)  (veV)

is a unitary norm.
@ Another interesting isometric norm is

Paut(v) :=sup [my,(x)| (v e V).
xeX

4J. Bernstein and A. Reznikov, Sobolev Norms of Automorphic Functionals, IMRN,
International Mathematics Research Notices 2002, No. 40, 2155-2174.
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e Automorphic norms(Bernstein-Reznikov?)
e G = SLp(R), and T =co-compact lattice in G, i.e., X =T\G is
compact. E- K-spherical unitary principal series representation
@ V H-C module and 77 : E* — C continuous I invariant functional.
We consider the Automorphic forms:

my;(Tg) :=1n(g-v) (veV,geai).

@ g given by
a2 = [ Imy TP dTg)  (veV)
is a unitary norm.
@ Another interesting isometric norm is

Paut(v) :=sup [my,(x)| (v e V).
xeX

o Clearly, g < \/Vol(X)paut. Also as shown by BR

1
Paut S Gs = 5>§

4J. Bernstein and A. Reznikov, Sobolev Norms of Automorphic Functionals, IMRN,
International Mathematics Research Notices 2002, No. 40, 2155-2174.
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Structuring Norm(V/, w)

There is a natural equivalence relation on Norm(V, w) : For
p,q € Norm(V, w), we say that p ~ q iff p < g, and g < p. This leads
to

Norm(V, w) := Norm(V,w)/ ~ .
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Structuring Norm(V/, w)

There is a natural equivalence relation on Norm(V, w) : For
p,q € Norm(V, w), we say that p ~ q iff p < g, and g < p. This leads
to

Norm(V, w) := Norm(V,w)/ ~ .

e Denote the equivalence class of a norm p by [p].

@ Notice that < on Norm(V/, w) induces a partial order < on
Norm(V, w).
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Structuring Norm(V/, w)

There is a natural equivalence relation on Norm(V, w) : For

p,q € Norm(V, w), we say that p ~ q iff p < g, and g < p. This leads
to

Norm(V, w) := Norm(V,w)/ ~ .

e Denote the equivalence class of a norm p by [p].

@ Notice that < on Norm(V/, w) induces a partial order < on
Norm(V, w).

Proposition

If Norm(V, w) # @. Then Morm(V, w) has a unique minimal element
[py:], and a unique maximal element [pfy..].
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Construction of minimal and maximal norms

e Special case: Fix a cyclic vector v € V.

@ A representative for the equivalence class of minimal norm:

my (&
P (v) i sup M8l

geG W(g) (Ve V).
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Construction of minimal and maximal norms

e Special case: Fix a cyclic vector v € V.

@ A representative for the equivalence class of minimal norm:

my (&
P (v) i sup M8l

geG W(g) (Ve V).

e Take p € Norm(V,w) ~ p(g-v) < Cw(g)p(v)
o [V(g-v)| < plg-v)p(V) < Cw(g)p(v)p(V)
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Construction of minimal and maximal norms

e Special case: Fix a cyclic vector v € V.

@ A representative for the equivalence class of minimal norm:

my (&
P (v) i sup M8l

geG W(g) (Ve V).

e Take p € Norm(V,w) ~ p(g-v) < Cw(g)p(v)
o |v(g-v)| < p(g-v)B(V) < Cw(g)p(v)p(V)
o ie. pmin(v) < CAW)p(v) = Cp(v)  (veE V)
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Construction of minimal and maximal norms

e Special case: Fix a cyclic vector v € V.

@ A representative for the equivalence class of minimal norm:

my (&
P (v) i sup M8l

geG W(g) (Ve V).

Take p € Norm(V, w) ~ p(g-v) < Cw(g)p(v)

o [v(g-v)| < p(g-v)B(V) < Cw(g)p(v)p(V)
o e pmin(v) < CA(V)p(v) = Cp(v)  (ve V)
o Using w(gh™!) > % we see that
TR {27 20 RS L LX0% D
pmin(g ) - heg W(h) hEF().? W(hgil) < (g)pm1n< )
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Construction of minimal and maximal norms

e Special case: Fix a cyclic vector v € V.

@ A representative for the equivalence class of minimal norm:

my (&
P (v) i sup M8l

geG W(g) (Ve V).

Take p € Norm(V, w) ~ p(g-v) < Cw(g)p(v)

o [v(g-v)| < plg-v)p(v) < Cw(g)p(v)p(V)
@ i.e., pmin(v) < Cp(V)p(v) = Cp(v) (vev)
o Using w(gh™!) > % we see that
v(h-g-v)| [v(h-v)| w
Pmin (& - V) = sup ———~—= = sup ———== < w(g)Pmin (v
mm( ) e W(h) he W(hgil) ( ) mm( )
e Also, from pZ. < p we obtain that orbit maps

G — Vpw , g — g - v are continuous for all v € V.
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Construction of minimal and maximal norms

e Special case: Fix a cyclic vector v € V.

@ A representative for the equivalence class of minimal norm:

my (&
P (v) i sup M8l

geG W(g) (Ve V).

Take p € Norm(V, w) ~ p(g-v) < Cw(g)p(v)

o [v(g-v)| < plg-v)p(v) < Cw(g)p(v)p(V)
@ i.e., pmin(v) < Cp(V)p(v) = Cp(v) (vev)
o Using w(gh™!) > % we see that
v(h-g-v)| [v(h-v)| w
Pmin (& - V) = sup ———~—= = sup ———== < w(g)Pmin (v
mm( ) e W(h) he W(hgil) ( ) mm( )
e Also, from pZ. < p we obtain that orbit maps

G — Vpw , g+ g-v are continuous for all v € V.
min
@ For the maximal norm, dualize the construction!



Sobolev norms and “smooth” globalization

e Standard Sobolev norm Fix a norm p on V. Now a fixed basis
Xi,--1, Xn of g we define for every k € INg a norm pj/ t by

pit(v) = | ¥ p(X{.. . Xprv)?
w IN"
<

o Different choices of a basis for g lead to equivalent norms.

@ Monotonic i.e., p pk+1
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Sobolev norms and “smooth” globalization

e Standard Sobolev norm Fix a norm p on V. Now a fixed basis
Xi,--1, Xn of g we define for every k € INg a norm pj/ t by

pit(v) = | ¥ p(X{.. . Xprv)?
w IN"
<

o Different choices of a basis for g lead to equivalent norms.
@ Monotonic i.e., p pk+1

o If p € Norm(V, w), then p' is G-continuous but one has to enlarge
the weight!
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Sobolev norms and “smooth” globalization

e Standard Sobolev norm Fix a norm p on V. Now a fixed basis
Xi,--1, Xn of g we define for every k € INg a norm pj/ t by

pit(v) = | ¥ p(X{.. . Xprv)?
w IN"
<

o Different choices of a basis for g lead to equivalent norms.
@ Monotonic i.e., p pk+1

o If p € Norm(V, w), then p' is G-continuous but one has to enlarge
the weight!

Theorem 1 (Casselman-Wallach)

For any pair of G-continuous norms p, q on a Harish-Chandra module V
there exists a k € N such that p < qit.
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Theorem 2 (Casselman-Wallach)

For any pair of G-continuous norms p, q on a Harish-Chandra module V
there exists a k € N such that p < q,s(t.

o (piH)k and (g5t), define the same topology!
k k

5J. Bernstein, B. Krdtz, Smooth Fréchet globalizations of Harish-Chandra modules.
Isr. J. Math. 199, 45-111 (2014). https://doi.org/10.1007/s11856-013-0056-1



Theorem 2 (Casselman-Wallach)

For any pair of G-continuous norms p, q on a Harish-Chandra module V
there exists a k € N such that p < q,s(t.

o (piH)k and (g5t), define the same topology!
k k

@ The identity map V — V extends to a G-isomorphism of Fréchet
spaces V° — V¢°. Hence there is up to isomorphism only one
SF-globalization of V. This globalization is denoted by V.

5J. Bernstein, B. Krdtz, Smooth Fréchet globalizations of Harish-Chandra modules.
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Theorem 2 (Casselman-Wallach)

For any pair of G-continuous norms p, q on a Harish-Chandra module V
there exists a k € N such that p < qit.

o (piH)k and (g5t), define the same topology!
k k

@ The identity map V — V extends to a G-isomorphism of Fréchet
spaces V° — V¢°. Hence there is up to isomorphism only one
SF-globalization of V. This globalization is denoted by V.

Proposition

Given a G-continuous norm p on a Harish-Chandra module, a vector
v € V,, is smooth if and only if it is K-smooth.

5J. Bernstein, B. Krdtz, Smooth Fréchet globalizations of Harish-Chandra modules.
Isr. J. Math. 199, 45-111 (2014). https://doi.org/10.1007/s11856-013-0056-1



V—Harish-Chandra module , p a G-continuous norm on V.
o Take Ak € U(¥) —Laplace element. Consider for any s € R,

Ds = (1+Ak)3.
@ This acts as a scalar on the K types, i.e.,

~

Dslyjy) = G2 -idyyp (T € K).
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V—Harish-Chandra module , p a G-continuous norm on V.
o Take Ak € U(¥) —Laplace element. Consider for any s € R,

Ds = (1+Ak)3.
@ This acts as a scalar on the K types, i.e.,

~

Dslyjy) = G2 -idyyp (T € K).

@ We define an s-th Sobolev norm on V by

ps(v) :==p(Dsv)  (veV).

P. Ganguly Harish-Chandra modules



V—Harish-Chandra module , p a G-continuous norm on V.
o Take Ak € U(¥) —Laplace element. Consider for any s € R,

Ds = (1+Ak)3.
@ This acts as a scalar on the K types, i.e.,

~

Dslyjy) = G2 -idyyp (T € K).

@ We define an s-th Sobolev norm on V by

ps(v) :==p(Dsv)  (veV).

Take G = SL3(R), and K = SO(2). Then K ~ Z. For v =Y ,c Vn,

ps(v) = X2 (14 |nl)*va.

neZ
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p-G-continuous norm on V, and s Sobolev norm ps := p(Ds-)
e Properties:

@ p<qg=ps<qs
° (Ps)t = Ps+t (S, te IR)
o (Duality) (ps) =p-s (s €R)
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p-G-continuous norm on V, and s Sobolev norm ps := p(Ds-)
e Properties:

@ p<qg=ps<qs

° (Ps)t = Ps+t (S, te IR)

o (Duality) (ps) =p-s (s € R)

o (Issue-1) ps may not be G-continuous. However,

For any k € IN there exists an s > 0 such that pit < ps, and vice versa.

o (Issue-2) It is not clear that (ps)s>o is monotonous. Well, if p is
K-Hermitian then, it is certainly is, i.e., p < ps holds for s > 0.

P. Ganguly Harish-Chandra modules



A new invariant

eSobolev “distance” on Norm(V, w)
Given [p], [g] € Morm(V, w) we set

d%([pl. [q]) = inf{s >0 [ p < a5}

and define

d”([p], [q]) = max{d-([p], [q]), d=([q], [P])} -
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A new invariant

eSobolev “distance” on Norm(V, w)
Given [p], [g] € Morm(V, w) we set

d%([pl. [q]) = inf{s >0 [ p < a5}

and define

d”([p], [q]) = max{d-([p], [q]), d=([q], [P])} -

(Norm(V, w), d) is pseudo-metric space.
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A new invariant

eSobolev “distance” on Norm(V, w)
Given [p], [g] € Morm(V, w) we set

d%([pl. [q]) = inf{s >0 [ p < a5}

and define

d”([p], [q]) = max{d-([p], [q]), d=([q], [P])} -

(Norm(V, w), d) is pseudo-metric space.

e Sobolev-w-gap

s(V,w) = d([pminl. [Pmax])

In other words,

S(Vv W) = inf{s >0 | prvrvmx S prV:\in,s}'
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@ The pseudometric d* and the Sobolev gap s(V, w) are independent
of the choice of the maximal compact subgroup K.
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@ The pseudometric d* and the Sobolev gap s(V, w) are independent
of the choice of the maximal compact subgroup K.

@ What if one uses a different family of Sobolev norms? —For
example, the standard family {p;'} ~- standard Sobolev gap

SSt(Vr W) = min{k € Np | prvr‘{ax SJ (prvr(m)?(t}

Note that the s*(V/, w) is a more coarse invariant of V than the
Sobolev gap s(V, w). The sandwiching of Sobolev norms yields
universal constants ¢, C > 0 such that

cs(V,w) <s(V,w) < CG*(V, w)
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@ The pseudometric d* and the Sobolev gap s(V, w) are independent
of the choice of the maximal compact subgroup K.

@ What if one uses a different family of Sobolev norms? —For
example, the standard family {p;'} ~- standard Sobolev gap

SSt(Vr W) = min{k € Np | prvr‘{ax SJ (prvr(m)?(t}

Note that the s*(V/, w) is a more coarse invariant of V than the
Sobolev gap s(V, w). The sandwiching of Sobolev norms yields
universal constants ¢, C > 0 such that

cs(V,w) <s(V,w) < CG*(V, w)

o Duality: s(V,w) = s(V,w?). Here wf(g) = w(g™1). In particular,
s(V,w) = s(V, wh) if Vis self-dual, i.e. V ~ V.

@ Monotonicity: Let wy, wp be two weights with wy; < wp. Then
S(V, W]_) < S(\/, W2).
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e Infimum construction: For a family (gu)e.4 of seminorms on a
vector space E one can define the seminorm inf,c 4 gx of the family by

inf = inf €E)
Ha= o, Dot (<0
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e Infimum construction: For a family (gu)e.4 of seminorms on a
vector space E one can define the seminorm inf,c 4 gx of the family by

inf = inf €E)
Ha= o, Dot (<0

Given a norm p on V* we define

G,w G : -1
! = = f .
P p” = inf. w(g " )p(g")
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e Infimum construction: For a family (gu)e.4 of seminorms on a
vector space E one can define the seminorm inf,c 4 gx of the family by

inf = inf €E)
Ha= o, Dot (<0

Given a norm p on V* we define

G,w G : -1
! = = f .
P p” = inf. w(g " )p(g")

o pC is the largest semi-norm on V* with p¢ < w(g™1)p(g-).

o If there exists a ¢ € Norm(V, w) such that g < p, then g < pC and

pC is a norm. If in addition there exists a G-continuous norm r on

V such that p < r, then p® € Norm(V, w).
o Let p € Norm(V,w). If s > 0 is such that p < ps, then

pC = (ps)® € Norm(V, w).
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Proposition (Stabilization property)

There exists a S > 0 so that

[pmax] = [psG] (5 > 5)

In particular, if p is monotonous, then S = s(V, w).

e Visualize:
e 0 <51 <sp < ... ascending chain
@ p<ps <ps < ...

@ ascending chain in Norm(V, w) : p¢ < pg < pg < ... —becomes
stationary when taking equivalence classes!
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G-invariant norms

Consider the case where w = 1, in which case Norm (V) := Norm(V, 1)
consists of isometric norms, i.e. norms for which p(g - v) = p(v) for all
g € G and v € V. As before we write pyin and pmax for representatives
of the minimal and maximal element in 9torm(V/), respectively.

Theorem 3

Assume that V is unitarizable and let q be a unitary norm. Then, in the
pseudometric space (Morm(V), d):

d([q], [pmin}) = d([q}: [Pmax])

and in particular

s(V) < 2d([q], [pmax])
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Sobolev gap for SL>(IR)

Theorem 4

Let G = SL»(R) and V' # C be a unitarizable irreducible Harish-Chandra
module and [q] be the equivalence class of the unitary norm. Then

d([a]. lpmax]) = 5 = d([a], [pmn)-

In particular
s(V)=1.
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Sobolev gap for SL>(IR)

Theorem 4

Let G = SL»(R) and V' # C be a unitarizable irreducible Harish-Chandra
module and [q] be the equivalence class of the unitary norm. Then

d([a]. lpmax]) = 5 = d([a], [pmn)-

In particular
s(V)=1.

o Fix e @ I__et V be the corresponding Harish—Chandra module, i.e.,
V = gK-finite Recall that K = SO(2) and K ~ Z.

0 5= S(V) = Speck (V) C Zie., V = BycsCer
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Sobolev gap for SL>(IR)

Theorem 4

Let G = SL»(R) and V' # C be a unitarizable irreducible Harish-Chandra
module and [q] be the equivalence class of the unitary norm. Then

d([a]. lpmax]) = 5 = d([a], [pmn)-

In particular

s(V)=1.

o Fix e @ I__et V be the corresponding Harish—Chandra module, i.e.,
V = gK-finite Recall that K = SO(2) and K ~ Z.

@ S=5(V)=Speck(V)C Zie, V=0P,sCep
o For example, if 7T belongs to the unitary principal series, then
S =27 or 2Z + 1 (depending on the parametrization).
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Theorem 5

Let T € G be such that 7t # 1. Fix m € Speck (7t). Then for n # m,

1
sup [(72(g)em,

e =g m —,
g€G Pl =mm V14 |n|

except for one representation of the principal series where an additional
log-factor is needed.
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Theorem 5

Let T € G be such that 7t # 1. Fix m € Speck (7t). Then for n # m,

m €n )| =

1
sup [(7(g)em, e,

g€G oem V1+[n]

except for one representation of the principal series where an additional
log-factor is needed.

@ Estimates of the minimal and maximal norms :

1
Pmin(€n) = TV” Pmax(€n) < /14 [n|

@ Then for any s for which pmax S Pmin,s. We must have
1 _1
Pmax(€n) S Pmins(en) = (1+[n])2 S (1+n|)*2

@ So, s > 1 which leads to s(V) > 1.
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@ To show s(V) < 1, we shall show that for € > 0,
Pmax < Q%+€

which leads to d([pmax], g) = 4. Hence

s(V) <2d([pmax). q) = 1.
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@ To show s(V) < 1, we shall show that for € > 0,
Pmax < Q%+€

which leads to d([pmax], g) = 4. Hence

s(V) <2d([pmax). q) = 1.

@ Enough to show that B, ‘ C Bmax i.e., Bmax contains up to scale
2t€

1 ,
all sequences ¥, an|n|~(27)e, with ¥]a,[2 < 1 and € > 0.
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@ To show s(V) < 1, we shall show that for € > 0,
Pmax < Q%+€

which leads to d([pmax], g) = 4. Hence

s(V) <2d([pmax). q) = 1.

@ Enough to show that B, ‘ C Bmax i.e., Bmax contains up to scale
2t€

all sequences }_,cs an|n|’<%+€)en with Y |an|? <1 and € > 0.
@ Bax = conv(G - en,), for some fixed m € S = Specy (V). By
convexity,

/Gg. €m d'Y(g) € Bmax

for v a complex Borel measure on G with total variation ||y| < 1.
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@ To show s(V) < 1, we shall show that for € > 0,
Pmax < Q%+€

which leads to d([pmax], g) = 4. Hence

s(V) <2d([pmax). q) = 1.

@ Enough to show that B, ‘ C Bmax i.e., Bmax contains up to scale
2t€

1 ,
all sequences ¥, an|n|~(27)e, with ¥]a,[2 < 1 and € > 0.

@ Bax = conv(G - en,), for some fixed m € S = Specy (V). By
convexity,

/Gg. €m d'Y(g) € Bmax

for v a complex Borel measure on G with total variation ||y| < 1.
o Finally, choose  such that

/G<g “em, €n)dY(g) ~m,x an(E) ”_(%+6)-
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Geometry of Jtorm (V) for SL,(R)

e d([q], [Pmax]) = 3 = d([g]. [Pmin])
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Geometry of Jtorm (V) for SL,(R)

e d([q], [Pmax]) = 3 = d([g]. [Pmin])

@ Let V be a Harish-Chandra module of a unitary principal series and
[q] € Morm(V) the equivalence class of the unitary norm. Then the
map

1:[=1/2,1/2] = (Morm(V), d), s [q€]

satisfies
d([aS).[ag]) > |s =5 (s.;s' € [-1/2,1/2]).

In particular, ¢ is injective.
We call 1 :=([—1/2,1/2]) C Morm(V) the central interval.
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Geometry of Jtorm (V) for SL,(R)

e d([q], [Pmax]) = 3 = d([g]. [Pmin])

@ Let V be a Harish-Chandra module of a unitary principal series and
[q] € Morm(V) the equivalence class of the unitary norm. Then the
map

1:[=1/2,1/2] = (Morm(V), d), s [q€]

satisfies

d(la] [ag]) = [s =5 (s;s' € [-1/2,1/2]).
In particular, ¢ is injective.

We call 1 :=([—1/2,1/2]) C Morm(V) the central interval.

@ (V automorphic)

d([Q]- [Paut]) =1/2 and d([Paut])v [Pmax]) > 1/6 with
[Pmax] = [q€] for s > 1/2. Hence [paut] does not lie on /.
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Geometry of Jtorm (V) for SL,(R)

e d([q], [Pmax]) = 3 = d([g]. [Pmin])

@ Let V be a Harish-Chandra module of a unitary principal series and
[q] € Morm(V) the equivalence class of the unitary norm. Then the
map

1:[=1/2,1/2] = (Morm(V), d), s [q€]

satisfies
d([aS).[aS) 2 s /| (s.8' € [~1/2,1/2).
In particular, ¢ is injective.

We call 1 :=([—1/2,1/2]) C Morm(V) the central interval.

@ (V automorphic)

d([q]. [paut]) = 1/2 and  d([paut]), [Pmax]) > 1/6 with
[Pmax] = [q€] for s > 1/2. Hence [paut] does not lie on /.

o (Contractibility of 9torm(V/)?) Continuity of 1?
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Geometry of Jtorm (V) for SL,(R)

e d([q], [Pmax]) = 3 = d([g]. [Pmin])

@ Let V be a Harish-Chandra module of a unitary principal series and
[q] € Morm(V) the equivalence class of the unitary norm. Then the
map

1:[=1/2,1/2] = (Morm(V), d), s [q€]

satisfies
d([aS).[aS) 2 s /| (s.8' € [~1/2,1/2).
In particular, ¢ is injective.

We call 1 :=([—1/2,1/2]) C Morm(V) the central interval.

@ (V automorphic)

d([q]. [paut]) = 1/2 and  d([paut]), [Pmax]) > 1/6 with
[Pmax] = [q€] for s > 1/2. Hence [paut] does not lie on /.

o (Contractibility of 9torm(V/)?) Continuity of 1?

e d([qg],[p"]) =? Locations of the L"-norms p"? (Kunze-Stein
Phenomenon).
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Uniform finiteness of the Sobolev gap for general G

o (Finiteness questions) G- Real reductive group

sup s(V,wy) < c0?
VeF

JF- family of Harish-Chandra module.
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Uniform finiteness of the Sobolev gap for general G

o (Finiteness questions) G- Real reductive group

sup s(V,wy) < c0?
VeF
JF- family of Harish-Chandra module.
o (positive answers:)

@ F = Discrete series , w, = 1.
@ F = minimal principal series with natural with natural weights
depending on the parameters.
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Uniform finiteness of the Sobolev gap for general G

o (Finiteness questions) G- Real reductive group

sup s(V,wy) < c0?
VeF
JF- family of Harish-Chandra module.
o (positive answers:)
@ F = Discrete series , w, = 1.
@ F = minimal principal series with natural with natural weights

depending on the parameters. More precisely, G = KAN, P = MAN

where M = Zi(A). For A € af and ¢ € M, the Harish-Chandra
module of the minimal principal series:

Vop = IndGan(c @A ® 1)K—finite \We have

sup  s(Vopwy) < C.
ceM, A€ag
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Uniform finiteness of the Sobolev gap for general G

o (Finiteness questions) G- Real reductive group

sup s(V,wy) < c0?
VeF
JF- family of Harish-Chandra module.
o (positive answers:)
@ F = Discrete series , w, = 1.
@ F = minimal principal series with natural with natural weights

depending on the parameters. More precisely, G = KAN, P = MAN

where M = Zi(A). For A € af and ¢ € M, the Harish-Chandra
module of the minimal principal series:

Vop = IndGan(c @A ® 1)K—finite \We have

sup  s(Vopwy) < C.
ceM, A€ag

@ Open questions

sup  s(V,wy) < o0?
Velrr(HC)
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